JadenFK commited on
Commit
a24b16a
1 Parent(s): 0a5f1a5

Update to using diffusers

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LMSDiscreteScheduler.py +0 -97
  2. StableDiffuser.py +14 -9
  3. app.py +100 -64
  4. convertModels.py +0 -907
  5. finetuning.py +83 -0
  6. requirements.txt +3 -8
  7. stable_diffusion/configs/stable-diffusion/v1-inference.yaml +0 -70
  8. stable_diffusion/ldm/data/__init__.py +0 -0
  9. stable_diffusion/ldm/data/base.py +0 -40
  10. stable_diffusion/ldm/data/coco.py +0 -253
  11. stable_diffusion/ldm/data/dummy.py +0 -34
  12. stable_diffusion/ldm/data/imagenet.py +0 -394
  13. stable_diffusion/ldm/data/inpainting/__init__.py +0 -0
  14. stable_diffusion/ldm/data/inpainting/synthetic_mask.py +0 -166
  15. stable_diffusion/ldm/data/laion.py +0 -537
  16. stable_diffusion/ldm/data/lsun.py +0 -92
  17. stable_diffusion/ldm/data/simple.py +0 -180
  18. stable_diffusion/ldm/extras.py +0 -77
  19. stable_diffusion/ldm/guidance.py +0 -96
  20. stable_diffusion/ldm/lr_scheduler.py +0 -98
  21. stable_diffusion/ldm/models/autoencoder.py +0 -443
  22. stable_diffusion/ldm/models/diffusion/__init__.py +0 -0
  23. stable_diffusion/ldm/models/diffusion/classifier.py +0 -267
  24. stable_diffusion/ldm/models/diffusion/ddim.py +0 -344
  25. stable_diffusion/ldm/models/diffusion/ddpm.py +0 -1934
  26. stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py +0 -1
  27. stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py +0 -1184
  28. stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py +0 -82
  29. stable_diffusion/ldm/models/diffusion/plms.py +0 -259
  30. stable_diffusion/ldm/models/diffusion/sampling_util.py +0 -50
  31. stable_diffusion/ldm/modules/attention.py +0 -269
  32. stable_diffusion/ldm/modules/diffusionmodules/__init__.py +0 -0
  33. stable_diffusion/ldm/modules/diffusionmodules/model.py +0 -835
  34. stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py +0 -1001
  35. stable_diffusion/ldm/modules/diffusionmodules/util.py +0 -267
  36. stable_diffusion/ldm/modules/distributions/__init__.py +0 -0
  37. stable_diffusion/ldm/modules/distributions/distributions.py +0 -92
  38. stable_diffusion/ldm/modules/ema.py +0 -76
  39. stable_diffusion/ldm/modules/encoders/__init__.py +0 -0
  40. stable_diffusion/ldm/modules/encoders/modules.py +0 -425
  41. stable_diffusion/ldm/modules/evaluate/adm_evaluator.py +0 -676
  42. stable_diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py +0 -630
  43. stable_diffusion/ldm/modules/evaluate/frechet_video_distance.py +0 -147
  44. stable_diffusion/ldm/modules/evaluate/ssim.py +0 -124
  45. stable_diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py +0 -294
  46. stable_diffusion/ldm/modules/image_degradation/__init__.py +0 -2
  47. stable_diffusion/ldm/modules/image_degradation/bsrgan.py +0 -730
  48. stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py +0 -650
  49. stable_diffusion/ldm/modules/image_degradation/utils/test.png +0 -0
  50. stable_diffusion/ldm/modules/image_degradation/utils_image.py +0 -916
LMSDiscreteScheduler.py DELETED
@@ -1,97 +0,0 @@
1
- import warnings
2
- from typing import Tuple, Union
3
-
4
- import torch
5
- from diffusers.schedulers.scheduling_lms_discrete import \
6
- LMSDiscreteScheduler as _LMSDiscreteScheduler
7
- from diffusers.schedulers.scheduling_lms_discrete import \
8
- LMSDiscreteSchedulerOutput
9
-
10
-
11
- class LMSDiscreteScheduler(_LMSDiscreteScheduler):
12
-
13
- def step(
14
- self,
15
- model_output: torch.FloatTensor,
16
- step_index: int,
17
- sample: torch.FloatTensor,
18
- order: int = 4,
19
- return_dict: bool = True,
20
- ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
21
- """
22
- Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
23
- process from the learned model outputs (most often the predicted noise).
24
-
25
- Args:
26
- model_output (`torch.FloatTensor`): direct output from learned diffusion model.
27
- timestep (`float`): current timestep in the diffusion chain.
28
- sample (`torch.FloatTensor`):
29
- current instance of sample being created by diffusion process.
30
- order: coefficient for multi-step inference.
31
- return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
32
-
33
- Returns:
34
- [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
35
- [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
36
- When returning a tuple, the first element is the sample tensor.
37
-
38
- """
39
- if not self.is_scale_input_called:
40
- warnings.warn(
41
- "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
42
- "See `StableDiffusionPipeline` for a usage example."
43
- )
44
-
45
- sigma = self.sigmas[step_index]
46
-
47
- # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
48
- if self.config.prediction_type == "epsilon":
49
- pred_original_sample = sample - sigma * model_output
50
- elif self.config.prediction_type == "v_prediction":
51
- # * c_out + input * c_skip
52
- pred_original_sample = model_output * \
53
- (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
54
- else:
55
- raise ValueError(
56
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
57
- )
58
-
59
- # 2. Convert to an ODE derivative
60
- derivative = (sample - pred_original_sample) / sigma
61
- self.derivatives.append(derivative)
62
- if len(self.derivatives) > order:
63
- self.derivatives.pop(0)
64
-
65
- # 3. Compute linear multistep coefficients
66
- order = min(step_index + 1, order)
67
- lms_coeffs = [self.get_lms_coefficient(
68
- order, step_index, curr_order) for curr_order in range(order)]
69
-
70
- # 4. Compute previous sample based on the derivatives path
71
- prev_sample = sample + sum(
72
- coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
73
- )
74
-
75
- if not return_dict:
76
- return (prev_sample,)
77
-
78
- return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
79
-
80
- def scale_model_input(
81
- self,
82
- sample: torch.FloatTensor,
83
- iteration: int
84
- ) -> torch.FloatTensor:
85
- """
86
- Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
87
-
88
- Args:
89
- sample (`torch.FloatTensor`): input sample
90
- timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain
91
-
92
- Returns:
93
- `torch.FloatTensor`: scaled input sample
94
- """
95
- sample = sample / ((self.sigmas[iteration]**2 + 1) ** 0.5)
96
- self.is_scale_input_called = True
97
- return sample
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
StableDiffuser.py CHANGED
@@ -6,9 +6,10 @@ from diffusers import AutoencoderKL, UNet2DConditionModel
6
  from PIL import Image
7
  from tqdm.auto import tqdm
8
  from transformers import CLIPTextModel, CLIPTokenizer
9
-
 
 
10
  import util
11
- from LMSDiscreteScheduler import LMSDiscreteScheduler
12
 
13
 
14
  def default_parser():
@@ -33,6 +34,7 @@ def default_parser():
33
  class StableDiffuser(torch.nn.Module):
34
 
35
  def __init__(self,
 
36
  seed=None
37
  ):
38
 
@@ -54,9 +56,12 @@ class StableDiffuser(torch.nn.Module):
54
  self.unet = UNet2DConditionModel.from_pretrained(
55
  "CompVis/stable-diffusion-v1-4", subfolder="unet")
56
 
57
- self.scheduler = LMSDiscreteScheduler(
58
- beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
59
-
 
 
 
60
  self.generator = torch.Generator()
61
 
62
  if self._seed is not None:
@@ -95,7 +100,7 @@ class StableDiffuser(torch.nn.Module):
95
 
96
  def decode(self, latents):
97
 
98
- return self.vae.decode(1 / 0.18215 * latents).sample
99
 
100
  def encode(self, tensors):
101
 
@@ -145,7 +150,7 @@ class StableDiffuser(torch.nn.Module):
145
  # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
146
  latents = torch.cat([latents] * 2)
147
  latents = self.scheduler.scale_model_input(
148
- latents, iteration)
149
 
150
  # predict the noise residual
151
  noise_prediction = self.unet(
@@ -188,7 +193,7 @@ class StableDiffuser(torch.nn.Module):
188
  **kwargs)
189
 
190
  # compute the previous noisy sample x_t -> x_t-1
191
- output = self.scheduler.step(noise_pred, iteration, latents)
192
 
193
  if trace_args:
194
 
@@ -263,7 +268,7 @@ if __name__ == '__main__':
263
 
264
  args = parser.parse_args()
265
 
266
- diffuser = StableDiffuser(seed=args.seed).to(torch.device(args.device)).half()
267
 
268
  images = diffuser(args.prompts,
269
  n_steps=args.nsteps,
 
6
  from PIL import Image
7
  from tqdm.auto import tqdm
8
  from transformers import CLIPTextModel, CLIPTokenizer
9
+ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
10
+ from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
11
+ from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
12
  import util
 
13
 
14
 
15
  def default_parser():
 
34
  class StableDiffuser(torch.nn.Module):
35
 
36
  def __init__(self,
37
+ scheduler='LMS',
38
  seed=None
39
  ):
40
 
 
56
  self.unet = UNet2DConditionModel.from_pretrained(
57
  "CompVis/stable-diffusion-v1-4", subfolder="unet")
58
 
59
+ if scheduler == 'LMS':
60
+ self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
61
+ elif scheduler == 'DDIM':
62
+ self.scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
63
+ elif scheduler == 'DDPM':
64
+ self.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
65
  self.generator = torch.Generator()
66
 
67
  if self._seed is not None:
 
100
 
101
  def decode(self, latents):
102
 
103
+ return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
104
 
105
  def encode(self, tensors):
106
 
 
150
  # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
151
  latents = torch.cat([latents] * 2)
152
  latents = self.scheduler.scale_model_input(
153
+ latents, self.scheduler.timesteps[iteration])
154
 
155
  # predict the noise residual
156
  noise_prediction = self.unet(
 
193
  **kwargs)
194
 
195
  # compute the previous noisy sample x_t -> x_t-1
196
+ output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
197
 
198
  if trace_args:
199
 
 
268
 
269
  args = parser.parse_args()
270
 
271
+ diffuser = StableDiffuser(seed=args.seed, scheduler='DDIM').to(torch.device(args.device)).half()
272
 
273
  images = diffuser(args.prompts,
274
  n_steps=args.nsteps,
app.py CHANGED
@@ -1,39 +1,43 @@
1
- import sys
2
- sys.path.insert(0,'stable_diffusion')
3
  import gradio as gr
4
- from train_esd import train_esd
5
- from convertModels import convert_ldm_unet_checkpoint, create_unet_diffusers_config
6
- from omegaconf import OmegaConf
7
- from StableDiffuser import StableDiffuser
8
- from diffusers import UNet2DConditionModel
9
  import torch
 
 
 
10
 
11
- ckpt_path = "stable_diffusion/models/ldm/sd-v1-4-full-ema.ckpt"
12
- config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml"
13
- diffusers_config_path = "stable_diffusion/config.json"
14
-
15
-
16
  class Demo:
17
 
18
  def __init__(self) -> None:
19
 
20
  self.training = False
21
  self.generating = False
22
- self.model_edited_sd = None
23
- self.model_orig_sd = None
24
 
25
- self.diffuser = StableDiffuser(42)
26
- self.diffuser.to('cpu')
27
- self.diffuser = self.diffuser.half()
28
 
29
  with gr.Blocks() as demo:
30
  self.layout()
31
- demo.queue(concurrency_count=1).launch()
32
 
33
  def disable(self):
34
  return [gr.update(interactive=False), gr.update(interactive=False)]
 
 
 
 
 
35
 
36
  def layout(self):
 
 
 
 
 
 
37
  with gr.Row():
38
  with gr.Column(scale=1) as training_column:
39
  self.prompt_input = gr.Text(
@@ -42,8 +46,8 @@ class Demo:
42
  info="Prompt corresponding to concept to erase"
43
  )
44
  self.train_method_input = gr.Dropdown(
45
- choices=['noxattn', 'selfattn', 'xattn', 'full'],
46
- value='xattn',
47
  label='Train Method',
48
  info='Method of training'
49
  )
@@ -55,7 +59,7 @@ class Demo:
55
  )
56
 
57
  self.iterations_input = gr.Number(
58
- value=1000,
59
  precision=0,
60
  label="Iterations",
61
  info='iterations used to train'
@@ -71,13 +75,16 @@ class Demo:
71
  self.train_button = gr.Button(
72
  value="Train",
73
  )
 
 
 
74
 
75
 
76
  with gr.Column(scale=2) as inference_column:
77
 
78
  with gr.Row():
79
 
80
- with gr.Column(scale=4):
81
 
82
  self.prompt_input_infr = gr.Text(
83
  placeholder="Enter prompt...",
@@ -138,51 +145,82 @@ class Demo:
138
  else:
139
  self.training = True
140
 
141
- self.diffuser.to('cpu')
142
-
143
- model_orig, model_edited = train_esd(prompt,
144
- train_method,
145
- 3,
146
- neg_guidance,
147
- iterations,
148
- lr,
149
- config_path,
150
- ckpt_path,
151
- diffusers_config_path,
152
- ['cuda', 'cuda']
153
- )
154
-
155
- original_config = OmegaConf.load(config_path)
156
- original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4
157
- unet_config = create_unet_diffusers_config(original_config, image_size=512)
158
- _model_edited_sd = convert_ldm_unet_checkpoint(model_edited.state_dict(), unet_config)
159
- _model_orig_sd = convert_ldm_unet_checkpoint(model_orig.state_dict(), unet_config)
160
-
161
- model_edited_sd = {key: value.cpu() for key, value in _model_edited_sd.items()}
162
- model_orig_sd = {key: value.cpu() for key, value in _model_orig_sd.items()}
163
-
164
- del model_orig, _model_orig_sd
165
- del model_edited, _model_edited_sd
166
 
167
  torch.cuda.empty_cache()
168
 
169
- self.init_inference(model_edited_sd, model_orig_sd, unet_config)
170
 
171
- return [gr.update(interactive=True), gr.update(interactive=True), None]
172
 
173
- def init_inference(self, model_edited_sd, model_orig_sd, unet_config):
174
 
175
- del self.model_edited_sd, self.model_orig_sd
176
 
177
- torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
 
179
- self.model_edited_sd = model_edited_sd
180
- self.model_orig_sd = model_orig_sd
181
 
182
- self.diffuser.to('cuda')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
  self.training = False
185
-
 
 
186
 
187
  def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
188
 
@@ -191,8 +229,6 @@ class Demo:
191
  else:
192
  self.generating = True
193
 
194
- self.diffuser.unet.load_state_dict(self.model_orig_sd)
195
-
196
  self.diffuser._seed = seed
197
 
198
  images = self.diffuser(
@@ -205,13 +241,13 @@ class Demo:
205
 
206
  torch.cuda.empty_cache()
207
 
208
- self.diffuser.unet.load_state_dict(self.model_edited_sd)
209
 
210
- images = self.diffuser(
211
- prompt,
212
- n_steps=50,
213
- reseed=True
214
- )
215
 
216
  edited_image = images[0][0]
217
 
 
1
+ from pathlib import Path
2
+
3
  import gradio as gr
 
 
 
 
 
4
  import torch
5
+ from finetuning import FineTunedModel
6
+ from StableDiffuser import StableDiffuser
7
+ from tqdm import tqdm
8
 
9
+ gr.
 
 
 
 
10
  class Demo:
11
 
12
  def __init__(self) -> None:
13
 
14
  self.training = False
15
  self.generating = False
16
+ self.nsteps = 50
 
17
 
18
+ self.diffuser = StableDiffuser(scheduler='DDIM', seed=42).to('cuda')
19
+ self.finetuner = None
20
+
21
 
22
  with gr.Blocks() as demo:
23
  self.layout()
24
+ demo.queue(concurrency_count=2).launch()
25
 
26
  def disable(self):
27
  return [gr.update(interactive=False), gr.update(interactive=False)]
28
+ def save(self):
29
+
30
+ if self.finetuner is not None:
31
+
32
+ torch.save()
33
 
34
  def layout(self):
35
+
36
+ with gr.Row():
37
+
38
+ self.explain = gr.HTML(interactive=False,
39
+ value="<p>This page demonstrates Erasing Concepts in Stable Diffusion (Ganikota, Materzynska, Fiotto-Kaufman and Bau; paper and code linked from https://erasing.baulab.info/). <br> Use it in two steps <br> 1. First, on the left fine-tune your own custom model by naming the concept that you want to erase. For example, you can try erasing all cars from a model by entering the prompt corresponding to the concept to erase as 'car'. This can take awhile. For example, with the default settings, this can take about an hour. <br> 2. Second, on the right once you have your model fine-tuned, you can try running it in inference. <br>If you want to run it yourself, then you can create your own instance. Configuration, code, and details are at https://github.com/xxxx/xxxx/xxx</p>")
40
+
41
  with gr.Row():
42
  with gr.Column(scale=1) as training_column:
43
  self.prompt_input = gr.Text(
 
46
  info="Prompt corresponding to concept to erase"
47
  )
48
  self.train_method_input = gr.Dropdown(
49
+ choices=['ESD-x', 'ESD-self'],
50
+ value='ESD-x',
51
  label='Train Method',
52
  info='Method of training'
53
  )
 
59
  )
60
 
61
  self.iterations_input = gr.Number(
62
+ value=150,
63
  precision=0,
64
  label="Iterations",
65
  info='iterations used to train'
 
75
  self.train_button = gr.Button(
76
  value="Train",
77
  )
78
+
79
+ self.download = gr.Button(value="Download Model Weights")
80
+ self.download.click(self.save)
81
 
82
 
83
  with gr.Column(scale=2) as inference_column:
84
 
85
  with gr.Row():
86
 
87
+ with gr.Column(scale=5):
88
 
89
  self.prompt_input_infr = gr.Text(
90
  placeholder="Enter prompt...",
 
145
  else:
146
  self.training = True
147
 
148
+ del self.finetuner
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
  torch.cuda.empty_cache()
151
 
