Spaces:
Runtime error
Runtime error
working?
Browse files- app.py +85 -78
- requirements.txt +2 -0
- train_esd.py +1 -1
app.py
CHANGED
@@ -7,104 +7,110 @@ from omegaconf import OmegaConf
|
|
7 |
from StableDiffuser import StableDiffuser
|
8 |
from diffusers import UNet2DConditionModel
|
9 |
|
10 |
-
ckpt_path = "
|
11 |
-
config_path = "
|
12 |
-
diffusers_config_path = "
|
13 |
|
14 |
|
15 |
class Demo:
|
16 |
|
17 |
def __init__(self) -> None:
|
18 |
-
demo = self.layout()
|
19 |
-
demo.launch()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def layout(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
placeholder="Enter prompt...",
|
30 |
label="Prompt",
|
31 |
info="Prompt corresponding to concept to erase"
|
32 |
)
|
33 |
-
self.train_method_input = gr.Dropdown(
|
34 |
-
choices=['noxattn', 'selfattn', 'xattn', 'full'],
|
35 |
-
value='xattn',
|
36 |
-
label='Train Method',
|
37 |
-
info='Method of training'
|
38 |
-
)
|
39 |
|
40 |
-
|
41 |
-
value=1,
|
42 |
-
label="Negative Guidance",
|
43 |
-
info='Guidance of negative training used to train'
|
44 |
-
)
|
45 |
|
46 |
-
self.
|
47 |
-
|
48 |
-
|
49 |
-
label="Iterations",
|
50 |
-
info='iterations used to train'
|
51 |
)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
label="Learning Rate",
|
56 |
-
info='Learning rate used to train'
|
57 |
)
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
)
|
62 |
-
self.
|
63 |
-
self.
|
64 |
-
|
65 |
-
|
66 |
-
self.
|
67 |
-
self.
|
68 |
]
|
69 |
)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
self.
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
self.image_new = gr.Image(
|
83 |
-
label="New Image",
|
84 |
-
interactive=False
|
85 |
-
)
|
86 |
-
self.image_orig = gr.Image(
|
87 |
-
label="Orig Image",
|
88 |
-
interactive=False
|
89 |
-
)
|
90 |
-
|
91 |
-
with gr.Row():
|
92 |
-
|
93 |
-
self.infr_button = gr.Button(
|
94 |
-
value="Generate",
|
95 |
-
)
|
96 |
-
self.infr_button.click(self.inference, inputs = [
|
97 |
-
self.prompt_input_infr,
|
98 |
-
],
|
99 |
-
outputs=[
|
100 |
-
self.image_new,
|
101 |
-
self.image_orig
|
102 |
-
]
|
103 |
-
)
|
104 |
-
return demo
|
105 |
-
|
106 |
|
107 |
-
def train(self, prompt, train_method, neg_guidance, iterations, lr):
|
108 |
|
109 |
model_orig, model_edited = train_esd(prompt,
|
110 |
train_method,
|
@@ -115,8 +121,7 @@ class Demo:
|
|
115 |
config_path,
|
116 |
ckpt_path,
|
117 |
diffusers_config_path,
|
118 |
-
['cuda', 'cuda']
|
119 |
-
gr.Progress()
|
120 |
)
|
121 |
|
122 |
original_config = OmegaConf.load(config_path)
|
@@ -127,6 +132,8 @@ class Demo:
|
|
127 |
|
128 |
self.init_inference(model_edited_sd, model_orig_sd, unet_config)
|
129 |
|
|
|
|
|
130 |
def init_inference(self, model_edited_sd, model_orig_sd, unet_config):
|
131 |
|
132 |
self.model_edited_sd = model_edited_sd
|
@@ -163,5 +170,5 @@ class Demo:
|
|
163 |
return edited_image, orig_image
|
164 |
|
165 |
|
166 |
-
|
167 |
|
|
|
7 |
from StableDiffuser import StableDiffuser
|
8 |
from diffusers import UNet2DConditionModel
|
9 |
|
10 |
+
ckpt_path = "stable_diffusion/models/ldm/sd-v1-4-full-ema.ckpt"
|
11 |
+
config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml"
|
12 |
+
diffusers_config_path = "stable_diffusion/config.json"
|
13 |
|
14 |
|
15 |
class Demo:
|
16 |
|
17 |
def __init__(self) -> None:
|
|
|
|
|
18 |
|
19 |
+
with gr.Blocks() as demo:
|
20 |
+
self.layout()
|
21 |
+
demo.queue(concurrency_count=10).launch()
|
22 |
+
|
23 |
+
def disable(self):
|
24 |
+
return [gr.update(interactive=False), gr.update(interactive=False)]
|
25 |
|
26 |
def layout(self):
|
27 |
+
with gr.Row():
|
28 |
+
with gr.Column() as training_column:
|
29 |
+
self.prompt_input = gr.Text(
|
30 |
+
placeholder="Enter prompt...",
|
31 |
+
label="Prompt",
|
32 |
+
info="Prompt corresponding to concept to erase"
|
33 |
+
)
|
34 |
+
self.train_method_input = gr.Dropdown(
|
35 |
+
choices=['noxattn', 'selfattn', 'xattn', 'full'],
|
36 |
+
value='xattn',
|
37 |
+
label='Train Method',
