Spaces:
Runtime error
Runtime error
File size: 9,973 Bytes
640a27b f71eb42 a24b16a 81ccbca 506badf 97b401e e3abd80 97b401e e1dc863 e3abd80 daebf8f 5349660 506badf 5349660 843b14b 88c9af4 7c89716 f71eb42 7c89716 88c9af4 f0cf9b0 7c89716 f0cf9b0 a24b16a 5349660 506badf f0cf9b0 5349660 f0cf9b0 5349660 0166058 5349660 0a3fdbd 5349660 0166058 5349660 0166058 843b14b 5349660 f0cf9b0 843b14b 5349660 843b14b f0cf9b0 5349660 98bb9c3 5349660 98bb9c3 5349660 81ccbca 5349660 81ccbca 5349660 81ccbca 5349660 843b14b f0cf9b0 7c89716 88c9af4 81ccbca 7c89716 a24b16a f0cf9b0 a24b16a 5349660 843b14b a24b16a f71eb42 a24b16a 5349660 a24b16a 81ccbca a24b16a 81ccbca a24b16a 81ccbca a24b16a 81ccbca a24b16a 81ccbca a24b16a 81ccbca a24b16a 81ccbca a24b16a e3abd80 a24b16a 81ccbca c19b710 7c89716 e066869 81ccbca a24b16a 7c89716 a24b16a 843b14b 7c89716 843b14b f71eb42 7c89716 843b14b a24b16a 7c89716 a24b16a 843b14b 7c89716 f71eb42 843b14b f0cf9b0 843b14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import torch
from finetuning import FineTunedModel
from StableDiffuser import StableDiffuser
from train import train
import os
model_map = {'Van Gogh' : 'models/vangogh.pt',
'Pablo Picasso': 'models/pablopicasso.pt',
'Car' : 'models/car.pt',
'Garbage Truck': 'models/garbagetruck.pt',
'French Horn': 'models/frenchhorn.pt',
'Kilian Eng' : 'models/kilianeng.pt',
'Thomas Kinkade' : 'models/thomaskinkade.pt',
'Tyler Edlin' : 'models/tyleredlin.pt',
'Kelly McKernan': 'models/kellymckernan.pt',
'Rembrandt': 'models/rembrandt.pt' }
ORIGINAL_SPACE_ID = 'baulab/Erasing-Concepts-In-Diffusion'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## Attention - Training using the ESD-u method does not work in this shard UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
self.diffuser = StableDiffuser(scheduler='DDIM').to('cuda').eval().half()
with gr.Blocks() as demo:
self.layout()
demo.queue(concurrency_count=5).launch()
def layout(self):
with gr.Row():
if SPACE_ID == ORIGINAL_SPACE_ID:
self.warning = gr.Markdown(SHARED_UI_WARNING)
with gr.Row():
with gr.Tab("Test") as inference_column:
with gr.Row():
self.explain_infr = gr.Markdown(interactive=False,
value='This is a demo of [Erasing Concepts from Stable Diffusion](https://erasing.baulab.info/). To try out a model where a concept has been erased, select a model and enter any prompt. For example, if you select the model "Van Gogh" you can generate images for the prompt "A portrait in the style of Van Gogh" and compare the erased and unerased models. We have also provided models with "cars" erased, and with "nudity" erased. You can also train and run your own custom model with a concept erased.')
with gr.Row():
with gr.Column(scale=1):
self.prompt_input_infr = gr.Text(
placeholder="Enter prompt...",
label="Prompt",
info="Prompt to generate"
)
with gr.Row():
self.model_dropdown = gr.Dropdown(
label="ESD Model",
choices= list(model_map.keys()),
value='Van Gogh',
interactive=True
)
self.seed_infr = gr.Number(
label="Seed",
value=42
)
with gr.Column(scale=2):
self.infr_button = gr.Button(
value="Generate",
interactive=True
)
with gr.Row():
self.image_new = gr.Image(
label="ESD",
interactive=False
)
self.image_orig = gr.Image(
label="SD",
interactive=False
)
with gr.Tab("Train") as training_column:
with gr.Row():
self.explain_train= gr.Markdown(interactive=False,
value='In this part you can erase any concept from Stable Diffusion. Enter a prompt for the concept or style you want to erase, and select ESD-x if you want to focus erasure on prompts that mention the concept explicitly, or ESD-u if you want to erase the concept even for prompts that do not mention the concept. With default settings, it takes about 20 minutes to fine-tune the model; then you can try inference above or download the weights. The training code used here is slightly different than the code tested in the original paper. Code and details are at [github link](https://github.com/rohitgandikota/erasing).')
with gr.Row():
with gr.Column(scale=3):
self.prompt_input = gr.Text(
placeholder="Enter prompt...",
label="Prompt to Erase",
info="Prompt corresponding to concept to erase"
)
choices = ['ESD-x']
if torch.cuda.get_device_properties(0).total_memory * 1e-9 >= 40:
choices.append('ESD-u')
self.train_method_input = gr.Dropdown(
choices=choices,
value='ESD-x',
label='Train Method',
info='Method of training'
)
self.neg_guidance_input = gr.Number(
value=1,
label="Negative Guidance",
info='Guidance of negative training used to train'
)
self.iterations_input = gr.Number(
value=150,
precision=0,
label="Iterations",
info='iterations used to train'
)
self.lr_input = gr.Number(
value=1e-5,
label="Learning Rate",
info='Learning rate used to train'
)
with gr.Column(scale=1):
self.train_status = gr.Button(value='', variant='primary', label='Status', interactive=False)
self.train_button = gr.Button(
value="Train",
)
self.download = gr.Files()
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.seed_infr,
self.model_dropdown
],
outputs=[
self.image_new,
self.image_orig
]
)
self.train_button.click(self.train, inputs = [
self.prompt_input,
self.train_method_input,
self.neg_guidance_input,
self.iterations_input,
self.lr_input
],
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
)
def train(self, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
if self.training:
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
if train_method == 'ESD-x':
modules = ".*attn2$"
frozen = []
elif train_method == 'ESD-u':
modules = "unet$"
frozen = [".*attn2$", "unet.time_embedding$", "unet.conv_out$"]
elif train_method == 'ESD-self':
modules = ".*attn1$"
frozen = []
randn = torch.randint(1, 10000000, (1,)).item()
save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}.pt"
self.training = True
train(prompt, modules, frozen, iterations, neg_guidance, lr, save_path)
self.training = False
torch.cuda.empty_cache()
model_map['Custom'] = save_path
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom model in the "Test" tab'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
def inference(self, prompt, seed, model_name, pbar = gr.Progress(track_tqdm=True)):
seed = seed or 42
generator = torch.manual_seed(seed)
model_path = model_map[model_name]
checkpoint = torch.load(model_path)
finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()
torch.cuda.empty_cache()
images = self.diffuser(
prompt,
n_steps=50,
generator=generator
)
orig_image = images[0][0]
torch.cuda.empty_cache()
generator = torch.manual_seed(seed)
with finetuner:
images = self.diffuser(
prompt,
n_steps=50,
generator=generator
)
edited_image = images[0][0]
del finetuner
torch.cuda.empty_cache()
return edited_image, orig_image
demo = Demo()
|