152
+ self.diffuser = self.diffuser.train().float()
153
 
154
+ if train_method == 'ESD-x':
155
 
156
+ modules = ".*attn2$"
157
 
158
+ elif train_method == 'ESD-self':
159
 
160
+ modules = ".*attn1$"
161
+
162
+ finetuner = FineTunedModel(self.diffuser, modules)
163
+
164
+ optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
165
+ criteria = torch.nn.MSELoss()
166
+
167
+ pbar = tqdm(range(iterations))
168
+
169
+ with torch.no_grad():
170
+
171
+ neutral_text_embeddings = self.diffuser.get_text_embeddings([''],n_imgs=1)
172
+ positive_text_embeddings = self.diffuser.get_text_embeddings([prompt],n_imgs=1)
173
+
174
+ for i in pbar:
175
+
176
+ with torch.no_grad():
177
 
178
+ self.diffuser.set_scheduler_timesteps(self.nsteps)
 
179
 
180
+ optimizer.zero_grad()
181
+
182
+ iteration = torch.randint(1, self.nsteps - 1, (1,)).item()
183
+
184
+ latents = self.diffuser.get_initial_latents(1, 512, 1)
185
+
186
+ with finetuner:
187
+
188
+ latents_steps, _ = self.diffuser.diffusion(
189
+ latents,
190
+ positive_text_embeddings,
191
+ start_iteration=0,
192
+ end_iteration=iteration,
193
+ guidance_scale=3,
194
+ show_progress=False
195
+ )
196
+
197
+ self.diffuser.set_scheduler_timesteps(1000)
198
+
199
+ iteration = int(iteration / self.nsteps * 1000)
200
+
201
+ positive_latents = self.diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=3)
202
+ neutral_latents = self.diffuser.predict_noise(iteration, latents_steps[0], neutral_text_embeddings, guidance_scale=3)
203
+
204
+ with finetuner:
205
+ negative_latents = self.diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=3)
206
+
207
+ positive_latents.requires_grad = False
208
+ neutral_latents.requires_grad = False
209
+
210
+ loss = criteria(negative_latents, neutral_latents - (neg_guidance*(positive_latents - neutral_latents))) #loss = criteria(e_n, e_0) works the best try 5000 epochs
211
+ loss.backward()
212
+ optimizer.step()
213
+
214
+ self.finetuner = finetuner.eval().half()
215
+
216
+ self.diffuser = self.diffuser.eval().half()
217
+
218
+ torch.cuda.empty_cache()
219
 
220
  self.training = False
221
+
222
+ return [gr.update(interactive=True), gr.update(interactive=True), None]
223
+
224
 
225
  def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
226
 
 
229
  else:
230
  self.generating = True
231
 
 
 
232
  self.diffuser._seed = seed
233
 
234
  images = self.diffuser(
 
241
 
242
  torch.cuda.empty_cache()
243
 
244
+ with self.finetuner:
245
 
246
+ images = self.diffuser(
247
+ prompt,
248
+ n_steps=50,
249
+ reseed=True
250
+ )
251
 
252
  edited_image = images[0][0]
253
 
convertModels.py DELETED
@@ -1,907 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Inc. team.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Conversion script for the LDM checkpoints. """
16
-
17
- import argparse
18
- import os
19
- import re
20
-
21
- import torch
22
-
23
-
24
-
25
- try:
26
- from omegaconf import OmegaConf
27
- except ImportError:
28
- raise ImportError(
29
- "OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
30
- )
31
-
32
- from diffusers import (
33
- AutoencoderKL,
34
- DDIMScheduler,
35
- DPMSolverMultistepScheduler,
36
- EulerAncestralDiscreteScheduler,
37
- EulerDiscreteScheduler,
38
- HeunDiscreteScheduler,
39
- LDMTextToImagePipeline,
40
- LMSDiscreteScheduler,
41
- PNDMScheduler,
42
- StableDiffusionPipeline,
43
- UNet2DConditionModel,
44
- )
45
- from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
46
- from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
47
- from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
48
- from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
49
-
50
-
51
- def shave_segments(path, n_shave_prefix_segments=1):
52
- """
53
- Removes segments. Positive values shave the first segments, negative shave the last segments.
54
- """
55
- if n_shave_prefix_segments >= 0:
56
- return ".".join(path.split(".")[n_shave_prefix_segments:])
57
- else:
58
- return ".".join(path.split(".")[:n_shave_prefix_segments])
59
-
60
-
61
- def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
62
- """
63
- Updates paths inside resnets to the new naming scheme (local renaming)
64
- """
65
- mapping = []
66
- for old_item in old_list:
67
- new_item = old_item.replace("in_layers.0", "norm1")
68
- new_item = new_item.replace("in_layers.2", "conv1")
69
-
70
- new_item = new_item.replace("out_layers.0", "norm2")
71
- new_item = new_item.replace("out_layers.3", "conv2")
72
-
73
- new_item = new_item.replace("emb_layers.1", "time_emb_proj")
74
- new_item = new_item.replace("skip_connection", "conv_shortcut")
75
-
76
- new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
77
-
78
- mapping.append({"old": old_item, "new": new_item})
79
-
80
- return mapping
81
-
82
-
83
- def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
84
- """
85
- Updates paths inside resnets to the new naming scheme (local renaming)
86
- """
87
- mapping = []
88
- for old_item in old_list:
89
- new_item = old_item
90
-
91
- new_item = new_item.replace("nin_shortcut", "conv_shortcut")
92
- new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
93
-
94
- mapping.append({"old": old_item, "new": new_item})
95
-
96
- return mapping
97
-
98
-
99
- def renew_attention_paths(old_list, n_shave_prefix_segments=0):
100
- """
101
- Updates paths inside attentions to the new naming scheme (local renaming)
102
- """
103
- mapping = []
104
- for old_item in old_list:
105
- new_item = old_item
106
-
107
- # new_item = new_item.replace('norm.weight', 'group_norm.weight')
108
- # new_item = new_item.replace('norm.bias', 'group_norm.bias')
109
-
110
- # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
111
- # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
112
-
113
- # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
114
-
115
- mapping.append({"old": old_item, "new": new_item})
116
-
117
- return mapping
118
-
119
-
120
- def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
121
- """
122
- Updates paths inside attentions to the new naming scheme (local renaming)
123
- """
124
- mapping = []
125
- for old_item in old_list:
126
- new_item = old_item
127
-
128
- new_item = new_item.replace("norm.weight", "group_norm.weight")
129
- new_item = new_item.replace("norm.bias", "group_norm.bias")
130
-
131
- new_item = new_item.replace("q.weight", "query.weight")
132
- new_item = new_item.replace("q.bias", "query.bias")
133
-
134
- new_item = new_item.replace("k.weight", "key.weight")
135
- new_item = new_item.replace("k.bias", "key.bias")
136
-
137
- new_item = new_item.replace("v.weight", "value.weight")
138
- new_item = new_item.replace("v.bias", "value.bias")
139
-
140
- new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
141
- new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
142
-
143
- new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
144
-
145
- mapping.append({"old": old_item, "new": new_item})
146
-
147
- return mapping
148
-
149
-
150
- def assign_to_checkpoint(
151
- paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
152
- ):
153
- """
154
- This does the final conversion step: take locally converted weights and apply a global renaming
155
- to them. It splits attention layers, and takes into account additional replacements
156
- that may arise.
157
-
158
- Assigns the weights to the new checkpoint.
159
- """
160
- assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
161
-
162
- # Splits the attention layers into three variables.
163
- if attention_paths_to_split is not None:
164
- for path, path_map in attention_paths_to_split.items():
165
- old_tensor = old_checkpoint[path]
166
- channels = old_tensor.shape[0] // 3
167
-
168
- target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
169
-
170
- num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
171
-
172
- old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
173
- query, key, value = old_tensor.split(channels // num_heads, dim=1)
174
-
175
- checkpoint[path_map["query"]] = query.reshape(target_shape)
176
- checkpoint[path_map["key"]] = key.reshape(target_shape)
177
- checkpoint[path_map["value"]] = value.reshape(target_shape)
178
-
179
- for path in paths:
180
- new_path = path["new"]
181
-
182
- # These have already been assigned
183
- if attention_paths_to_split is not None and new_path in attention_paths_to_split:
184
- continue
185
-
186
- # Global renaming happens here
187
- new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
188
- new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
189
- new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
190
-
191
- if additional_replacements is not None:
192
- for replacement in additional_replacements:
193
- new_path = new_path.replace(replacement["old"], replacement["new"])
194
-
195
- # proj_attn.weight has to be converted from conv 1D to linear
196
- if "proj_attn.weight" in new_path:
197
- checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
198
- else:
199
- checkpoint[new_path] = old_checkpoint[path["old"]]
200
-
201
-
202
- def conv_attn_to_linear(checkpoint):
203
- keys = list(checkpoint.keys())
204
- attn_keys = ["query.weight", "key.weight", "value.weight"]
205
- for key in keys:
206
- if ".".join(key.split(".")[-2:]) in attn_keys:
207
- if checkpoint[key].ndim > 2:
208
- checkpoint[key] = checkpoint[key][:, :, 0, 0]
209
- elif "proj_attn.weight" in key:
210
- if checkpoint[key].ndim > 2:
211
- checkpoint[key] = checkpoint[key][:, :, 0]
212
-
213
-
214
- def create_unet_diffusers_config(original_config, image_size: int):
215
- """
216
- Creates a config for the diffusers based on the config of the LDM model.
217
- """
218
- unet_params = original_config.model.params.unet_config.params
219
- vae_params = original_config.model.params.first_stage_config.params.ddconfig
220
-
221
- block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
222
-
223
- down_block_types = []
224
- resolution = 1
225
- for i in range(len(block_out_channels)):
226
- block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
227
- down_block_types.append(block_type)
228
- if i != len(block_out_channels) - 1:
229
- resolution *= 2
230
-
231
- up_block_types = []
232
- for i in range(len(block_out_channels)):
233
- block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
234
- up_block_types.append(block_type)
235
- resolution //= 2
236
-
237
- vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
238
-
239
- head_dim = unet_params.num_heads if "num_heads" in unet_params else None
240
- use_linear_projection = (
241
- unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
242
- )
243
- if use_linear_projection:
244
- # stable diffusion 2-base-512 and 2-768
245
- if head_dim is None:
246
- head_dim = [5, 10, 20, 20]
247
-
248
- config = dict(
249
- sample_size=image_size // vae_scale_factor,
250
- in_channels=unet_params.in_channels,
251
- out_channels=unet_params.out_channels,
252
- down_block_types=tuple(down_block_types),
253
- up_block_types=tuple(up_block_types),
254
- block_out_channels=tuple(block_out_channels),
255
- layers_per_block=unet_params.num_res_blocks,
256
- cross_attention_dim=unet_params.context_dim,
257
- attention_head_dim=head_dim,
258
- use_linear_projection=use_linear_projection,
259
- )
260
-
261
- return config
262
-
263
-
264
- def create_vae_diffusers_config(original_config, image_size: int):
265
- """
266
- Creates a config for the diffusers based on the config of the LDM model.
267
- """
268
- vae_params = original_config.model.params.first_stage_config.params.ddconfig
269
- _ = original_config.model.params.first_stage_config.params.embed_dim
270
-
271
- block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
272
- down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
273
- up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
274
-
275
- config = dict(
276
- sample_size=image_size,
277
- in_channels=vae_params.in_channels,
278
- out_channels=vae_params.out_ch,
279
- down_block_types=tuple(down_block_types),
280
- up_block_types=tuple(up_block_types),
281
- block_out_channels=tuple(block_out_channels),
282
- latent_channels=vae_params.z_channels,
283
- layers_per_block=vae_params.num_res_blocks,
284
- )
285
- return config
286
-
287
-
288
- def create_diffusers_schedular(original_config):
289
- schedular = DDIMScheduler(
290
- num_train_timesteps=original_config.model.params.timesteps,
291
- beta_start=original_config.model.params.linear_start,
292
- beta_end=original_config.model.params.linear_end,
293
- beta_schedule="scaled_linear",
294
- )
295
- return schedular
296
-
297
-
298
- def create_ldm_bert_config(original_config):
299
- bert_params = original_config.model.parms.cond_stage_config.params
300
- config = LDMBertConfig(
301
- d_model=bert_params.n_embed,
302
- encoder_layers=bert_params.n_layer,
303
- encoder_ffn_dim=bert_params.n_embed * 4,
304
- )
305
- return config
306
-
307
-
308
- def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
309
- """
310
- Takes a state dict and a config, and returns a converted checkpoint.
311
- """
312
-
313
- # extract state_dict for UNet
314
- unet_state_dict = {}
315
- keys = list(checkpoint.keys())
316
-
317
- unet_key = "model.diffusion_model."
318
- # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
319
- if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
320
- print(f"Checkpoint {path} has both EMA and non-EMA weights.")
321
- print(
322
- "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
323
- " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
324
- )
325
- for key in keys:
326
- if key.startswith("model.diffusion_model"):
327
- flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
328
- unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
329
- else:
330
- if sum(k.startswith("model_ema") for k in keys) > 100:
331
- print(
332
- "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
333
- " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
334
- )
335
-
336
- for key in keys:
337
- if key.startswith(unet_key):
338
- unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
339
-
340
- new_checkpoint = {}
341
-
342
- new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
343
- new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
344
- new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
345
- new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
346
-
347
- new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
348
- new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
349
-
350
- new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
351
- new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
352
- new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
353
- new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
354
-
355
- # Retrieves the keys for the input blocks only
356
- num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
357
- input_blocks = {
358
- layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
359
- for layer_id in range(num_input_blocks)
360
- }
361
-
362
- # Retrieves the keys for the middle blocks only
363
- num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
364
- middle_blocks = {
365
- layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
366
- for layer_id in range(num_middle_blocks)
367
- }
368
-
369
- # Retrieves the keys for the output blocks only
370
- num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
371
- output_blocks = {
372
- layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
373
- for layer_id in range(num_output_blocks)
374
- }
375
-
376
- for i in range(1, num_input_blocks):
377
- block_id = (i - 1) // (config["layers_per_block"] + 1)
378
- layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
379
-
380
- resnets = [
381
- key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
382
- ]
383
- attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
384
-
385
- if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
386
- new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
387
- f"input_blocks.{i}.0.op.weight"
388
- )
389
- new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
390
- f"input_blocks.{i}.0.op.bias"
391
- )
392
-
393
- paths = renew_resnet_paths(resnets)
394
- meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
395
- assign_to_checkpoint(
396
- paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
397
- )
398
-
399
- if len(attentions):
400
- paths = renew_attention_paths(attentions)
401
- meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
402
- assign_to_checkpoint(
403
- paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
404
- )
405
-
406
- resnet_0 = middle_blocks[0]
407
- attentions = middle_blocks[1]
408
- resnet_1 = middle_blocks[2]
409
-
410
- resnet_0_paths = renew_resnet_paths(resnet_0)
411
- assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
412
-
413
- resnet_1_paths = renew_resnet_paths(resnet_1)
414
- assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
415
-
416
- attentions_paths = renew_attention_paths(attentions)
417
- meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
418
- assign_to_checkpoint(
419
- attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
420
- )
421
-
422
- for i in range(num_output_blocks):
423
- block_id = i // (config["layers_per_block"] + 1)
424
- layer_in_block_id = i % (config["layers_per_block"] + 1)
425
- output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
426
- output_block_list = {}
427
-
428
- for layer in output_block_layers:
429
- layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
430
- if layer_id in output_block_list:
431
- output_block_list[layer_id].append(layer_name)
432
- else:
433
- output_block_list[layer_id] = [layer_name]
434
-
435
- if len(output_block_list) > 1:
436
- resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
437
- attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
438
-
439
- resnet_0_paths = renew_resnet_paths(resnets)
440
- paths = renew_resnet_paths(resnets)
441
-
442
- meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
443
- assign_to_checkpoint(
444
- paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
445
- )
446
-
447
- output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
448
- if ["conv.bias", "conv.weight"] in output_block_list.values():
449
- index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
450
- new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
451
- f"output_blocks.{i}.{index}.conv.weight"
452
- ]
453
- new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
454
- f"output_blocks.{i}.{index}.conv.bias"
455
- ]
456
-
457
- # Clear attentions as they have been attributed above.
458
- if len(attentions) == 2:
459
- attentions = []
460
-
461
- if len(attentions):
462
- paths = renew_attention_paths(attentions)
463
- meta_path = {
464
