Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
# from langchain_community.llms import GooglePalm
|
3 |
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
4 |
-
|
5 |
# from langchain_community.embeddings import GooglePalmEmbeddings
|
6 |
# from langchain_community.vectorstores import FAISS
|
7 |
# from langchain_community.document_loaders import PyPDFLoader
|
@@ -14,15 +14,15 @@ import PyPDF2
|
|
14 |
# history.append((user_input, bot_response))
|
15 |
# return history, history
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
def text_extract(file):
|
28 |
pdf_reader = PyPDF2.PdfReader(file.name)
|
@@ -33,7 +33,7 @@ def text_extract(file):
|
|
33 |
for page_num in range(num_pages):
|
34 |
page = pdf_reader.pages[page_num]
|
35 |
text += page.extract_text()
|
36 |
-
|
37 |
# db = FAISS.from_texts(text_splitter, embeddings);
|
38 |
# retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
39 |
# llm=GooglePalm(google_api_key=google_api)
|
@@ -41,7 +41,7 @@ def text_extract(file):
|
|
41 |
# llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
|
42 |
# )
|
43 |
# print(db)
|
44 |
-
return
|
45 |
|
46 |
|
47 |
with gr.Blocks() as demo:
|
|
|
1 |
import gradio as gr
|
2 |
# from langchain_community.llms import GooglePalm
|
3 |
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
# from langchain_community.embeddings import GooglePalmEmbeddings
|
6 |
# from langchain_community.vectorstores import FAISS
|
7 |
# from langchain_community.document_loaders import PyPDFLoader
|
|
|
14 |
# history.append((user_input, bot_response))
|
15 |
# return history, history
|
16 |
|
17 |
+
def text_splitter_function(text):
|
18 |
+
text_splitter = CharacterTextSplitter(
|
19 |
+
separator = '\n',
|
20 |
+
chunk_size = 1000,
|
21 |
+
chunk_overlap = 40,
|
22 |
+
length_function = len,
|
23 |
+
)
|
24 |
+
texts = text_splitter.split_text(text)
|
25 |
+
return texts;
|
26 |
|
27 |
def text_extract(file):
|
28 |
pdf_reader = PyPDF2.PdfReader(file.name)
|
|
|
33 |
for page_num in range(num_pages):
|
34 |
page = pdf_reader.pages[page_num]
|
35 |
text += page.extract_text()
|
36 |
+
text_splitter=text_splitter_function(text);
|
37 |
# db = FAISS.from_texts(text_splitter, embeddings);
|
38 |
# retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
39 |
# llm=GooglePalm(google_api_key=google_api)
|
|
|
41 |
# llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
|
42 |
# )
|
43 |
# print(db)
|
44 |
+
return text_splitter
|
45 |
|
46 |
|
47 |
with gr.Blocks() as demo:
|