|
38 |
+
info='Method of training'
|
39 |
+
)
|
40 |
|
41 |
+
self.neg_guidance_input = gr.Number(
|
42 |
+
value=1,
|
43 |
+
label="Negative Guidance",
|
44 |
+
info='Guidance of negative training used to train'
|
45 |
+
)
|
46 |
+
|
47 |
+
self.iterations_input = gr.Number(
|
48 |
+
value=1000,
|
49 |
+
precision=0,
|
50 |
+
label="Iterations",
|
51 |
+
info='iterations used to train'
|
52 |
+
)
|
53 |
|
54 |
+
self.lr_input = gr.Number(
|
55 |
+
value=1e-5,
|
56 |
+
label="Learning Rate",
|
57 |
+
info='Learning rate used to train'
|
58 |
+
)
|
59 |
+
self.train_button = gr.Button(
|
60 |
+
value="Train",
|
61 |
+
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
with gr.Column() as inference_column:
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
|
69 |
+
self.prompt_input_infr = gr.Text(
|
70 |
placeholder="Enter prompt...",
|
71 |
label="Prompt",
|
72 |
info="Prompt corresponding to concept to erase"
|
73 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
self.image_new = gr.Image(
|
78 |
+
label="New Image",
|
79 |
+
interactive=False
|
|
|
|
|
80 |
)
|
81 |
+
self.image_orig = gr.Image(
|
82 |
+
label="Orig Image",
|
83 |
+
interactive=False
|
|
|
|
|
84 |
)
|
85 |
|
86 |
+
with gr.Row():
|
87 |
+
|
88 |
+
self.infr_button = gr.Button(
|
89 |
+
value="Generate",
|
90 |
+
interactive=False
|
91 |
)
|
92 |
+
self.infr_button.click(self.inference, inputs = [
|
93 |
+
self.prompt_input_infr,
|
94 |
+
],
|
95 |
+
outputs=[
|
96 |
+
self.image_new,
|
97 |
+
self.image_orig
|
98 |
]
|
99 |
)
|
100 |
+
self.train_button.click(self.disable,
|
101 |
+
outputs=[self.train_button, self.infr_button]
|
102 |
+
)
|
103 |
+
self.train_button.click(self.train, inputs = [
|
104 |
+
self.prompt_input,
|
105 |
+
self.train_method_input,
|
106 |
+
self.neg_guidance_input,
|
107 |
+
self.iterations_input,
|
108 |
+
self.lr_input
|
109 |
+
],
|
110 |
+
outputs=[self.train_button, self.infr_button]
|
111 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
def train(self, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
114 |
|
115 |
model_orig, model_edited = train_esd(prompt,
|
116 |
train_method,
|
|
|
121 |
config_path,
|
122 |
ckpt_path,
|
123 |
diffusers_config_path,
|
124 |
+
['cuda', 'cuda']
|
|
|
125 |
)
|
126 |
|
127 |
original_config = OmegaConf.load(config_path)
|
|
|
132 |
|
133 |
self.init_inference(model_edited_sd, model_orig_sd, unet_config)
|
134 |
|
135 |
+
return [gr.update(interactive=True), gr.update(interactive=True)]
|
136 |
+
|
137 |
def init_inference(self, model_edited_sd, model_orig_sd, unet_config):
|
138 |
|
139 |
self.model_edited_sd = model_edited_sd
|
|
|
170 |
return edited_image, orig_image
|
171 |
|
172 |
|
173 |
+
demo = Demo()
|
174 |
|
requirements.txt
CHANGED
@@ -7,5 +7,7 @@ transformers
|
|
7 |
pytorch_lightning==1.6.5
|
8 |
taming-transformers
|
9 |
kornia
|
|
|
|
|
10 |
git+https://github.com/openai/CLIP.git@main#egg=clip
|
11 |
git+https://github.com/davidbau/baukit.git
|
|
|
7 |
pytorch_lightning==1.6.5
|
8 |
taming-transformers
|
9 |
kornia
|
10 |
+
scipy
|
11 |
+
accelerate
|
12 |
git+https://github.com/openai/CLIP.git@main#egg=clip
|
13 |
git+https://github.com/davidbau/baukit.git
|
train_esd.py
CHANGED
@@ -102,7 +102,7 @@ def get_models(config_path, ckpt_path, devices):
|
|
102 |
|
103 |
return model_orig, sampler_orig, model, sampler
|
104 |
|
105 |
-
def train_esd(prompt, train_method, start_guidance, negative_guidance, iterations, lr, config_path, ckpt_path, diffusers_config_path, devices,
|
106 |
'''
|
107 |
Function to train diffusion models to erase concepts from model weights
|
108 |
|
|
|
102 |
|
103 |
return model_orig, sampler_orig, model, sampler
|
104 |
|
105 |
+
def train_esd(prompt, train_method, start_guidance, negative_guidance, iterations, lr, config_path, ckpt_path, diffusers_config_path, devices, seperator=None, image_size=512, ddim_steps=50):
|
106 |
'''
|
107 |
Function to train diffusion models to erase concepts from model weights
|
108 |
|