- "old": f"output_blocks.{i}.1",
465
- "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
466
- }
467
- assign_to_checkpoint(
468
- paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
469
- )
470
- else:
471
- resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
472
- for path in resnet_0_paths:
473
- old_path = ".".join(["output_blocks", str(i), path["old"]])
474
- new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
475
-
476
- new_checkpoint[new_path] = unet_state_dict[old_path]
477
-
478
- return new_checkpoint
479
-
480
-
481
- def convert_ldm_vae_checkpoint(checkpoint, config):
482
- # extract state dict for VAE
483
- vae_state_dict = {}
484
- vae_key = "first_stage_model."
485
- keys = list(checkpoint.keys())
486
- for key in keys:
487
- if key.startswith(vae_key):
488
- vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
489
-
490
- new_checkpoint = {}
491
-
492
- new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
493
- new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
494
- new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
495
- new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
496
- new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
497
- new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
498
-
499
- new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
500
- new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
501
- new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
502
- new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
503
- new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
504
- new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
505
-
506
- new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
507
- new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
508
- new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
509
- new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
510
-
511
- # Retrieves the keys for the encoder down blocks only
512
- num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
513
- down_blocks = {
514
- layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
515
- }
516
-
517
- # Retrieves the keys for the decoder up blocks only
518
- num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
519
- up_blocks = {
520
- layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
521
- }
522
-
523
- for i in range(num_down_blocks):
524
- resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
525
-
526
- if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
527
- new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
528
- f"encoder.down.{i}.downsample.conv.weight"
529
- )
530
- new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
531
- f"encoder.down.{i}.downsample.conv.bias"
532
- )
533
-
534
- paths = renew_vae_resnet_paths(resnets)
535
- meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
536
- assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
537
-
538
- mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
539
- num_mid_res_blocks = 2
540
- for i in range(1, num_mid_res_blocks + 1):
541
- resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
542
-
543
- paths = renew_vae_resnet_paths(resnets)
544
- meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
545
- assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
546
-
547
- mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
548
- paths = renew_vae_attention_paths(mid_attentions)
549
- meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
550
- assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
551
- conv_attn_to_linear(new_checkpoint)
552
-
553
- for i in range(num_up_blocks):
554
- block_id = num_up_blocks - 1 - i
555
- resnets = [
556
- key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
557
- ]
558
-
559
- if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
560
- new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
561
- f"decoder.up.{block_id}.upsample.conv.weight"
562
- ]
563
- new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
564
- f"decoder.up.{block_id}.upsample.conv.bias"
565
- ]
566
-
567
- paths = renew_vae_resnet_paths(resnets)
568
- meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
569
- assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
570
-
571
- mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
572
- num_mid_res_blocks = 2
573
- for i in range(1, num_mid_res_blocks + 1):
574
- resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
575
-
576
- paths = renew_vae_resnet_paths(resnets)
577
- meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
578
- assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
579
-
580
- mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
581
- paths = renew_vae_attention_paths(mid_attentions)
582
- meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
583
- assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
584
- conv_attn_to_linear(new_checkpoint)
585
- return new_checkpoint
586
-
587
-
588
- def convert_ldm_bert_checkpoint(checkpoint, config):
589
- def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
590
- hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
591
- hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
592
- hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
593
-
594
- hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
595
- hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
596
-
597
- def _copy_linear(hf_linear, pt_linear):
598
- hf_linear.weight = pt_linear.weight
599
- hf_linear.bias = pt_linear.bias
600
-
601
- def _copy_layer(hf_layer, pt_layer):
602
- # copy layer norms
603
- _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
604
- _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
605
-
606
- # copy attn
607
- _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
608
-
609
- # copy MLP
610
- pt_mlp = pt_layer[1][1]
611
- _copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
612
- _copy_linear(hf_layer.fc2, pt_mlp.net[2])
613
-
614
- def _copy_layers(hf_layers, pt_layers):
615
- for i, hf_layer in enumerate(hf_layers):
616
- if i != 0:
617
- i += i
618
- pt_layer = pt_layers[i : i + 2]
619
- _copy_layer(hf_layer, pt_layer)
620
-
621
- hf_model = LDMBertModel(config).eval()
622
-
623
- # copy embeds
624
- hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
625
- hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
626
-
627
- # copy layer norm
628
- _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
629
-
630
- # copy hidden layers
631
- _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
632
-
633
- _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
634
-
635
- return hf_model
636
-
637
-
638
- def convert_ldm_clip_checkpoint(checkpoint):
639
- text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
640
-
641
- keys = list(checkpoint.keys())
642
-
643
- text_model_dict = {}
644
-
645
- for key in keys:
646
- if key.startswith("cond_stage_model.transformer"):
647
- text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
648
-
649
- text_model.load_state_dict(text_model_dict)
650
-
651
- return text_model
652
-
653
-
654
- textenc_conversion_lst = [
655
- ("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
656
- ("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
657
- ("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
658
- ("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
659
- ]
660
- textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
661
-
662
- textenc_transformer_conversion_lst = [
663
- # (stable-diffusion, HF Diffusers)
664
- ("resblocks.", "text_model.encoder.layers."),
665
- ("ln_1", "layer_norm1"),
666
- ("ln_2", "layer_norm2"),
667
- (".c_fc.", ".fc1."),
668
- (".c_proj.", ".fc2."),
669
- (".attn", ".self_attn"),
670
- ("ln_final.", "transformer.text_model.final_layer_norm."),
671
- ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
672
- ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
673
- ]
674
- protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
675
- textenc_pattern = re.compile("|".join(protected.keys()))
676
-
677
-
678
- def convert_paint_by_example_checkpoint(checkpoint):
679
- config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14")
680
- model = PaintByExampleImageEncoder(config)
681
-
682
- keys = list(checkpoint.keys())
683
-
684
- text_model_dict = {}
685
-
686
- for key in keys:
687
- if key.startswith("cond_stage_model.transformer"):
688
- text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
689
-
690
- # load clip vision
691
- model.model.load_state_dict(text_model_dict)
692
-
693
- # load mapper
694
- keys_mapper = {
695
- k[len("cond_stage_model.mapper.res") :]: v
696
- for k, v in checkpoint.items()
697
- if k.startswith("cond_stage_model.mapper")
698
- }
699
-
700
- MAPPING = {
701
- "attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
702
- "attn.c_proj": ["attn1.to_out.0"],
703
- "ln_1": ["norm1"],
704
- "ln_2": ["norm3"],
705
- "mlp.c_fc": ["ff.net.0.proj"],
706
- "mlp.c_proj": ["ff.net.2"],
707
- }
708
-
709
- mapped_weights = {}
710
- for key, value in keys_mapper.items():
711
- prefix = key[: len("blocks.i")]
712
- suffix = key.split(prefix)[-1].split(".")[-1]
713
- name = key.split(prefix)[-1].split(suffix)[0][1:-1]
714
- mapped_names = MAPPING[name]
715
-
716
- num_splits = len(mapped_names)
717
- for i, mapped_name in enumerate(mapped_names):
718
- new_name = ".".join([prefix, mapped_name, suffix])
719
- shape = value.shape[0] // num_splits
720
- mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
721
-
722
- model.mapper.load_state_dict(mapped_weights)
723
-
724
- # load final layer norm
725
- model.final_layer_norm.load_state_dict(
726
- {
727
- "bias": checkpoint["cond_stage_model.final_ln.bias"],
728
- "weight": checkpoint["cond_stage_model.final_ln.weight"],
729
- }
730
- )
731
-
732
- # load final proj
733
- model.proj_out.load_state_dict(
734
- {
735
- "bias": checkpoint["proj_out.bias"],
736
- "weight": checkpoint["proj_out.weight"],
737
- }
738
- )
739
-
740
- # load uncond vector
741
- model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
742
- return model
743
-
744
-
745
- def convert_open_clip_checkpoint(checkpoint):
746
- text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
747
-
748
- keys = list(checkpoint.keys())
749
-
750
- text_model_dict = {}
751
-
752
- d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
753
-
754
- text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
755
-
756
- for key in keys:
757
- if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
758
- continue
759
- if key in textenc_conversion_map:
760
- text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
761
- if key.startswith("cond_stage_model.model.transformer."):
762
- new_key = key[len("cond_stage_model.model.transformer.") :]
763
- if new_key.endswith(".in_proj_weight"):
764
- new_key = new_key[: -len(".in_proj_weight")]
765
- new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
766
- text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
767
- text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
768
- text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
769
- elif new_key.endswith(".in_proj_bias"):
770
- new_key = new_key[: -len(".in_proj_bias")]
771
- new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
772
- text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
773
- text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
774
- text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
775
- else:
776
- new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
777
-
778
- text_model_dict[new_key] = checkpoint[key]
779
-
780
- text_model.load_state_dict(text_model_dict)
781
-
782
- return text_model
783
-
784
-
785
- def savemodelDiffusers(name, compvis_config_file, diffusers_config_file, device='cpu'):
786
- checkpoint_path = f'models/{name}/{name}.pt'
787
-
788
- original_config_file = compvis_config_file
789
- config_file = diffusers_config_file
790
- num_in_channels = 4
791
- scheduler_type = 'ddim'
792
- pipeline_type = None
793
- image_size = 512
794
- prediction_type = 'epsilon'
795
- extract_ema = False
796
- dump_path = f"models/{name}/{name.replace('compvis','diffusers')}.pt"
797
- upcast_attention = False
798
-
799
-
800
- if device is None:
801
- device = "cuda" if torch.cuda.is_available() else "cpu"
802
- checkpoint = torch.load(checkpoint_path, map_location=device)
803
- else:
804
- checkpoint = torch.load(checkpoint_path, map_location=device)
805
-
806
- # Sometimes models don't have the global_step item
807
- if "global_step" in checkpoint:
808
- global_step = checkpoint["global_step"]
809
- else:
810
- print("global_step key not found in model")
811
- global_step = None
812
-
813
- if "state_dict" in checkpoint:
814
- checkpoint = checkpoint["state_dict"]
815
- upcast_attention = upcast_attention
816
- if original_config_file is None:
817
- key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
818
-
819
- if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
820
- if not os.path.isfile("v2-inference-v.yaml"):
821
- # model_type = "v2"
822
- os.system(
823
- "wget https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
824
- " -O v2-inference-v.yaml"
825
- )
826
- original_config_file = "./v2-inference-v.yaml"
827
-
828
- if global_step == 110000:
829
- # v2.1 needs to upcast attention
830
- upcast_attention = True
831
- else:
832
- if not os.path.isfile("v1-inference.yaml"):
833
- # model_type = "v1"
834
- os.system(
835
- "wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
836
- " -O v1-inference.yaml"
837
- )
838
- original_config_file = "./v1-inference.yaml"
839
-
840
- original_config = OmegaConf.load(original_config_file)
841
-
842
- if num_in_channels is not None:
843
- original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
844
-
845
- if (
846
- "parameterization" in original_config["model"]["params"]
847
- and original_config["model"]["params"]["parameterization"] == "v"
848
- ):
849
- if prediction_type is None:
850
- # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
851
- # as it relies on a brittle global step parameter here
852
- prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
853
- if image_size is None:
854
- # NOTE: For stable diffusion 2 base one has to pass `image_size==512`
855
- # as it relies on a brittle global step parameter here
856
- image_size = 512 if global_step == 875000 else 768
857
- else:
858
- if prediction_type is None:
859
- prediction_type = "epsilon"
860
- if image_size is None:
861
- image_size = 512
862
-
863
- num_train_timesteps = original_config.model.params.timesteps
864
- beta_start = original_config.model.params.linear_start
865
- beta_end = original_config.model.params.linear_end
866
- scheduler = DDIMScheduler(
867
- beta_end=beta_end,
868
- beta_schedule="scaled_linear",
869
- beta_start=beta_start,
870
- num_train_timesteps=num_train_timesteps,
871
- steps_offset=1,
872
- clip_sample=False,
873
- set_alpha_to_one=False,
874
- prediction_type=prediction_type,
875
- )
876
- # make sure scheduler works correctly with DDIM
877
- scheduler.register_to_config(clip_sample=False)
878
-
879
- if scheduler_type == "pndm":
880
- config = dict(scheduler.config)
881
- config["skip_prk_steps"] = True
882
- scheduler = PNDMScheduler.from_config(config)
883
- elif scheduler_type == "lms":
884
- scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
885
- elif scheduler_type == "heun":
886
- scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
887
- elif scheduler_type == "euler":
888
- scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
889
- elif scheduler_type == "euler-ancestral":
890
- scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
891
- elif scheduler_type == "dpm":
892
- scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
893
- elif scheduler_type == "ddim":
894
- scheduler = scheduler
895
- else:
896
- raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
897
-
898
- # Convert the UNet2DConditionModel model.
899
- unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
900
- unet_config["upcast_attention"] = False
901
- unet = UNet2DConditionModel(**unet_config)
902
-
903
- converted_unet_checkpoint = convert_ldm_unet_checkpoint(
904
- checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
905
- )
906
- torch.save(converted_unet_checkpoint, dump_path)
907
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
finetuning.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import re
3
+ import torch
4
+ import util
5
+
6
+ class FineTunedModel(torch.nn.Module):
7
+
8
+ def __init__(self,
9
+ model,
10
+ modules,
11
+ frozen_modules=[]
12
+ ):
13
+
14
+ super().__init__()
15
+
16
+ if isinstance(modules, str):
17
+ modules = [modules]
18
+
19
+ self.model = model
20
+ self.ft_modules = {}
21
+ self.orig_modules = {}
22
+
23
+ util.freeze(self.model)
24
+
25
+ for module_name, module in model.named_modules():
26
+ for ft_module_regex in modules:
27
+
28
+ match = re.search(ft_module_regex, module_name)
29
+
30
+ if match is not None:
31
+
32
+ ft_module = copy.deepcopy(module)
33
+
34
+ self.orig_modules[module_name] = module
35
+ self.ft_modules[module_name] = ft_module
36
+
37
+ util.unfreeze(ft_module)
38
+
39
+ print(f"=> Finetuning {module_name}")
40
+
41
+ for module_name, module in ft_module.named_modules():
42
+ for freeze_module_name in frozen_modules:
43
+
44
+ match = re.search(freeze_module_name, module_name)
45
+
46
+ if match:
47
+ print(f"=> Freezing {module_name}")
48
+ util.freeze(module)
49
+
50
+ self.ft_modules_list = torch.nn.ModuleList(self.ft_modules.values())
51
+ self.orig_modules_list = torch.nn.ModuleList(self.orig_modules.values())
52
+
53
+ def __enter__(self):
54
+
55
+ for key, ft_module in self.ft_modules.items():
56
+ util.set_module(self.model, key, ft_module)
57
+
58
+ def __exit__(self, exc_type, exc_value, tb):
59
+
60
+ for key, module in self.orig_modules.items():
61
+ util.set_module(self.model, key, module)
62
+
63
+ def parameters(self):
64
+
65
+ parameters = []
66
+
67
+ for ft_module in self.ft_modules.values():
68
+
69
+ parameters.extend(list(ft_module.parameters()))
70
+
71
+ return parameters
72
+
73
+ def state_dict(self):
74
+
75
+ state_dict = {key: module.state_dict() for key, module in self.ft_modules.items()}
76
+
77
+ return state_dict
78
+
79
+ def load_state_dict(self, state_dict):
80
+
81
+ for key, sd in state_dict.items():
82
+
83
+ self.ft_modules[key].load_state_dict(sd)
requirements.txt CHANGED
@@ -1,13 +1,8 @@
1
- omegaconf
2
  torch
3
  torchvision
4
- einops
5
  diffusers
6
  transformers
7
- pytorch_lightning==1.6.5
8
- taming-transformers
9
- kornia
10
- scipy
11
  accelerate
12
- git+https://github.com/openai/CLIP.git@main#egg=clip
13
- git+https://github.com/davidbau/baukit.git
 
1
+ gradio
2
  torch
3
  torchvision
 
4
  diffusers
5
  transformers
 
 
 
 
6
  accelerate
7
+ scipy
8
+ git+https://github.com/davidbau/baukit.git
stable_diffusion/configs/stable-diffusion/v1-inference.yaml DELETED
@@ -1,70 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-04
3
- target: ldm.models.diffusion.ddpm.LatentDiffusion
4
- params:
5
- linear_start: 0.00085
6
- linear_end: 0.0120
7
- num_timesteps_cond: 1
8
- log_every_t: 200
9
- timesteps: 1000
10
- first_stage_key: "jpg"
11
- cond_stage_key: "txt"
12
- image_size: 64
13
- channels: 4
14
- cond_stage_trainable: false # Note: different from the one we trained before
15
- conditioning_key: crossattn
16
- monitor: val/loss_simple_ema
17
- scale_factor: 0.18215
18
- use_ema: False
19
-
20
- scheduler_config: # 10000 warmup steps
21
- target: ldm.lr_scheduler.LambdaLinearScheduler
22
- params:
23
- warm_up_steps: [ 10000 ]
24
- cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
- f_start: [ 1.e-6 ]
26
- f_max: [ 1. ]
27
- f_min: [ 1. ]
28
-
29
- unet_config:
30
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
- params:
32
- image_size: 32 # unused
33
- in_channels: 4
34
- out_channels: 4
35
- model_channels: 320
36
- attention_resolutions: [ 4, 2, 1 ]
37
- num_res_blocks: 2
38
- channel_mult: [ 1, 2, 4, 4 ]
39
- num_heads: 8
40
- use_spatial_transformer: True
41
- transformer_depth: 1
42
- context_dim: 768
43
- use_checkpoint: True
44
- legacy: False
45
-
46
- first_stage_config:
47
- target: ldm.models.autoencoder.AutoencoderKL
48
- params:
49
- embed_dim: 4
50
- monitor: val/rec_loss
51
- ddconfig:
52
- double_z: true
53
- z_channels: 4
54
- resolution: 256
55
- in_channels: 3
56
- out_ch: 3
57
- ch: 128
58
- ch_mult:
59
- - 1
60
- - 2
61
- - 4
62
- - 4
63
- num_res_blocks: 2
64
- attn_resolutions: []
65
- dropout: 0.0
66
- lossconfig:
67
- target: torch.nn.Identity
68
-
69
- cond_stage_config:
70
- target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/__init__.py DELETED
File without changes
stable_diffusion/ldm/data/base.py DELETED
@@ -1,40 +0,0 @@
1
- import os
2
- import numpy as np
3
- from abc import abstractmethod
4
- from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
5
-
6
-
7
- class Txt2ImgIterableBaseDataset(IterableDataset):
8
- '''
9
- Define an interface to make the IterableDatasets for text2img data chainable
10
- '''
11
- def __init__(self, num_records=0, valid_ids=None, size=256):
12
- super().__init__()
13
- self.num_records = num_records
14
- self.valid_ids = valid_ids
15
- self.sample_ids = valid_ids
16
- self.size = size
17
-
18
- print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
19
-
20
- def __len__(self):
21
- return self.num_records
22
-
23
- @abstractmethod
24
- def __iter__(self):
25
- pass
26
-
27
-
28
- class PRNGMixin(object):
29
- """
30
- Adds a prng property which is a numpy RandomState which gets
31
- reinitialized whenever the pid changes to avoid synchronized sampling
32
- behavior when used in conjunction with multiprocessing.
33
- """
34
- @property
35
- def prng(self):
36
- currentpid = os.getpid()
37
- if getattr(self, "_initpid", None) != currentpid:
38
- self._initpid = currentpid
39
- self._prng = np.random.RandomState()
40
- return self._prng
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/coco.py DELETED
@@ -1,253 +0,0 @@
1
- import os
2
- import json
3
- import albumentations
4
- import numpy as np
5
- from PIL import Image
6
- from tqdm import tqdm
7
- from torch.utils.data import Dataset
8
- from abc import abstractmethod
9
-
10
-
11
- class CocoBase(Dataset):
12
- """needed for (image, caption, segmentation) pairs"""
13
- def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
14
- crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
15
- self.split = self.get_split()
16
- self.size = size
17
- if crop_size is None:
18
- self.crop_size = size
19
- else:
20
- self.crop_size = crop_size
21
-
22
- assert crop_type in [None, 'random', 'center']
23
- self.crop_type = crop_type
24
- self.use_segmenation = use_segmentation
25
- self.onehot = onehot_segmentation # return segmentation as rgb or one hot
26
- self.stuffthing = use_stuffthing # include thing in segmentation
27
- if self.onehot and not self.stuffthing:
28
- raise NotImplemented("One hot mode is only supported for the "
29
- "stuffthings version because labels are stored "
30
- "a bit different.")
31
-
32
- data_json = datajson
33
- with open(data_json) as json_file:
34
- self.json_data = json.load(json_file)
35
- self.img_id_to_captions = dict()
36
- self.img_id_to_filepath = dict()
37
- self.img_id_to_segmentation_filepath = dict()
38
-
39
- assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
40
- f"captions_val{self.year()}.json"]
41
- # TODO currently hardcoded paths, would be better to follow logic in
42
- # cocstuff pixelmaps
43
- if self.use_segmenation:
44
- if self.stuffthing:
45
- self.segmentation_prefix = (
46
- f"data/cocostuffthings/val{self.year()}" if
47
- data_json.endswith(f"captions_val{self.year()}.json") else
48
- f"data/cocostuffthings/train{self.year()}")
49
- else:
50
- self.segmentation_prefix = (
51
- f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
52
- data_json.endswith(f"captions_val{self.year()}.json") else
53
- f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
54
-
55
- imagedirs = self.json_data["images"]
56
- self.labels = {"image_ids": list()}
57
- for imgdir in tqdm(imagedirs, desc="ImgToPath"):
58
- self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
59
- self.img_id_to_captions[imgdir["id"]] = list()
60
- pngfilename = imgdir["file_name"].replace("jpg", "png")
61
- if self.use_segmenation:
62
- self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
63
- self.segmentation_prefix, pngfilename)
64
- if given_files is not None:
65
- if pngfilename in given_files:
66
- self.labels["image_ids"].append(imgdir["id"])
67
- else:
68
- self.labels["image_ids"].append(imgdir["id"])
69
-
70
- capdirs = self.json_data["annotations"]
71
- for capdir in tqdm(capdirs, desc="ImgToCaptions"):
72
- # there are in average 5 captions per image
73
- #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
74
- self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
75
-
76
- self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
77
- if self.split=="validation":
78
- self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
79
- else:
80
- # default option for train is random crop
81
- if self.crop_type in [None, 'random']:
82
- self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
83
- else:
84
- self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
85
- self.preprocessor = albumentations.Compose(
86
- [self.rescaler, self.cropper],
87
- additional_targets={"segmentation": "image"})
88
- if force_no_crop:
89
- self.rescaler = albumentations.Resize(height=self.size, width=self.size)
90
- self.preprocessor = albumentations.Compose(
91
- [self.rescaler],
92
- additional_targets={"segmentation": "image"})
93
-
94
- @abstractmethod
95
- def year(self):
96
- raise NotImplementedError()
97
-
98
- def __len__(self):
99
- return len(self.labels["image_ids"])
100
-
101
- def preprocess_image(self, image_path, segmentation_path=None):
102
- image = Image.open(image_path)
103
- if not image.mode == "RGB":
104
- image = image.convert("RGB")
105
- image = np.array(image).astype(np.uint8)
106
- if segmentation_path:
107
- segmentation = Image.open(segmentation_path)
108
- if not self.onehot and not segmentation.mode == "RGB":
109
- segmentation = segmentation.convert("RGB")
110
- segmentation = np.array(segmentation).astype(np.uint8)
111
- if self.onehot:
112
- assert self.stuffthing
113
- # stored in caffe format: unlabeled==255. stuff and thing from
114
- # 0-181. to be compatible with the labels in
115
- # https://github.com/nightrome/cocostuff/blob/master/labels.txt
116
- # we shift stuffthing one to the right and put unlabeled in zero
117
- # as long as segmentation is uint8 shifting to right handles the
118
- # latter too
119
- assert segmentation.dtype == np.uint8
120
- segmentation = segmentation + 1
121
-
122
- processed = self.preprocessor(image=image, segmentation=segmentation)
123
-
124
- image, segmentation = processed["image"], processed["segmentation"]
125
- else:
126
- image = self.preprocessor(image=image,)['image']
127
-
128
- image = (image / 127.5 - 1.0).astype(np.float32)
129
- if segmentation_path:
130
- if self.onehot:
131
- assert segmentation.dtype == np.uint8
132
- # make it one hot
133
- n_labels = 183
134
- flatseg = np.ravel(segmentation)
135
- onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
136
- onehot[np.arange(flatseg.size), flatseg] = True
137
- onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
138
- segmentation = onehot
139
- else:
140
- segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
141
- return image, segmentation
142
- else:
143
- return image
144
-
145
- def __getitem__(self, i):
146
- img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
147
- if self.use_segmenation:
148
- seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
149
- image, segmentation = self.preprocess_image(img_path, seg_path)
150
- else:
151
- image = self.preprocess_image(img_path)
152
- captions = self.img_id_to_captions[self.labels["image_ids"][i]]
153
- # randomly draw one of all available captions per image
154
- caption = captions[np.random.randint(0, len(captions))]
155
- example = {"image": image,
156
- #"caption": [str(caption[0])],
157
- "caption": caption,
158
- "img_path": img_path,
159
- "filename_": img_path.split(os.sep)[-1]
160
- }
161
- if self.use_segmenation:
162
- example.update({"seg_path": seg_path, 'segmentation': segmentation})
163
- return example
164
-
165
-
166
- class CocoImagesAndCaptionsTrain2017(CocoBase):
167
- """returns a pair of (image, caption)"""
168
- def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
169
- super().__init__(size=size,
170
- dataroot="data/coco/train2017",
171
- datajson="data/coco/annotations/captions_train2017.json",
172
- onehot_segmentation=onehot_segmentation,
173
- use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
174
-
175
- def get_split(self):
176
- return "train"
177
-
178
- def year(self):
179
- return '2017'
180
-
181
-
182
- class CocoImagesAndCaptionsValidation2017(CocoBase):
183
- """returns a pair of (image, caption)"""
184
- def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
185
- given_files=None):
186
- super().__init__(size=size,
187
- dataroot="data/coco/val2017",
188
- datajson="data/coco/annotations/captions_val2017.json",
189
- onehot_segmentation=onehot_segmentation,
190
- use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
191
- given_files=given_files)
192
-
193
- def get_split(self):
194
- return "validation"
195
-
196
- def year(self):
197
- return '2017'
198
-
199
-
200
-
201
- class CocoImagesAndCaptionsTrain2014(CocoBase):
202
- """returns a pair of (image, caption)"""
203
- def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
204
- super().__init__(size=size,
205
- dataroot="data/coco/train2014",
206
- datajson="data/coco/annotations2014/annotations/captions_train2014.json",
207
- onehot_segmentation=onehot_segmentation,
208
- use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
209
- use_segmentation=False,
210
- crop_type=crop_type)
211
-
212
- def get_split(self):
213
- return "train"
214
-
215
- def year(self):
216
- return '2014'
217
-
218
- class CocoImagesAndCaptionsValidation2014(CocoBase):
219
- """returns a pair of (image, caption)"""
220
- def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
221
- given_files=None,crop_type='center',**kwargs):
222
- super().__init__(size=size,
223
- dataroot="data/coco/val2014",
224
- datajson="data/coco/annotations2014/annotations/captions_val2014.json",
225
- onehot_segmentation=onehot_segmentation,
226
- use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
227
- given_files=given_files,
228
- use_segmentation=False,
229
- crop_type=crop_type)
230
-
231
- def get_split(self):
232
- return "validation"
233
-
234
- def year(self):
235
- return '2014'
236
-
237
- if __name__ == '__main__':
238
- with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
239
- json_data = json.load(json_file)
240
- capdirs = json_data["annotations"]
241
- import pudb; pudb.set_trace()
242
- #d2 = CocoImagesAndCaptionsTrain2014(size=256)
243
- d2 = CocoImagesAndCaptionsValidation2014(size=256)
244
- print("constructed dataset.")
245
- print(f"length of {d2.__class__.__name__}: {len(d2)}")
246
-
247
- ex2 = d2[0]
248
- # ex3 = d3[0]
249
- # print(ex1["image"].shape)
250
- print(ex2["image"].shape)
251
- # print(ex3["image"].shape)
252
- # print(ex1["segmentation"].shape)
253
- print(ex2["caption"].__class__.__name__)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/dummy.py DELETED
@@ -1,34 +0,0 @@
1
- import numpy as np
2
- import random
3
- import string
4
- from torch.utils.data import Dataset, Subset
5
-
6
- class DummyData(Dataset):
7
- def __init__(self, length, size):
8
- self.length = length
9
- self.size = size
10
-
11
- def __len__(self):
12
- return self.length
13
-
14
- def __getitem__(self, i):
15
- x = np.random.randn(*self.size)
16
- letters = string.ascii_lowercase
17
- y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
18
- return {"jpg": x, "txt": y}
19
-
20
-
21
- class DummyDataWithEmbeddings(Dataset):
22
- def __init__(self, length, size, emb_size):
23
- self.length = length
24
- self.size = size
25
- self.emb_size = emb_size
26
-
27
- def __len__(self):
28
- return self.length
29
-
30
- def __getitem__(self, i):
31
- x = np.random.randn(*self.size)
32
- y = np.random.randn(*self.emb_size).astype(np.float32)
33
- return {"jpg": x, "txt": y}
34
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/imagenet.py DELETED
@@ -1,394 +0,0 @@
1
- import os, yaml, pickle, shutil, tarfile, glob
2
- import cv2
3
- import albumentations
4
- import PIL
5
- import numpy as np
6
- import torchvision.transforms.functional as TF
7
- from omegaconf import OmegaConf
8
- from functools import partial
9
- from PIL import Image
10
- from tqdm import tqdm
11
- from torch.utils.data import Dataset, Subset
12
-
13
- import taming.data.utils as tdu
14
- from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
- from taming.data.imagenet import ImagePaths
16
-
17
- from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
-
19
-
20
- def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
- with open(path_to_yaml) as f:
22
- di2s = yaml.load(f)
23
- return dict((v,k) for k,v in di2s.items())
24
-
25
-
26
- class ImageNetBase(Dataset):
27
- def __init__(self, config=None):
28
- self.config = config or OmegaConf.create()
29
- if not type(self.config)==dict:
30
- self.config = OmegaConf.to_container(self.config)
31
- self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
- self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
- self._prepare()
34
- self._prepare_synset_to_human()
35
- self._prepare_idx_to_synset()
36
- self._prepare_human_to_integer_label()
37
- self._load()
38
-
39
- def __len__(self):
40
- return len(self.data)
41
-
42
- def __getitem__(self, i):
43
- return self.data[i]
44
-
45
- def _prepare(self):
46
- raise NotImplementedError()
47
-
48
- def _filter_relpaths(self, relpaths):
49
- ignore = set([
50
- "n06596364_9591.JPEG",
51
- ])
52
- relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
- if "sub_indices" in self.config:
54
- indices = str_to_indices(self.config["sub_indices"])
55
- synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
- self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
- files = []
58
- for rpath in relpaths:
59
- syn = rpath.split("/")[0]
60
- if syn in synsets:
61
- files.append(rpath)
62
- return files
63
- else:
64
- return relpaths
65
-
66
- def _prepare_synset_to_human(self):
67
- SIZE = 2655750
68
- URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
- self.human_dict = os.path.join(self.root, "synset_human.txt")
70
- if (not os.path.exists(self.human_dict) or
71
- not os.path.getsize(self.human_dict)==SIZE):
72
- download(URL, self.human_dict)
73
-
74
- def _prepare_idx_to_synset(self):
75
- URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
- self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
- if (not os.path.exists(self.idx2syn)):
78
- download(URL, self.idx2syn)
79
-
80
- def _prepare_human_to_integer_label(self):
81
- URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
- self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
- if (not os.path.exists(self.human2integer)):
84
- download(URL, self.human2integer)
85
- with open(self.human2integer, "r") as f:
86
- lines = f.read().splitlines()
87
- assert len(lines) == 1000
88
- self.human2integer_dict = dict()
89
- for line in lines:
90
- value, key = line.split(":")
91
- self.human2integer_dict[key] = int(value)
92
-
93
- def _load(self):
94
- with open(self.txt_filelist, "r") as f:
95
- self.relpaths = f.read().splitlines()
96
- l1 = len(self.relpaths)
97
- self.relpaths = self._filter_relpaths(self.relpaths)
98
- print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
-
100
- self.synsets = [p.split("/")[0] for p in self.relpaths]
101
- self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
-
103
- unique_synsets = np.unique(self.synsets)
104
- class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
- if not self.keep_orig_class_label:
106
- self.class_labels = [class_dict[s] for s in self.synsets]
107
- else:
108
- self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
-
110
- with open(self.human_dict, "r") as f:
111
- human_dict = f.read().splitlines()
112
- human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
-
114
- self.human_labels = [human_dict[s] for s in self.synsets]
115
-
116
- labels = {
117
- "relpath": np.array(self.relpaths),
118
- "synsets": np.array(self.synsets),
119
- "class_label": np.array(self.class_labels),
120
- "human_label": np.array(self.human_labels),
121
- }
122
-
123
- if self.process_images:
124
- self.size = retrieve(self.config, "size", default=256)
125
- self.data = ImagePaths(self.abspaths,
126
- labels=labels,
127
- size=self.size,
128
- random_crop=self.random_crop,
129
- )
130
- else:
131
- self.data = self.abspaths
132
-
133
-
134
- class ImageNetTrain(ImageNetBase):
135
- NAME = "ILSVRC2012_train"
136
- URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
- AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
- FILES = [
139
- "ILSVRC2012_img_train.tar",
140
- ]
141
- SIZES = [
142
- 147897477120,
143
- ]
144
-
145
- def __init__(self, process_images=True, data_root=None, **kwargs):
146
- self.process_images = process_images
147
- self.data_root = data_root
148
- super().__init__(**kwargs)
149
-
150
- def _prepare(self):
151
- if self.data_root:
152
- self.root = os.path.join(self.data_root, self.NAME)
153
- else:
154
- cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
- self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
-
157
- self.datadir = os.path.join(self.root, "data")
158
- self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
- self.expected_length = 1281167
160
- self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
- default=True)
162
- if not tdu.is_prepared(self.root):
163
- # prep
164
- print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
-
166
- datadir = self.datadir
167
- if not os.path.exists(datadir):
168
- path = os.path.join(self.root, self.FILES[0])
169
- if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
- import academictorrents as at
171
- atpath = at.get(self.AT_HASH, datastore=self.root)
172
- assert atpath == path
173
-
174
- print("Extracting {} to {}".format(path, datadir))
175
- os.makedirs(datadir, exist_ok=True)
176
- with tarfile.open(path, "r:") as tar:
177
- tar.extractall(path=datadir)
178
-
179
- print("Extracting sub-tars.")
180
- subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
- for subpath in tqdm(subpaths):
182
- subdir = subpath[:-len(".tar")]
183
- os.makedirs(subdir, exist_ok=True)
184
- with tarfile.open(subpath, "r:") as tar:
185
- tar.extractall(path=subdir)
186
-
187
- filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
- filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
- filelist = sorted(filelist)
190
- filelist = "\n".join(filelist)+"\n"
191
- with open(self.txt_filelist, "w") as f:
192
- f.write(filelist)
193
-
194
- tdu.mark_prepared(self.root)
195
-
196
-
197
- class ImageNetValidation(ImageNetBase):
198
- NAME = "ILSVRC2012_validation"
199
- URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
- AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
- VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
- FILES = [
203
- "ILSVRC2012_img_val.tar",
204
- "validation_synset.txt",
205
- ]
206
- SIZES = [
207
- 6744924160,
208
- 1950000,
209
- ]
210
-
211
- def __init__(self, process_images=True, data_root=None, **kwargs):
212
- self.data_root = data_root
213
- self.process_images = process_images
214
- super().__init__(**kwargs)
215
-
216
- def _prepare(self):
217
- if self.data_root:
218
- self.root = os.path.join(self.data_root, self.NAME)
219
- else:
220
- cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
- self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
- self.datadir = os.path.join(self.root, "data")
223
- self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
- self.expected_length = 50000
225
- self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
- default=False)
227
- if not tdu.is_prepared(self.root):
228
- # prep
229
- print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
-
231
- datadir = self.datadir
232
- if not os.path.exists(datadir):
233
- path = os.path.join(self.root, self.FILES[0])
234
- if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
- import academictorrents as at
236
- atpath = at.get(self.AT_HASH, datastore=self.root)
237
- assert atpath == path
238
-
239
- print("Extracting {} to {}".format(path, datadir))
240
- os.makedirs(datadir, exist_ok=True)
241
- with tarfile.open(path, "r:") as tar:
242
- tar.extractall(path=datadir)
243
-
244
- vspath = os.path.join(self.root, self.FILES[1])
245
- if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
- download(self.VS_URL, vspath)
247
-
248
- with open(vspath, "r") as f:
249
- synset_dict = f.read().splitlines()
250
- synset_dict = dict(line.split() for line in synset_dict)
251
-
252
- print("Reorganizing into synset folders")
253
- synsets = np.unique(list(synset_dict.values()))
254
- for s in synsets:
255
- os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
- for k, v in synset_dict.items():
257
- src = os.path.join(datadir, k)
258
- dst = os.path.join(datadir, v)
259
- shutil.move(src, dst)
260
-
261
- filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
- filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
- filelist = sorted(filelist)
264
- filelist = "\n".join(filelist)+"\n"
265
- with open(self.txt_filelist, "w") as f:
266
- f.write(filelist)
267
-
268
- tdu.mark_prepared(self.root)
269
-
270
-
271
-
272
- class ImageNetSR(Dataset):
273
- def __init__(self, size=None,
274
- degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
- random_crop=True):
276
- """
277
- Imagenet Superresolution Dataloader
278
- Performs following ops in order:
279
- 1. crops a crop of size s from image either as random or center crop
280
- 2. resizes crop to size with cv2.area_interpolation
281
- 3. degrades resized crop with degradation_fn
282
-
283
- :param size: resizing to size after cropping
284
- :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
- :param downscale_f: Low Resolution Downsample factor
286
- :param min_crop_f: determines crop size s,
287
- where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
- :param max_crop_f: ""
289
- :param data_root:
290
- :param random_crop:
291
- """
292
- self.base = self.get_base()
293
- assert size
294
- assert (size / downscale_f).is_integer()
295
- self.size = size
296
- self.LR_size = int(size / downscale_f)
297
- self.min_crop_f = min_crop_f
298
- self.max_crop_f = max_crop_f
299
- assert(max_crop_f <= 1.)
300
- self.center_crop = not random_crop
301
-
302
- self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
-
304
- self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
-
306
- if degradation == "bsrgan":
307
- self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
-
309
- elif degradation == "bsrgan_light":
310
- self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
-
312
- else:
313
- interpolation_fn = {
314
- "cv_nearest": cv2.INTER_NEAREST,
315
- "cv_bilinear": cv2.INTER_LINEAR,
316
- "cv_bicubic": cv2.INTER_CUBIC,
317
- "cv_area": cv2.INTER_AREA,
318
- "cv_lanczos": cv2.INTER_LANCZOS4,
319
- "pil_nearest": PIL.Image.NEAREST,
320
- "pil_bilinear": PIL.Image.BILINEAR,
321
- "pil_bicubic": PIL.Image.BICUBIC,
322
- "pil_box": PIL.Image.BOX,
323
- "pil_hamming": PIL.Image.HAMMING,
324
- "pil_lanczos": PIL.Image.LANCZOS,
325
- }[degradation]
326
-
327
- self.pil_interpolation = degradation.startswith("pil_")
328
-
329
- if self.pil_interpolation:
330
- self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
-
332
- else:
333
- self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
- interpolation=interpolation_fn)
335
-
336
- def __len__(self):
337
- return len(self.base)
338
-
339
- def __getitem__(self, i):
340
- example = self.base[i]
341
- image = Image.open(example["file_path_"])
342
-
343
- if not image.mode == "RGB":
344
- image = image.convert("RGB")
345
-
346
- image = np.array(image).astype(np.uint8)
347
-
348
- min_side_len = min(image.shape[:2])
349
- crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
- crop_side_len = int(crop_side_len)
351
-
352
- if self.center_crop:
353
- self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
-
355
- else:
356
- self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
-
358
- image = self.cropper(image=image)["image"]
359
- image = self.image_rescaler(image=image)["image"]
360
-
361
- if self.pil_interpolation:
362
- image_pil = PIL.Image.fromarray(image)
363
- LR_image = self.degradation_process(image_pil)
364
- LR_image = np.array(LR_image).astype(np.uint8)
365
-
366
- else:
367
- LR_image = self.degradation_process(image=image)["image"]
368
-
369
- example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
- example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
- example["caption"] = example["human_label"] # dummy caption
372
- return example
373
-
374
-
375
- class ImageNetSRTrain(ImageNetSR):
376
- def __init__(self, **kwargs):
377
- super().__init__(**kwargs)
378
-
379
- def get_base(self):
380
- with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
- indices = pickle.load(f)
382
- dset = ImageNetTrain(process_images=False,)
383
- return Subset(dset, indices)
384
-
385
-
386
- class ImageNetSRValidation(ImageNetSR):
387
- def __init__(self, **kwargs):
388
- super().__init__(**kwargs)
389
-
390
- def get_base(self):
391
- with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
- indices = pickle.load(f)
393
- dset = ImageNetValidation(process_images=False,)
394
- return Subset(dset, indices)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/inpainting/__init__.py DELETED
File without changes
stable_diffusion/ldm/data/inpainting/synthetic_mask.py DELETED
@@ -1,166 +0,0 @@
1
- from PIL import Image, ImageDraw
2
- import numpy as np
3
-
4
- settings = {
5
- "256narrow": {
6
- "p_irr": 1,
7
- "min_n_irr": 4,
8
- "max_n_irr": 50,
9
- "max_l_irr": 40,
10
- "max_w_irr": 10,
11
- "min_n_box": None,
12
- "max_n_box": None,
13
- "min_s_box": None,
14
- "max_s_box": None,
15
- "marg": None,
16
- },
17
- "256train": {
18
- "p_irr": 0.5,
19
- "min_n_irr": 1,
20
- "max_n_irr": 5,
21
- "max_l_irr": 200,
22
- "max_w_irr": 100,
23
- "min_n_box": 1,
24
- "max_n_box": 4,
25
- "min_s_box": 30,
26
- "max_s_box": 150,
27
- "marg": 10,
28
- },
29
- "512train": { # TODO: experimental
30
- "p_irr": 0.5,
31
- "min_n_irr": 1,
32
- "max_n_irr": 5,
33
- "max_l_irr": 450,
34
- "max_w_irr": 250,
35
- "min_n_box": 1,
36
- "max_n_box": 4,
37
- "min_s_box": 30,
38
- "max_s_box": 300,
39
- "marg": 10,
40
- },
41
- "512train-large": { # TODO: experimental
42
- "p_irr": 0.5,
43
- "min_n_irr": 1,
44
- "max_n_irr": 5,
45
- "max_l_irr": 450,
46
- "max_w_irr": 400,
47
- "min_n_box": 1,
48
- "max_n_box": 4,
49
- "min_s_box": 75,
50
- "max_s_box": 450,
51
- "marg": 10,
52
- },
53
- }
54
-
55
-
56
- def gen_segment_mask(mask, start, end, brush_width):
57
- mask = mask > 0
58
- mask = (255 * mask).astype(np.uint8)
59
- mask = Image.fromarray(mask)
60
- draw = ImageDraw.Draw(mask)
61
- draw.line([start, end], fill=255, width=brush_width, joint="curve")
62
- mask = np.array(mask) / 255
63
- return mask
64
-
65
-
66
- def gen_box_mask(mask, masked):
67
- x_0, y_0, w, h = masked
68
- mask[y_0:y_0 + h, x_0:x_0 + w] = 1
69
- return mask
70
-
71
-
72
- def gen_round_mask(mask, masked, radius):
73
- x_0, y_0, w, h = masked
74
- xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
75
-
76
- mask = mask > 0
77
- mask = (255 * mask).astype(np.uint8)
78
- mask = Image.fromarray(mask)
79
- draw = ImageDraw.Draw(mask)
80
- draw.rounded_rectangle(xy, radius=radius, fill=255)
81
- mask = np.array(mask) / 255
82
- return mask
83
-
84
-
85
- def gen_large_mask(prng, img_h, img_w,
86
- marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
87
- min_n_box, max_n_box, min_s_box, max_s_box):
88
- """
89
- img_h: int, an image height
90
- img_w: int, an image width
91
- marg: int, a margin for a box starting coordinate
92
- p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
93
-
94
- min_n_irr: int, min number of segments
95
- max_n_irr: int, max number of segments
96
- max_l_irr: max length of a segment in polygonal chain
97
- max_w_irr: max width of a segment in polygonal chain
98
-
99
- min_n_box: int, min bound for the number of box primitives
100
- max_n_box: int, max bound for the number of box primitives
101
- min_s_box: int, min length of a box side
102
- max_s_box: int, max length of a box side
103
- """
104
-
105
- mask = np.zeros((img_h, img_w))
106
- uniform = prng.randint
107
-
108
- if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
109
- n = uniform(min_n_irr, max_n_irr) # sample number of segments
110
-
111
- for _ in range(n):
112
- y = uniform(0, img_h) # sample a starting point
113
- x = uniform(0, img_w)
114
-
115
- a = uniform(0, 360) # sample angle
116
- l = uniform(10, max_l_irr) # sample segment length
117
- w = uniform(5, max_w_irr) # sample a segment width
118
-
119
- # draw segment starting from (x,y) to (x_,y_) using brush of width w
120
- x_ = x + l * np.sin(a)
121
- y_ = y + l * np.cos(a)
122
-
123
- mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
124
- x, y = x_, y_
125
- else: # generate Box masks
126
- n = uniform(min_n_box, max_n_box) # sample number of rectangles
127
-
128
- for _ in range(n):
129
- h = uniform(min_s_box, max_s_box) # sample box shape
130
- w = uniform(min_s_box, max_s_box)
131
-
132
- x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
133
- y_0 = uniform(marg, img_h - marg - h)
134
-
135
- if np.random.uniform(0, 1) < 0.5:
136
- mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
137
- else:
138
- r = uniform(0, 60) # sample radius
139
- mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
140
- return mask
141
-
142
-
143
- make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
144
- make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
145
- make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
146
- make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
147
-
148
-
149
- MASK_MODES = {
150
- "256train": make_lama_mask,
151
- "256narrow": make_narrow_lama_mask,
152
- "512train": make_512_lama_mask,
153
- "512train-large": make_512_lama_mask_large
154
- }
155
-
156
- if __name__ == "__main__":
157
- import sys
158
-
159
- out = sys.argv[1]
160
-
161
- prng = np.random.RandomState(1)
162
- kwargs = settings["256train"]
163
- mask = gen_large_mask(prng, 256, 256, **kwargs)
164
- mask = (255 * mask).astype(np.uint8)
165
- mask = Image.fromarray(mask)
166
- mask.save(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/laion.py DELETED
@@ -1,537 +0,0 @@
1
- import webdataset as wds
2
- import kornia
3
- from PIL import Image
4
- import io
5
- import os
6
- import torchvision
7
- from PIL import Image
8
- import glob
9
- import random
10
- import numpy as np
11
- import pytorch_lightning as pl
12
- from tqdm import tqdm
13
- from omegaconf import OmegaConf
14
- from einops import rearrange
15
- import torch
16
- from webdataset.handlers import warn_and_continue
17
-
18
-
19
- from ldm.util import instantiate_from_config
20
- from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
21
- from ldm.data.base import PRNGMixin
22
-
23
-
24
- class DataWithWings(torch.utils.data.IterableDataset):
25
- def __init__(self, min_size, transform=None, target_transform=None):
26
- self.min_size = min_size
27
- self.transform = transform if transform is not None else nn.Identity()
28
- self.target_transform = target_transform if target_transform is not None else nn.Identity()
29
- self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
30
- self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
31
- self.pwatermark_threshold = 0.8
32
- self.punsafe_threshold = 0.5
33
- self.aesthetic_threshold = 5.
34
- self.total_samples = 0
35
- self.samples = 0
36
- location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
37
-
38
- self.inner_dataset = wds.DataPipeline(
39
- wds.ResampledShards(location),
40
- wds.tarfile_to_samples(handler=wds.warn_and_continue),
41
- wds.shuffle(1000, handler=wds.warn_and_continue),
42
- wds.decode('pilrgb', handler=wds.warn_and_continue),
43
- wds.map(self._add_tags, handler=wds.ignore_and_continue),
44
- wds.select(self._filter_predicate),
45
- wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
46
- wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
47
- )
48
-
49
- @staticmethod
50
- def _compute_hash(url, text):
51
- if url is None:
52
- url = ''
53
- if text is None:
54
- text = ''
55
- total = (url + text).encode('utf-8')
56
- return mmh3.hash64(total)[0]
57
-
58
- def _add_tags(self, x):
59
- hsh = self._compute_hash(x['json']['url'], x['txt'])
60
- pwatermark, punsafe = self.kv[hsh]
61
- aesthetic = self.kv_aesthetic[hsh][0]
62
- return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
63
-
64
- def _punsafe_to_class(self, punsafe):
65
- return torch.tensor(punsafe >= self.punsafe_threshold).long()
66
-
67
- def _filter_predicate(self, x):
68
- try:
69
- return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
70
- except:
71
- return False
72
-
73
- def __iter__(self):
74
- return iter(self.inner_dataset)
75
-
76
-
77
- def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
78
- """Take a list of samples (as dictionary) and create a batch, preserving the keys.
79
- If `tensors` is True, `ndarray` objects are combined into
80
- tensor batches.
81
- :param dict samples: list of samples
82
- :param bool tensors: whether to turn lists of ndarrays into a single ndarray
83
- :returns: single sample consisting of a batch
84
- :rtype: dict
85
- """
86
- keys = set.intersection(*[set(sample.keys()) for sample in samples])
87
- batched = {key: [] for key in keys}
88
-
89
- for s in samples:
90
- [batched[key].append(s[key]) for key in batched]
91
-
92
- result = {}
93
- for key in batched:
94
- if isinstance(batched[key][0], (int, float)):
95
- if combine_scalars:
96
- result[key] = np.array(list(batched[key]))
97
- elif isinstance(batched[key][0], torch.Tensor):
98
- if combine_tensors:
99
- result[key] = torch.stack(list(batched[key]))
100
- elif isinstance(batched[key][0], np.ndarray):
101
- if combine_tensors:
102
- result[key] = np.array(list(batched[key]))
103
- else:
104
- result[key] = list(batched[key])
105
- return result
106
-
107
-
108
- class WebDataModuleFromConfig(pl.LightningDataModule):
109
- def __init__(self, tar_base, batch_size, train=None, validation=None,
110
- test=None, num_workers=4, multinode=True, min_size=None,
111
- max_pwatermark=1.0,
112
- **kwargs):
113
- super().__init__(self)
114
- print(f'Setting tar base to {tar_base}')
115
- self.tar_base = tar_base
116
- self.batch_size = batch_size
117
- self.num_workers = num_workers
118
- self.train = train
119
- self.validation = validation
120
- self.test = test
121
- self.multinode = multinode
122
- self.min_size = min_size # filter out very small images
123
- self.max_pwatermark = max_pwatermark # filter out watermarked images
124
-
125
- def make_loader(self, dataset_config, train=True):
126
- if 'image_transforms' in dataset_config:
127
- image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
128
- else:
129
- image_transforms = []
130
-
131
- image_transforms.extend([torchvision.transforms.ToTensor(),
132
- torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
133
- image_transforms = torchvision.transforms.Compose(image_transforms)
134
-
135
- if 'transforms' in dataset_config:
136
- transforms_config = OmegaConf.to_container(dataset_config.transforms)
137
- else:
138
- transforms_config = dict()
139
-
140
- transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
141
- if transforms_config[dkey] != 'identity' else identity
142
- for dkey in transforms_config}
143
- img_key = dataset_config.get('image_key', 'jpeg')
144
- transform_dict.update({img_key: image_transforms})
145
-
146
- if 'postprocess' in dataset_config:
147
- postprocess = instantiate_from_config(dataset_config['postprocess'])
148
- else:
149
- postprocess = None
150
-
151
- shuffle = dataset_config.get('shuffle', 0)
152
- shardshuffle = shuffle > 0
153
-
154
- nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
155
-
156
- if self.tar_base == "__improvedaesthetic__":
157
- print("## Warning, loading the same improved aesthetic dataset "
158
- "for all splits and ignoring shards parameter.")
159
- tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
160
- else:
161
- tars = os.path.join(self.tar_base, dataset_config.shards)
162
-
163
- dset = wds.WebDataset(
164
- tars,
165
- nodesplitter=nodesplitter,
166
- shardshuffle=shardshuffle,
167
- handler=wds.warn_and_continue).repeat().shuffle(shuffle)
168
- print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
169
-
170
- dset = (dset
171
- .select(self.filter_keys)
172
- .decode('pil', handler=wds.warn_and_continue)
173
- .select(self.filter_size)
174
- .map_dict(**transform_dict, handler=wds.warn_and_continue)
175
- )
176
- if postprocess is not None:
177
- dset = dset.map(postprocess)
178
- dset = (dset
179
- .batched(self.batch_size, partial=False,
180
- collation_fn=dict_collation_fn)
181
- )
182
-
183
- loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
184
- num_workers=self.num_workers)
185
-
186
- return loader
187
-
188
- def filter_size(self, x):
189
- try:
190
- valid = True
191
- if self.min_size is not None and self.min_size > 1:
192
- try:
193
- valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
194
- except Exception:
195
- valid = False
196
- if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
197
- try:
198
- valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
199
- except Exception:
200
- valid = False
201
- return valid
202
- except Exception:
203
- return False
204
-
205
- def filter_keys(self, x):
206
- try:
207
- return ("jpg" in x) and ("txt" in x)
208
- except Exception:
209
- return False
210
-
211
- def train_dataloader(self):
212
- return self.make_loader(self.train)
213
-
214
- def val_dataloader(self):
215
- return self.make_loader(self.validation, train=False)
216
-
217
- def test_dataloader(self):
218
- return self.make_loader(self.test, train=False)
219
-
220
-
221
- from ldm.modules.image_degradation import degradation_fn_bsr_light
222
- import cv2
223
-
224
- class AddLR(object):
225
- def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
226
- self.factor = factor
227
- self.output_size = output_size
228
- self.image_key = image_key
229
- self.initial_size = initial_size
230
-
231
- def pt2np(self, x):
232
- x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
233
- return x
234
-
235
- def np2pt(self, x):
236
- x = torch.from_numpy(x)/127.5-1.0
237
- return x
238
-
239
- def __call__(self, sample):
240
- # sample['jpg'] is tensor hwc in [-1, 1] at this point
241
- x = self.pt2np(sample[self.image_key])
242
- if self.initial_size is not None:
243
- x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
244
- x = degradation_fn_bsr_light(x, sf=self.factor)['image']
245
- x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
246
- x = self.np2pt(x)
247
- sample['lr'] = x
248
- return sample
249
-
250
- class AddBW(object):
251
- def __init__(self, image_key="jpg"):
252
- self.image_key = image_key
253
-
254
- def pt2np(self, x):
255
- x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
256
- return x
257
-
258
- def np2pt(self, x):
259
- x = torch.from_numpy(x)/127.5-1.0
260
- return x
261
-
262
- def __call__(self, sample):
263
- # sample['jpg'] is tensor hwc in [-1, 1] at this point
264
- x = sample[self.image_key]
265
- w = torch.rand(3, device=x.device)
266
- w /= w.sum()
267
- out = torch.einsum('hwc,c->hw', x, w)
268
-
269
- # Keep as 3ch so we can pass to encoder, also we might want to add hints
270
- sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
271
- return sample
272
-
273
- class AddMask(PRNGMixin):
274
- def __init__(self, mode="512train", p_drop=0.):
275
- super().__init__()
276
- assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
277
- self.make_mask = MASK_MODES[mode]
278
- self.p_drop = p_drop
279
-
280
- def __call__(self, sample):
281
- # sample['jpg'] is tensor hwc in [-1, 1] at this point
282
- x = sample['jpg']
283
- mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
284
- if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
285
- mask = np.ones_like(mask)
286
- mask[mask < 0.5] = 0
287
- mask[mask > 0.5] = 1
288
- mask = torch.from_numpy(mask[..., None])
289
- sample['mask'] = mask
290
- sample['masked_image'] = x * (mask < 0.5)
291
- return sample
292
-
293
-
294
- class AddEdge(PRNGMixin):
295
- def __init__(self, mode="512train", mask_edges=True):
296
- super().__init__()
297
- assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
298
- self.make_mask = MASK_MODES[mode]
299
- self.n_down_choices = [0]
300
- self.sigma_choices = [1, 2]
301
- self.mask_edges = mask_edges
302
-
303
- @torch.no_grad()
304
- def __call__(self, sample):
305
- # sample['jpg'] is tensor hwc in [-1, 1] at this point
306
- x = sample['jpg']
307
-
308
- mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
309
- mask[mask < 0.5] = 0
310
- mask[mask > 0.5] = 1
311
- mask = torch.from_numpy(mask[..., None])
312
- sample['mask'] = mask
313
-
314
- n_down_idx = self.prng.choice(len(self.n_down_choices))
315
- sigma_idx = self.prng.choice(len(self.sigma_choices))
316
-
317
- n_choices = len(self.n_down_choices)*len(self.sigma_choices)
318
- raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
319
- (len(self.n_down_choices), len(self.sigma_choices)))
320
- normalized_idx = raveled_idx/max(1, n_choices-1)
321
-
322
- n_down = self.n_down_choices[n_down_idx]
323
- sigma = self.sigma_choices[sigma_idx]
324
-
325
- kernel_size = 4*sigma+1
326
- kernel_size = (kernel_size, kernel_size)
327
- sigma = (sigma, sigma)
328
- canny = kornia.filters.Canny(
329
- low_threshold=0.1,
330
- high_threshold=0.2,
331
- kernel_size=kernel_size,
332
- sigma=sigma,
333
- hysteresis=True,
334
- )
335
- y = (x+1.0)/2.0 # in 01
336
- y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
337
-
338
- # down
339
- for i_down in range(n_down):
340
- size = min(y.shape[-2], y.shape[-1])//2
341
- y = kornia.geometry.transform.resize(y, size, antialias=True)
342
-
343
- # edge
344
- _, y = canny(y)
345
-
346
- if n_down > 0:
347
- size = x.shape[0], x.shape[1]
348
- y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
349
-
350
- y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
351
- y = y*2.0-1.0
352
-
353
- if self.mask_edges:
354
- sample['masked_image'] = y * (mask < 0.5)
355
- else:
356
- sample['masked_image'] = y
357
- sample['mask'] = torch.zeros_like(sample['mask'])
358
-
359
- # concat normalized idx
360
- sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
361
-
362
- return sample
363
-
364
-
365
- def example00():
366
- url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
367
- dataset = wds.WebDataset(url)
368
- example = next(iter(dataset))
369
- for k in example:
370
- print(k, type(example[k]))
371
-
372
- print(example["__key__"])
373
- for k in ["json", "txt"]:
374
- print(example[k].decode())
375
-
376
- image = Image.open(io.BytesIO(example["jpg"]))
377
- outdir = "tmp"
378
- os.makedirs(outdir, exist_ok=True)
379
- image.save(os.path.join(outdir, example["__key__"] + ".png"))
380
-
381
-
382
- def load_example(example):
383
- return {
384
- "key": example["__key__"],
385
- "image": Image.open(io.BytesIO(example["jpg"])),
386
- "text": example["txt"].decode(),
387
- }
388
-
389
-
390
- for i, example in tqdm(enumerate(dataset)):
391
- ex = load_example(example)
392
- print(ex["image"].size, ex["text"])
393
- if i >= 100:
394
- break
395
-
396
-
397
- def example01():
398
- # the first laion shards contain ~10k examples each
399
- url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
400
-
401
- batch_size = 3
402
- shuffle_buffer = 10000
403
- dset = wds.WebDataset(
404
- url,
405
- nodesplitter=wds.shardlists.split_by_node,
406
- shardshuffle=True,
407
- )
408
- dset = (dset
409
- .shuffle(shuffle_buffer, initial=shuffle_buffer)
410
- .decode('pil', handler=warn_and_continue)
411
- .batched(batch_size, partial=False,
412
- collation_fn=dict_collation_fn)
413
- )
414
-
415
- num_workers = 2
416
- loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
417
-
418
- batch_sizes = list()
419
- keys_per_epoch = list()
420
- for epoch in range(5):
421
- keys = list()
422
- for batch in tqdm(loader):
423
- batch_sizes.append(len(batch["__key__"]))
424
- keys.append(batch["__key__"])
425
-
426
- for bs in batch_sizes:
427
- assert bs==batch_size
428
- print(f"{len(batch_sizes)} batches of size {batch_size}.")
429
- batch_sizes = list()
430
-
431
- keys_per_epoch.append(keys)
432
- for i_batch in [0, 1, -1]:
433
- print(f"Batch {i_batch} of epoch {epoch}:")
434
- print(keys[i_batch])
435
- print("next epoch.")
436
-
437
-
438
- def example02():
439
- from omegaconf import OmegaConf
440
- from torch.utils.data.distributed import DistributedSampler
441
- from torch.utils.data import IterableDataset
442
- from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
443
- from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
444
-
445
- #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
446
- #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
447
- config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
448
- datamod = WebDataModuleFromConfig(**config["data"]["params"])
449
- dataloader = datamod.train_dataloader()
450
-
451
- for batch in dataloader:
452
- print(batch.keys())
453
- print(batch["jpg"].shape)
454
- break
455
-
456
-
457
- def example03():
458
- # improved aesthetics
459
- tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
460
- dataset = wds.WebDataset(tars)
461
-
462
- def filter_keys(x):
463
- try:
464
- return ("jpg" in x) and ("txt" in x)
465
- except Exception:
466
- return False
467
-
468
- def filter_size(x):
469
- try:
470
- return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
471
- except Exception:
472
- return False
473
-
474
- def filter_watermark(x):
475
- try:
476
- return x['json']['pwatermark'] < 0.5
477
- except Exception:
478
- return False
479
-
480
- dataset = (dataset
481
- .select(filter_keys)
482
- .decode('pil', handler=wds.warn_and_continue))
483
- n_save = 20
484
- n_total = 0
485
- n_large = 0
486
- n_large_nowm = 0
487
- for i, example in enumerate(dataset):
488
- n_total += 1
489
- if filter_size(example):
490
- n_large += 1
491
- if filter_watermark(example):
492
- n_large_nowm += 1
493
- if n_large_nowm < n_save+1:
494
- image = example["jpg"]
495
- image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
496
-
497
- if i%500 == 0:
498
- print(i)
499
- print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
500
- if n_large > 0:
501
- print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
502
-
503
-
504
-
505
- def example04():
506
- # improved aesthetics
507
- for i_shard in range(60208)[::-1]:
508
- print(i_shard)
509
- tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
510
- dataset = wds.WebDataset(tars)
511
-
512
- def filter_keys(x):
513
- try:
514
- return ("jpg" in x) and ("txt" in x)
515
- except Exception:
516
- return False
517
-
518
- def filter_size(x):
519
- try:
520
- return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
521
- except Exception:
522
- return False
523
-
524
- dataset = (dataset
525
- .select(filter_keys)
526
- .decode('pil', handler=wds.warn_and_continue))
527
- try:
528
- example = next(iter(dataset))
529
- except Exception:
530
- print(f"Error @ {i_shard}")
531
-
532
-
533
- if __name__ == "__main__":
534
- #example01()
535
- #example02()
536
- example03()
537
- #example04()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/lsun.py DELETED
@@ -1,92 +0,0 @@
1
- import os
2
- import numpy as np
3
- import PIL
4
- from PIL import Image
5
- from torch.utils.data import Dataset
6
- from torchvision import transforms
7
-
8
-
9
- class LSUNBase(Dataset):
10
- def __init__(self,
11
- txt_file,
12
- data_root,
13
- size=None,
14
- interpolation="bicubic",
15
- flip_p=0.5
16
- ):
17
- self.data_paths = txt_file
18
- self.data_root = data_root
19
- with open(self.data_paths, "r") as f:
20
- self.image_paths = f.read().splitlines()
21
- self._length = len(self.image_paths)
22
- self.labels = {
23
- "relative_file_path_": [l for l in self.image_paths],
24
- "file_path_": [os.path.join(self.data_root, l)
25
- for l in self.image_paths],
26
- }
27
-
28
- self.size = size
29
- self.interpolation = {"linear": PIL.Image.LINEAR,
30
- "bilinear": PIL.Image.BILINEAR,
31
- "bicubic": PIL.Image.BICUBIC,
32
- "lanczos": PIL.Image.LANCZOS,
33
- }[interpolation]
34
- self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
-
36
- def __len__(self):
37
- return self._length
38
-
39
- def __getitem__(self, i):
40
- example = dict((k, self.labels[k][i]) for k in self.labels)
41
- image = Image.open(example["file_path_"])
42
- if not image.mode == "RGB":
43
- image = image.convert("RGB")
44
-
45
- # default to score-sde preprocessing
46
- img = np.array(image).astype(np.uint8)
47
- crop = min(img.shape[0], img.shape[1])
48
- h, w, = img.shape[0], img.shape[1]
49
- img = img[(h - crop) // 2:(h + crop) // 2,
50
- (w - crop) // 2:(w + crop) // 2]
51
-
52
- image = Image.fromarray(img)
53
- if self.size is not None:
54
- image = image.resize((self.size, self.size), resample=self.interpolation)
55
-
56
- image = self.flip(image)
57
- image = np.array(image).astype(np.uint8)
58
- example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
- return example
60
-
61
-
62
- class LSUNChurchesTrain(LSUNBase):
63
- def __init__(self, **kwargs):
64
- super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
-
66
-
67
- class LSUNChurchesValidation(LSUNBase):
68
- def __init__(self, flip_p=0., **kwargs):
69
- super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
- flip_p=flip_p, **kwargs)
71
-
72
-
73
- class LSUNBedroomsTrain(LSUNBase):
74
- def __init__(self, **kwargs):
75
- super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
-
77
-
78
- class LSUNBedroomsValidation(LSUNBase):
79
- def __init__(self, flip_p=0.0, **kwargs):
80
- super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
- flip_p=flip_p, **kwargs)
82
-
83
-
84
- class LSUNCatsTrain(LSUNBase):
85
- def __init__(self, **kwargs):
86
- super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
-
88
-
89
- class LSUNCatsValidation(LSUNBase):
90
- def __init__(self, flip_p=0., **kwargs):
91
- super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
- flip_p=flip_p, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/data/simple.py DELETED
@@ -1,180 +0,0 @@
1
- from typing import Dict
2
- import numpy as np
3
- from omegaconf import DictConfig, ListConfig
4
- import torch
5
- from torch.utils.data import Dataset
6
- from pathlib import Path
7
- import json
8
- from PIL import Image
9
- from torchvision import transforms
10
- from einops import rearrange
11
- from ldm.util import instantiate_from_config
12
- from datasets import load_dataset
13
-
14
- def make_multi_folder_data(paths, caption_files=None, **kwargs):
15
- """Make a concat dataset from multiple folders
16
- Don't suport captions yet
17
-
18
- If paths is a list, that's ok, if it's a Dict interpret it as:
19
- k=folder v=n_times to repeat that
20
- """
21
- list_of_paths = []
22
- if isinstance(paths, (Dict, DictConfig)):
23
- assert caption_files is None, \
24
- "Caption files not yet supported for repeats"
25
- for folder_path, repeats in paths.items():
26
- list_of_paths.extend([folder_path]*repeats)
27
- paths = list_of_paths
28
-
29
- if caption_files is not None:
30
- datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
31
- else:
32
- datasets = [FolderData(p, **kwargs) for p in paths]
33
- return torch.utils.data.ConcatDataset(datasets)
34
-
35
- class FolderData(Dataset):
36
- def __init__(self,
37
- root_dir,
38
- caption_file=None,
39
- image_transforms=[],
40
- ext="jpg",
41
- default_caption="",
42
- postprocess=None,
43
- return_paths=False,
44
- ) -> None:
45
- """Create a dataset from a folder of images.
46
- If you pass in a root directory it will be searched for images
47
- ending in ext (ext can be a list)
48
- """
49
- self.root_dir = Path(root_dir)
50
- self.default_caption = default_caption
51
- self.return_paths = return_paths
52
- if isinstance(postprocess, DictConfig):
53
- postprocess = instantiate_from_config(postprocess)
54
- self.postprocess = postprocess
55
- if caption_file is not None:
56
- with open(caption_file, "rt") as f:
57
- ext = Path(caption_file).suffix.lower()
58
- if ext == ".json":
59
- captions = json.load(f)
60
- elif ext == ".jsonl":
61
- lines = f.readlines()
62
- lines = [json.loads(x) for x in lines]
63
- captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
64
- else:
65
- raise ValueError(f"Unrecognised format: {ext}")
66
- self.captions = captions
67
- else:
68
- self.captions = None
69
-
70
- if not isinstance(ext, (tuple, list, ListConfig)):
71
- ext = [ext]
72
-
73
- # Only used if there is no caption file
74
- self.paths = []
75
- for e in ext:
76
- self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
77
- if isinstance(image_transforms, ListConfig):
78
- image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
79
- image_transforms.extend([transforms.ToTensor(),
80
- transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
81
- image_transforms = transforms.Compose(image_transforms)
82
- self.tform = image_transforms
83
-
84
-
85
- def __len__(self):
86
- if self.captions is not None:
87
- return len(self.captions.keys())
88
- else:
89
- return len(self.paths)
90
-
91
- def __getitem__(self, index):
92
- data = {}
93
- if self.captions is not None:
94
- chosen = list(self.captions.keys())[index]
95
- caption = self.captions.get(chosen, None)
96
- if caption is None:
97
- caption = self.default_caption
98
- filename = self.root_dir/chosen
99
- else:
100
- filename = self.paths[index]
101
-
102
- if self.return_paths:
103
- data["path"] = str(filename)
104
-
105
- im = Image.open(filename)
106
- im = self.process_im(im)
107
- data["image"] = im
108
-
109
- if self.captions is not None:
110
- data["txt"] = caption
111
- else:
112
- data["txt"] = self.default_caption
113
-
114
- if self.postprocess is not None:
115
- data = self.postprocess(data)
116
-
117
- return data
118
-
119
- def process_im(self, im):
120
- im = im.convert("RGB")
121
- return self.tform(im)
122
-
123
- def hf_dataset(
124
- name,
125
- image_transforms=[],
126
- image_column="image",
127
- text_column="text",
128
- split='train',
129
- image_key='image',
130
- caption_key='txt',
131
- ):
132
- """Make huggingface dataset with appropriate list of transforms applied
133
- """
134
- ds = load_dataset(name, split=split)
135
- image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
136
- image_transforms.extend([transforms.ToTensor(),
137
- transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
138
- tform = transforms.Compose(image_transforms)
139
-
140
- assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
141
- assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
142
-
143
- def pre_process(examples):
144
- processed = {}
145
- processed[image_key] = [tform(im) for im in examples[image_column]]
146
- processed[caption_key] = examples[text_column]
147
- return processed
148
-
149
- ds.set_transform(pre_process)
150
- return ds
151
-
152
- class TextOnly(Dataset):
153
- def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
154
- """Returns only captions with dummy images"""
155
- self.output_size = output_size
156
- self.image_key = image_key
157
- self.caption_key = caption_key
158
- if isinstance(captions, Path):
159
- self.captions = self._load_caption_file(captions)
160
- else:
161
- self.captions = captions
162
-
163
- if n_gpus > 1:
164
- # hack to make sure that all the captions appear on each gpu
165
- repeated = [n_gpus*[x] for x in self.captions]
166
- self.captions = []
167
- [self.captions.extend(x) for x in repeated]
168
-
169
- def __len__(self):
170
- return len(self.captions)
171
-
172
- def __getitem__(self, index):
173
- dummy_im = torch.zeros(3, self.output_size, self.output_size)
174
- dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
175
- return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
176
-
177
- def _load_caption_file(self, filename):
178
- with open(filename, 'rt') as f:
179
- captions = f.readlines()
180
- return [x.strip('\n') for x in captions]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/extras.py DELETED
@@ -1,77 +0,0 @@
1
- from pathlib import Path
2
- from omegaconf import OmegaConf
3
- import torch
4
- from ldm.util import instantiate_from_config
5
- import logging
6
- from contextlib import contextmanager
7
-
8
- from contextlib import contextmanager
9
- import logging
10
-
11
- @contextmanager
12
- def all_logging_disabled(highest_level=logging.CRITICAL):
13
- """
14
- A context manager that will prevent any logging messages
15
- triggered during the body from being processed.
16
-
17
- :param highest_level: the maximum logging level in use.
18
- This would only need to be changed if a custom level greater than CRITICAL
19
- is defined.
20
-
21
- https://gist.github.com/simon-weber/7853144
22
- """
23
- # two kind-of hacks here:
24
- # * can't get the highest logging level in effect => delegate to the user
25
- # * can't get the current module-level override => use an undocumented
26
- # (but non-private!) interface
27
-
28
- previous_level = logging.root.manager.disable
29
-
30
- logging.disable(highest_level)
31
-
32
- try:
33
- yield
34
- finally:
35
- logging.disable(previous_level)
36
-
37
- def load_training_dir(train_dir, device, epoch="last"):
38
- """Load a checkpoint and config from training directory"""
39
- train_dir = Path(train_dir)
40
- ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
41
- assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
42
- config = list(train_dir.rglob(f"*-project.yaml"))
43
- assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
44
- if len(config) > 1:
45
- print(f"found {len(config)} matching config files")
46
- config = sorted(config)[-1]
47
- print(f"selecting {config}")
48
- else:
49
- config = config[0]
50
-
51
-
52
- config = OmegaConf.load(config)
53
- return load_model_from_config(config, ckpt[0], device)
54
-
55
- def load_model_from_config(config, ckpt, device="cpu", verbose=False):
56
- """Loads a model from config and a ckpt
57
- if config is a path will use omegaconf to load
58
- """
59
- if isinstance(config, (str, Path)):
60
- config = OmegaConf.load(config)
61
-
62
- with all_logging_disabled():
63
- print(f"Loading model from {ckpt}")
64
- pl_sd = torch.load(ckpt, map_location="cpu")
65
- global_step = pl_sd["global_step"]
66
- sd = pl_sd["state_dict"]
67
- model = instantiate_from_config(config.model)
68
- m, u = model.load_state_dict(sd, strict=False)
69
- if len(m) > 0 and verbose:
70
- print("missing keys:")
71
- print(m)
72
- if len(u) > 0 and verbose:
73
- print("unexpected keys:")
74
- model.to(device)
75
- model.eval()
76
- model.cond_stage_model.device = device
77
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/guidance.py DELETED
@@ -1,96 +0,0 @@
1
- from typing import List, Tuple
2
- from scipy import interpolate
3
- import numpy as np
4
- import torch
5
- import matplotlib.pyplot as plt
6
- from IPython.display import clear_output
7
- import abc
8
-
9
-
10
- class GuideModel(torch.nn.Module, abc.ABC):
11
- def __init__(self) -> None:
12
- super().__init__()
13
-
14
- @abc.abstractmethod
15
- def preprocess(self, x_img):
16
- pass
17
-
18
- @abc.abstractmethod
19
- def compute_loss(self, inp):
20
- pass
21
-
22
-
23
- class Guider(torch.nn.Module):
24
- def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
25
- """Apply classifier guidance
26
-
27
- Specify a guidance scale as either a scalar
28
- Or a schedule as a list of tuples t = 0->1 and scale, e.g.
29
- [(0, 10), (0.5, 20), (1, 50)]
30
- """
31
- super().__init__()
32
- self.sampler = sampler
33
- self.index = 0
34
- self.show = verbose
35
- self.guide_model = guide_model
36
- self.history = []
37
-
38
- if isinstance(scale, (Tuple, List)):
39
- times = np.array([x[0] for x in scale])
40
- values = np.array([x[1] for x in scale])
41
- self.scale_schedule = {"times": times, "values": values}
42
- else:
43
- self.scale_schedule = float(scale)
44
-
45
- self.ddim_timesteps = sampler.ddim_timesteps
46
- self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
47
-
48
-
49
- def get_scales(self):
50
- if isinstance(self.scale_schedule, float):
51
- return len(self.ddim_timesteps)*[self.scale_schedule]
52
-
53
- interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
54
- fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
55
- return interpolater(fractional_steps)
56
-
57
- def modify_score(self, model, e_t, x, t, c):
58
-
59
- # TODO look up index by t
60
- scale = self.get_scales()[self.index]
61
-
62
- if (scale == 0):
63
- return e_t
64
-
65
- sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
66
- with torch.enable_grad():
67
- x_in = x.detach().requires_grad_(True)
68
- pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
69
- x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
70
-
71
- inp = self.guide_model.preprocess(x_img)
72
- loss = self.guide_model.compute_loss(inp)
73
- grads = torch.autograd.grad(loss.sum(), x_in)[0]
74
- correction = grads * scale
75
-
76
- if self.show:
77
- clear_output(wait=True)
78
- print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
79
- self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
80
- plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
81
- plt.axis('off')
82
- plt.show()
83
- plt.imshow(correction[0][0].detach().cpu())
84
- plt.axis('off')
85
- plt.show()
86
-
87
-
88
- e_t_mod = e_t - sqrt_1ma*correction
89
- if self.show:
90
- fig, axs = plt.subplots(1, 3)
91
- axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
92
- axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
93
- axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
94
- plt.show()
95
- self.index += 1
96
- return e_t_mod
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/lr_scheduler.py DELETED
@@ -1,98 +0,0 @@
1
- import numpy as np
2
-
3
-
4
- class LambdaWarmUpCosineScheduler:
5
- """
6
- note: use with a base_lr of 1.0
7
- """
8
- def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
- self.lr_warm_up_steps = warm_up_steps
10
- self.lr_start = lr_start
11
- self.lr_min = lr_min
12
- self.lr_max = lr_max
13
- self.lr_max_decay_steps = max_decay_steps
14
- self.last_lr = 0.
15
- self.verbosity_interval = verbosity_interval
16
-
17
- def schedule(self, n, **kwargs):
18
- if self.verbosity_interval > 0:
19
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
- if n < self.lr_warm_up_steps:
21
- lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
- self.last_lr = lr
23
- return lr
24
- else:
25
- t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
- t = min(t, 1.0)
27
- lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
- 1 + np.cos(t * np.pi))
29
- self.last_lr = lr
30
- return lr
31
-
32
- def __call__(self, n, **kwargs):
33
- return self.schedule(n,**kwargs)
34
-
35
-
36
- class LambdaWarmUpCosineScheduler2:
37
- """
38
- supports repeated iterations, configurable via lists
39
- note: use with a base_lr of 1.0.
40
- """
41
- def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
- assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
- self.lr_warm_up_steps = warm_up_steps
44
- self.f_start = f_start
45
- self.f_min = f_min
46
- self.f_max = f_max
47
- self.cycle_lengths = cycle_lengths
48
- self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
- self.last_f = 0.
50
- self.verbosity_interval = verbosity_interval
51
-
52
- def find_in_interval(self, n):
53
- interval = 0
54
- for cl in self.cum_cycles[1:]:
55
- if n <= cl:
56
- return interval
57
- interval += 1
58
-
59
- def schedule(self, n, **kwargs):
60
- cycle = self.find_in_interval(n)
61
- n = n - self.cum_cycles[cycle]
62
- if self.verbosity_interval > 0:
63
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
- f"current cycle {cycle}")
65
- if n < self.lr_warm_up_steps[cycle]:
66
- f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
- self.last_f = f
68
- return f
69
- else:
70
- t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
- t = min(t, 1.0)
72
- f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
- 1 + np.cos(t * np.pi))
74
- self.last_f = f
75
- return f
76
-
77
- def __call__(self, n, **kwargs):
78
- return self.schedule(n, **kwargs)
79
-
80
-
81
- class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
-
83
- def schedule(self, n, **kwargs):
84
- cycle = self.find_in_interval(n)
85
- n = n - self.cum_cycles[cycle]
86
- if self.verbosity_interval > 0:
87
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
- f"current cycle {cycle}")
89
-
90
- if n < self.lr_warm_up_steps[cycle]:
91
- f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
- self.last_f = f
93
- return f
94
- else:
95
- f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
- self.last_f = f
97
- return f
98
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/autoencoder.py DELETED
@@ -1,443 +0,0 @@
1
- import torch
2
- import pytorch_lightning as pl
3
- import torch.nn.functional as F
4
- from contextlib import contextmanager
5
-
6
- from taming.modules.vqvae.quantize import VectorQuantizer
7
-
8
- from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
- from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
-
11
- from ldm.util import instantiate_from_config
12
-
13
-
14
- class VQModel(pl.LightningModule):
15
- def __init__(self,
16
- ddconfig,
17
- lossconfig,
18
- n_embed,
19
- embed_dim,
20
- ckpt_path=None,
21
- ignore_keys=[],
22
- image_key="image",
23
- colorize_nlabels=None,
24
- monitor=None,
25
- batch_resize_range=None,
26
- scheduler_config=None,
27
- lr_g_factor=1.0,
28
- remap=None,
29
- sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
- use_ema=False
31
- ):
32
- super().__init__()
33
- self.embed_dim = embed_dim
34
- self.n_embed = n_embed
35
- self.image_key = image_key
36
- self.encoder = Encoder(**ddconfig)
37
- self.decoder = Decoder(**ddconfig)
38
- self.loss = instantiate_from_config(lossconfig)
39
- self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
- remap=remap,
41
- sane_index_shape=sane_index_shape)
42
- self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
- if colorize_nlabels is not None:
45
- assert type(colorize_nlabels)==int
46
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
- if monitor is not None:
48
- self.monitor = monitor
49
- self.batch_resize_range = batch_resize_range
50
- if self.batch_resize_range is not None:
51
- print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
-
53
- self.use_ema = use_ema
54
- if self.use_ema:
55
- self.model_ema = LitEma(self)
56
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
-
58
- if ckpt_path is not None:
59
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
- self.scheduler_config = scheduler_config
61
- self.lr_g_factor = lr_g_factor
62
-
63
- @contextmanager
64
- def ema_scope(self, context=None):
65
- if self.use_ema:
66
- self.model_ema.store(self.parameters())
67
- self.model_ema.copy_to(self)
68
- if context is not None:
69
- print(f"{context}: Switched to EMA weights")
70
- try:
71
- yield None
72
- finally:
73
- if self.use_ema:
74
- self.model_ema.restore(self.parameters())
75
- if context is not None:
76
- print(f"{context}: Restored training weights")
77
-
78
- def init_from_ckpt(self, path, ignore_keys=list()):
79
- sd = torch.load(path, map_location="cpu")["state_dict"]
80
- keys = list(sd.keys())
81
- for k in keys:
82
- for ik in ignore_keys:
83
- if k.startswith(ik):
84
- print("Deleting key {} from state_dict.".format(k))
85
- del sd[k]
86
- missing, unexpected = self.load_state_dict(sd, strict=False)
87
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
- if len(missing) > 0:
89
- print(f"Missing Keys: {missing}")
90
- print(f"Unexpected Keys: {unexpected}")
91
-
92
- def on_train_batch_end(self, *args, **kwargs):
93
- if self.use_ema:
94
- self.model_ema(self)
95
-
96
- def encode(self, x):
97
- h = self.encoder(x)
98
- h = self.quant_conv(h)
99
- quant, emb_loss, info = self.quantize(h)
100
- return quant, emb_loss, info
101
-
102
- def encode_to_prequant(self, x):
103
- h = self.encoder(x)
104
- h = self.quant_conv(h)
105
- return h
106
-
107
- def decode(self, quant):
108
- quant = self.post_quant_conv(quant)
109
- dec = self.decoder(quant)
110
- return dec
111
-
112
- def decode_code(self, code_b):
113
- quant_b = self.quantize.embed_code(code_b)
114
- dec = self.decode(quant_b)
115
- return dec
116
-
117
- def forward(self, input, return_pred_indices=False):
118
- quant, diff, (_,_,ind) = self.encode(input)
119
- dec = self.decode(quant)
120
- if return_pred_indices:
121
- return dec, diff, ind
122
- return dec, diff
123
-
124
- def get_input(self, batch, k):
125
- x = batch[k]
126
- if len(x.shape) == 3:
127
- x = x[..., None]
128
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
- if self.batch_resize_range is not None:
130
- lower_size = self.batch_resize_range[0]
131
- upper_size = self.batch_resize_range[1]
132
- if self.global_step <= 4:
133
- # do the first few batches with max size to avoid later oom
134
- new_resize = upper_size
135
- else:
136
- new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
- if new_resize != x.shape[2]:
138
- x = F.interpolate(x, size=new_resize, mode="bicubic")
139
- x = x.detach()
140
- return x
141
-
142
- def training_step(self, batch, batch_idx, optimizer_idx):
143
- # https://github.com/pytorch/pytorch/issues/37142
144
- # try not to fool the heuristics
145
- x = self.get_input(batch, self.image_key)
146
- xrec, qloss, ind = self(x, return_pred_indices=True)
147
-
148
- if optimizer_idx == 0:
149
- # autoencode
150
- aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
- last_layer=self.get_last_layer(), split="train",
152
- predicted_indices=ind)
153
-
154
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
- return aeloss
156
-
157
- if optimizer_idx == 1:
158
- # discriminator
159
- discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
- last_layer=self.get_last_layer(), split="train")
161
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
- return discloss
163
-
164
- def validation_step(self, batch, batch_idx):
165
- log_dict = self._validation_step(batch, batch_idx)
166
- with self.ema_scope():
167
- log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
- return log_dict
169
-
170
- def _validation_step(self, batch, batch_idx, suffix=""):
171
- x = self.get_input(batch, self.image_key)
172
- xrec, qloss, ind = self(x, return_pred_indices=True)
173
- aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
- self.global_step,
175
- last_layer=self.get_last_layer(),
176
- split="val"+suffix,
177
- predicted_indices=ind
178
- )
179
-
180
- discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
- self.global_step,
182
- last_layer=self.get_last_layer(),
183
- split="val"+suffix,
184
- predicted_indices=ind
185
- )
186
- rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
- self.log(f"val{suffix}/rec_loss", rec_loss,
188
- prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
- self.log(f"val{suffix}/aeloss", aeloss,
190
- prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
- if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
- del log_dict_ae[f"val{suffix}/rec_loss"]
193
- self.log_dict(log_dict_ae)
194
- self.log_dict(log_dict_disc)
195
- return self.log_dict
196
-
197
- def configure_optimizers(self):
198
- lr_d = self.learning_rate
199
- lr_g = self.lr_g_factor*self.learning_rate
200
- print("lr_d", lr_d)
201
- print("lr_g", lr_g)
202
- opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
203
- list(self.decoder.parameters())+
204
- list(self.quantize.parameters())+
205
- list(self.quant_conv.parameters())+
206
- list(self.post_quant_conv.parameters()),
207
- lr=lr_g, betas=(0.5, 0.9))
208
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
209
- lr=lr_d, betas=(0.5, 0.9))
210
-
211
- if self.scheduler_config is not None:
212
- scheduler = instantiate_from_config(self.scheduler_config)
213
-
214
- print("Setting up LambdaLR scheduler...")
215
- scheduler = [
216
- {
217
- 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
218
- 'interval': 'step',
219
- 'frequency': 1
220
- },
221
- {
222
- 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
223
- 'interval': 'step',
224
- 'frequency': 1
225
- },
226
- ]
227
- return [opt_ae, opt_disc], scheduler
228
- return [opt_ae, opt_disc], []
229
-
230
- def get_last_layer(self):
231
- return self.decoder.conv_out.weight
232
-
233
- def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
234
- log = dict()
235
- x = self.get_input(batch, self.image_key)
236
- x = x.to(self.device)
237
- if only_inputs:
238
- log["inputs"] = x
239
- return log
240
- xrec, _ = self(x)
241
- if x.shape[1] > 3:
242
- # colorize with random projection
243
- assert xrec.shape[1] > 3
244
- x = self.to_rgb(x)
245
- xrec = self.to_rgb(xrec)
246
- log["inputs"] = x
247
- log["reconstructions"] = xrec
248
- if plot_ema:
249
- with self.ema_scope():
250
- xrec_ema, _ = self(x)
251
- if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
252
- log["reconstructions_ema"] = xrec_ema
253
- return log
254
-
255
- def to_rgb(self, x):
256
- assert self.image_key == "segmentation"
257
- if not hasattr(self, "colorize"):
258
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
259
- x = F.conv2d(x, weight=self.colorize)
260
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
261
- return x
262
-
263
-
264
- class VQModelInterface(VQModel):
265
- def __init__(self, embed_dim, *args, **kwargs):
266
- super().__init__(embed_dim=embed_dim, *args, **kwargs)
267
- self.embed_dim = embed_dim
268
-
269
- def encode(self, x):
270
- h = self.encoder(x)
271
- h = self.quant_conv(h)
272
- return h
273
-
274
- def decode(self, h, force_not_quantize=False):
275
- # also go through quantization layer
276
- if not force_not_quantize:
277
- quant, emb_loss, info = self.quantize(h)
278
- else:
279
- quant = h
280
- quant = self.post_quant_conv(quant)
281
- dec = self.decoder(quant)
282
- return dec
283
-
284
-
285
- class AutoencoderKL(pl.LightningModule):
286
- def __init__(self,
287
- ddconfig,
288
- lossconfig,
289
- embed_dim,
290
- ckpt_path=None,
291
- ignore_keys=[],
292
- image_key="image",
293
- colorize_nlabels=None,
294
- monitor=None,
295
- ):
296
- super().__init__()
297
- self.image_key = image_key
298
- self.encoder = Encoder(**ddconfig)
299
- self.decoder = Decoder(**ddconfig)
300
- self.loss = instantiate_from_config(lossconfig)
301
- assert ddconfig["double_z"]
302
- self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
303
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
304
- self.embed_dim = embed_dim
305
- if colorize_nlabels is not None:
306
- assert type(colorize_nlabels)==int
307
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
308
- if monitor is not None:
309
- self.monitor = monitor
310
- if ckpt_path is not None:
311
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
312
-
313
- def init_from_ckpt(self, path, ignore_keys=list()):
314
- sd = torch.load(path, map_location="cpu")["state_dict"]
315
- keys = list(sd.keys())
316
- for k in keys:
317
- for ik in ignore_keys:
318
- if k.startswith(ik):
319
- print("Deleting key {} from state_dict.".format(k))
320
- del sd[k]
321
- self.load_state_dict(sd, strict=False)
322
- print(f"Restored from {path}")
323
-
324
- def encode(self, x):
325
- h = self.encoder(x)
326
- moments = self.quant_conv(h)
327
- posterior = DiagonalGaussianDistribution(moments)
328
- return posterior
329
-
330
- def decode(self, z):
331
- z = self.post_quant_conv(z)
332
- dec = self.decoder(z)
333
- return dec
334
-
335
- def forward(self, input, sample_posterior=True):
336
- posterior = self.encode(input)
337
- if sample_posterior:
338
- z = posterior.sample()
339
- else:
340
- z = posterior.mode()
341
- dec = self.decode(z)
342
- return dec, posterior
343
-
344
- def get_input(self, batch, k):
345
- x = batch[k]
346
- if len(x.shape) == 3:
347
- x = x[..., None]
348
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
349
- return x
350
-
351
- def training_step(self, batch, batch_idx, optimizer_idx):
352
- inputs = self.get_input(batch, self.image_key)
353
- reconstructions, posterior = self(inputs)
354
-
355
- if optimizer_idx == 0:
356
- # train encoder+decoder+logvar
357
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
358
- last_layer=self.get_last_layer(), split="train")
359
- self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
360
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
361
- return aeloss
362
-
363
- if optimizer_idx == 1:
364
- # train the discriminator
365
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
366
- last_layer=self.get_last_layer(), split="train")
367
-
368
- self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
369
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
370
- return discloss
371
-
372
- def validation_step(self, batch, batch_idx):
373
- inputs = self.get_input(batch, self.image_key)
374
- reconstructions, posterior = self(inputs)
375
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
376
- last_layer=self.get_last_layer(), split="val")
377
-
378
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
379
- last_layer=self.get_last_layer(), split="val")
380
-
381
- self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
382
- self.log_dict(log_dict_ae)
383
- self.log_dict(log_dict_disc)
384
- return self.log_dict
385
-
386
- def configure_optimizers(self):
387
- lr = self.learning_rate
388
- opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
389
- list(self.decoder.parameters())+
390
- list(self.quant_conv.parameters())+
391
- list(self.post_quant_conv.parameters()),
392
- lr=lr, betas=(0.5, 0.9))
393
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
394
- lr=lr, betas=(0.5, 0.9))
395
- return [opt_ae, opt_disc], []
396
-
397
- def get_last_layer(self):
398
- return self.decoder.conv_out.weight
399
-
400
- @torch.no_grad()
401
- def log_images(self, batch, only_inputs=False, **kwargs):
402
- log = dict()
403
- x = self.get_input(batch, self.image_key)
404
- x = x.to(self.device)
405
- if not only_inputs:
406
- xrec, posterior = self(x)
407
- if x.shape[1] > 3:
408
- # colorize with random projection
409
- assert xrec.shape[1] > 3
410
- x = self.to_rgb(x)
411
- xrec = self.to_rgb(xrec)
412
- log["samples"] = self.decode(torch.randn_like(posterior.sample()))
413
- log["reconstructions"] = xrec
414
- log["inputs"] = x
415
- return log
416
-
417
- def to_rgb(self, x):
418
- assert self.image_key == "segmentation"
419
- if not hasattr(self, "colorize"):
420
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
421
- x = F.conv2d(x, weight=self.colorize)
422
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
423
- return x
424
-
425
-
426
- class IdentityFirstStage(torch.nn.Module):
427
- def __init__(self, *args, vq_interface=False, **kwargs):
428
- self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
429
- super().__init__()
430
-
431
- def encode(self, x, *args, **kwargs):
432
- return x
433
-
434
- def decode(self, x, *args, **kwargs):
435
- return x
436
-
437
- def quantize(self, x, *args, **kwargs):
438
- if self.vq_interface:
439
- return x, None, [None, None, None]
440
- return x
441
-
442
- def forward(self, x, *args, **kwargs):
443
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/__init__.py DELETED
File without changes
stable_diffusion/ldm/models/diffusion/classifier.py DELETED
@@ -1,267 +0,0 @@
1
- import os
2
- import torch
3
- import pytorch_lightning as pl
4
- from omegaconf import OmegaConf
5
- from torch.nn import functional as F
6
- from torch.optim import AdamW
7
- from torch.optim.lr_scheduler import LambdaLR
8
- from copy import deepcopy
9
- from einops import rearrange
10
- from glob import glob
11
- from natsort import natsorted
12
-
13
- from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
14
- from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
15
-
16
- __models__ = {
17
- 'class_label': EncoderUNetModel,
18
- 'segmentation': UNetModel
19
- }
20
-
21
-
22
- def disabled_train(self, mode=True):
23
- """Overwrite model.train with this function to make sure train/eval mode
24
- does not change anymore."""
25
- return self
26
-
27
-
28
- class NoisyLatentImageClassifier(pl.LightningModule):
29
-
30
- def __init__(self,
31
- diffusion_path,
32
- num_classes,
33
- ckpt_path=None,
34
- pool='attention',
35
- label_key=None,
36
- diffusion_ckpt_path=None,
37
- scheduler_config=None,
38
- weight_decay=1.e-2,
39
- log_steps=10,
40
- monitor='val/loss',
41
- *args,
42
- **kwargs):
43
- super().__init__(*args, **kwargs)
44
- self.num_classes = num_classes
45
- # get latest config of diffusion model
46
- diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
47
- self.diffusion_config = OmegaConf.load(diffusion_config).model
48
- self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
49
- self.load_diffusion()
50
-
51
- self.monitor = monitor
52
- self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
53
- self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
54
- self.log_steps = log_steps
55
-
56
- self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
57
- else self.diffusion_model.cond_stage_key
58
-
59
- assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
60
-
61
- if self.label_key not in __models__:
62
- raise NotImplementedError()
63
-
64
- self.load_classifier(ckpt_path, pool)
65
-
66
- self.scheduler_config = scheduler_config
67
- self.use_scheduler = self.scheduler_config is not None
68
- self.weight_decay = weight_decay
69
-
70
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
71
- sd = torch.load(path, map_location="cpu")
72
- if "state_dict" in list(sd.keys()):
73
- sd = sd["state_dict"]
74
- keys = list(sd.keys())
75
- for k in keys:
76
- for ik in ignore_keys:
77
- if k.startswith(ik):
78
- print("Deleting key {} from state_dict.".format(k))
79
- del sd[k]
80
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
81
- sd, strict=False)
82
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
83
- if len(missing) > 0:
84
- print(f"Missing Keys: {missing}")
85
- if len(unexpected) > 0:
86
- print(f"Unexpected Keys: {unexpected}")
87
-
88
- def load_diffusion(self):
89
- model = instantiate_from_config(self.diffusion_config)
90
- self.diffusion_model = model.eval()
91
- self.diffusion_model.train = disabled_train
92
- for param in self.diffusion_model.parameters():
93
- param.requires_grad = False
94
-
95
- def load_classifier(self, ckpt_path, pool):
96
- model_config = deepcopy(self.diffusion_config.params.unet_config.params)
97
- model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
98
- model_config.out_channels = self.num_classes
99
- if self.label_key == 'class_label':
100
- model_config.pool = pool
101
-
102
- self.model = __models__[self.label_key](**model_config)
103
- if ckpt_path is not None:
104
- print('#####################################################################')
105
- print(f'load from ckpt "{ckpt_path}"')
106
- print('#####################################################################')
107
- self.init_from_ckpt(ckpt_path)
108
-
109
- @torch.no_grad()
110
- def get_x_noisy(self, x, t, noise=None):
111
- noise = default(noise, lambda: torch.randn_like(x))
112
- continuous_sqrt_alpha_cumprod = None
113
- if self.diffusion_model.use_continuous_noise:
114
- continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
115
- # todo: make sure t+1 is correct here
116
-
117
- return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
118
- continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
119
-
120
- def forward(self, x_noisy, t, *args, **kwargs):
121
- return self.model(x_noisy, t)
122
-
123
- @torch.no_grad()
124
- def get_input(self, batch, k):
125
- x = batch[k]
126
- if len(x.shape) == 3:
127
- x = x[..., None]
128
- x = rearrange(x, 'b h w c -> b c h w')
129
- x = x.to(memory_format=torch.contiguous_format).float()
130
- return x
131
-
132
- @torch.no_grad()
133
- def get_conditioning(self, batch, k=None):
134
- if k is None:
135
- k = self.label_key
136
- assert k is not None, 'Needs to provide label key'
137
-
138
- targets = batch[k].to(self.device)
139
-
140
- if self.label_key == 'segmentation':
141
- targets = rearrange(targets, 'b h w c -> b c h w')
142
- for down in range(self.numd):
143
- h, w = targets.shape[-2:]
144
- targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
145
-
146
- # targets = rearrange(targets,'b c h w -> b h w c')
147
-
148
- return targets
149
-
150
- def compute_top_k(self, logits, labels, k, reduction="mean"):
151
- _, top_ks = torch.topk(logits, k, dim=1)
152
- if reduction == "mean":
153
- return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
154
- elif reduction == "none":
155
- return (top_ks == labels[:, None]).float().sum(dim=-1)
156
-
157
- def on_train_epoch_start(self):
158
- # save some memory
159
- self.diffusion_model.model.to('cpu')
160
-
161
- @torch.no_grad()
162
- def write_logs(self, loss, logits, targets):
163
- log_prefix = 'train' if self.training else 'val'
164
- log = {}
165
- log[f"{log_prefix}/loss"] = loss.mean()
166
- log[f"{log_prefix}/acc@1"] = self.compute_top_k(
167
- logits, targets, k=1, reduction="mean"
168
- )
169
- log[f"{log_prefix}/acc@5"] = self.compute_top_k(
170
- logits, targets, k=5, reduction="mean"
171
- )
172
-
173
- self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
174
- self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
175
- self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
176
- lr = self.optimizers().param_groups[0]['lr']
177
- self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
178
-
179
- def shared_step(self, batch, t=None):
180
- x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
181
- targets = self.get_conditioning(batch)
182
- if targets.dim() == 4:
183
- targets = targets.argmax(dim=1)
184
- if t is None:
185
- t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
186
- else:
187
- t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
188
- x_noisy = self.get_x_noisy(x, t)
189
- logits = self(x_noisy, t)
190
-
191
- loss = F.cross_entropy(logits, targets, reduction='none')
192
-
193
- self.write_logs(loss.detach(), logits.detach(), targets.detach())
194
-
195
- loss = loss.mean()
196
- return loss, logits, x_noisy, targets
197
-
198
- def training_step(self, batch, batch_idx):
199
- loss, *_ = self.shared_step(batch)
200
- return loss
201
-
202
- def reset_noise_accs(self):
203
- self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
204
- range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
205
-
206
- def on_validation_start(self):
207
- self.reset_noise_accs()
208
-
209
- @torch.no_grad()
210
- def validation_step(self, batch, batch_idx):
211
- loss, *_ = self.shared_step(batch)
212
-
213
- for t in self.noisy_acc:
214
- _, logits, _, targets = self.shared_step(batch, t)
215
- self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
216
- self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
217
-
218
- return loss
219
-
220
- def configure_optimizers(self):
221
- optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
222
-
223
- if self.use_scheduler:
224
- scheduler = instantiate_from_config(self.scheduler_config)
225
-
226
- print("Setting up LambdaLR scheduler...")
227
- scheduler = [
228
- {
229
- 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
230
- 'interval': 'step',
231
- 'frequency': 1
232
- }]
233
- return [optimizer], scheduler
234
-
235
- return optimizer
236
-
237
- @torch.no_grad()
238
- def log_images(self, batch, N=8, *args, **kwargs):
239
- log = dict()
240
- x = self.get_input(batch, self.diffusion_model.first_stage_key)
241
- log['inputs'] = x
242
-
243
- y = self.get_conditioning(batch)
244
-
245
- if self.label_key == 'class_label':
246
- y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
247
- log['labels'] = y
248
-
249
- if ismap(y):
250
- log['labels'] = self.diffusion_model.to_rgb(y)
251
-
252
- for step in range(self.log_steps):
253
- current_time = step * self.log_time_interval
254
-
255
- _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
256
-
257
- log[f'inputs@t{current_time}'] = x_noisy
258
-
259
- pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
260
- pred = rearrange(pred, 'b h w c -> b c h w')
261
-
262
- log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
263
-
264
- for key in log:
265
- log[key] = log[key][:N]
266
-
267
- return log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/ddim.py DELETED
@@ -1,344 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
- import numpy as np
5
- from tqdm import tqdm
6
- from functools import partial
7
- from einops import rearrange
8
-
9
- from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
10
- from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
11
-
12
-
13
- class DDIMSampler(object):
14
- def __init__(self, model, schedule="linear", **kwargs):
15
- super().__init__()
16
- self.model = model
17
- self.ddpm_num_timesteps = model.num_timesteps
18
- self.schedule = schedule
19
-
20
- def to(self, device):
21
- """Same as to in torch module
22
- Don't really underestand why this isn't a module in the first place"""
23
- for k, v in self.__dict__.items():
24
- if isinstance(v, torch.Tensor):
25
- new_v = getattr(self, k).to(device)
26
- setattr(self, k, new_v)
27
-
28
-
29
- def register_buffer(self, name, attr):
30
- if type(attr) == torch.Tensor:
31
- if attr.device != torch.device("cuda"):
32
- attr = attr.to(torch.device("cuda"))
33
- setattr(self, name, attr)
34
-
35
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
36
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
37
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
38
- alphas_cumprod = self.model.alphas_cumprod
39
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
40
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
41
-
42
- self.register_buffer('betas', to_torch(self.model.betas))
43
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
44
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
45
-
46
- # calculations for diffusion q(x_t | x_{t-1}) and others
47
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
48
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
49
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
50
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
51
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
52
-
53
- # ddim sampling parameters
54
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
55
- ddim_timesteps=self.ddim_timesteps,
56
- eta=ddim_eta,verbose=verbose)
57
- self.register_buffer('ddim_sigmas', ddim_sigmas)
58
- self.register_buffer('ddim_alphas', ddim_alphas)
59
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
60
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
61
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
62
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
63
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
64
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
65
-
66
-
67
- def sample(self,
68
- S,
69
- batch_size,
70
- shape,
71
- conditioning=None,
72
- callback=None,
73
- normals_sequence=None,
74
- img_callback=None,
75
- quantize_x0=False,
76
- eta=0.,
77
- mask=None,
78
- x0=None,
79
- temperature=1.,
80
- noise_dropout=0.,
81
- score_corrector=None,
82
- corrector_kwargs=None,
83
- verbose=True,
84
- x_T=None,
85
- t_start = -1,
86
- log_every_t=100,
87
- unconditional_guidance_scale=1.,
88
- unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
89
- dynamic_threshold=None,
90
- till_T = None,
91
- verbose_iter = False,
92
- **kwargs
93
- ):
94
- if conditioning is not None:
95
- if isinstance(conditioning, dict):
96
- ctmp = conditioning[list(conditioning.keys())[0]]
97
- while isinstance(ctmp, list): ctmp = ctmp[0]
98
- cbs = ctmp.shape[0]
99
- if cbs != batch_size:
100
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
101
-
102
- else:
103
- if conditioning.shape[0] != batch_size:
104
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
105
-
106
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
107
- # sampling
108
- C, H, W = shape
109
- size = (batch_size, C, H, W)
110
- if verbose_iter:
111
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
112
-
113
- samples, intermediates = self.ddim_sampling(conditioning, size,
114
- callback=callback,
115
- img_callback=img_callback,
116
- quantize_denoised=quantize_x0,
117
- mask=mask, x0=x0,
118
- ddim_use_original_steps=False,
119
- noise_dropout=noise_dropout,
120
- temperature=temperature,
121
- score_corrector=score_corrector,
122
- corrector_kwargs=corrector_kwargs,
123
- x_T=x_T,
124
- log_every_t=log_every_t,
125
- unconditional_guidance_scale=unconditional_guidance_scale,
126
- unconditional_conditioning=unconditional_conditioning,
127
- dynamic_threshold=dynamic_threshold,
128
- till_T = till_T,
129
- verbose_iter=verbose_iter,
130
- t_start=t_start
131
- )
132
- return samples, intermediates
133
-
134
-
135
- def ddim_sampling(self, cond, shape,
136
- x_T=None, ddim_use_original_steps=False,
137
- callback=None, timesteps=None, quantize_denoised=False,
138
- mask=None, x0=None, img_callback=None, log_every_t=100,
139
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
140
- unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
141
- t_start=-1, till_T=None, verbose_iter=True):
142
- device = self.model.betas.device
143
- b = shape[0]
144
- if x_T is None:
145
- img = torch.randn(shape, device=device)
146
- else:
147
- img = x_T
148
-
149
- if timesteps is None:
150
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
151
- elif timesteps is not None and not ddim_use_original_steps:
152
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
153
- timesteps = self.ddim_timesteps[:subset_end]
154
-
155
- timesteps = timesteps[:t_start]
156
-
157
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
158
- time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
159
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
160
-
161
- if verbose_iter:
162
- print(f"Running DDIM Sampling with {total_steps} timesteps")
163
- iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
164
- else:
165
- iterator = time_range
166
- if till_T is not None:
167
- till = till_T
168
- else:
169
- till = 0
170
- for i, step in enumerate(iterator):
171
- index = total_steps - i - 1
172
- ts = torch.full((b,), step, device=device, dtype=torch.long)
173
-
174
- if mask is not None:
175
- assert x0 is not None
176
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
177
- img = img_orig * mask + (1. - mask) * img
178
-
179
- outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
180
- quantize_denoised=quantize_denoised, temperature=temperature,
181
- noise_dropout=noise_dropout, score_corrector=score_corrector,
182
- corrector_kwargs=corrector_kwargs,
183
- unconditional_guidance_scale=unconditional_guidance_scale,
184
- unconditional_conditioning=unconditional_conditioning,
185
- dynamic_threshold=dynamic_threshold)
186
- img, pred_x0 = outs
187
- if callback:
188
- img = callback(i, img, pred_x0)
189
- if img_callback: img_callback(pred_x0, i)
190
-
191
- if index % log_every_t == 0 or index == total_steps - 1:
192
- intermediates['x_inter'].append(img)
193
- intermediates['pred_x0'].append(pred_x0)
194
- if index+1 == till:
195
- break
196
- return img, intermediates
197
-
198
-
199
- def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
200
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
201
- unconditional_guidance_scale=1., unconditional_conditioning=None,
202
- dynamic_threshold=None):
203
- b, *_, device = *x.shape, x.device
204
-
205
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
206
- e_t = self.model.apply_model(x, t, c)
207
- else:
208
- x_in = torch.cat([x] * 2)
209
- t_in = torch.cat([t] * 2)
210
- if isinstance(c, dict):
211
- assert isinstance(unconditional_conditioning, dict)
212
- # print(f'C: {c}')
213
- c_in = dict()
214
- for k in c:
215
- if isinstance(c[k], list):
216
- c_in[k] = [torch.cat([
217
- unconditional_conditioning[k][i],
218
- c[k][i]]) for i in range(len(c[k]))]
219
- else:
220
- c_in[k] = torch.cat([
221
- unconditional_conditioning[k],
222
- c[k]])
223
- else:
224
- c_in = torch.cat([unconditional_conditioning, c])
225
- # print(f'C: {c.shape}')
226
- # print(f'C_uncond: {unconditional_conditioning.shape}')
227
- # print(f'C_in: {c_in}')
228
- # print(f'Input shape before model: {x_in.shape} {t_in.shape}')
229
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
230
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
231
-
232
- if score_corrector is not None:
233
- assert self.model.parameterization == "eps"
234
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
235
- # print(f'Final shape after model: {x.shape} {e_t.shape}')
236
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
237
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
238
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
239
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
240
- # select parameters corresponding to the currently considered timestep
241
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
242
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
243
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
244
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
245
-
246
- # current prediction for x_0
247
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
248
- if quantize_denoised:
249
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
250
-
251
- if dynamic_threshold is not None:
252
- pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
253
-
254
- # direction pointing to x_t
255
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
256
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
257
- if noise_dropout > 0.:
258
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
259
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
260
-
261
- return x_prev, pred_x0
262
-
263
- @torch.no_grad()
264
- def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
265
- unconditional_guidance_scale=1.0, unconditional_conditioning=None):
266
- num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
267
-
268
- assert t_enc <= num_reference_steps
269
- num_steps = t_enc
270
-
271
- if use_original_steps:
272
- alphas_next = self.alphas_cumprod[:num_steps]
273
- alphas = self.alphas_cumprod_prev[:num_steps]
274
- else:
275
- alphas_next = self.ddim_alphas[:num_steps]
276
- alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
277
-
278
- x_next = x0
279
- intermediates = []
280
- inter_steps = []
281
- for i in tqdm(range(num_steps), desc='Encoding Image'):
282
- t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
283
- if unconditional_guidance_scale == 1.:
284
- noise_pred = self.model.apply_model(x_next, t, c)
285
- else:
286
- assert unconditional_conditioning is not None
287
- e_t_uncond, noise_pred = torch.chunk(
288
- self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
289
- torch.cat((unconditional_conditioning, c))), 2)
290
- noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
291
-
292
- xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
293
- weighted_noise_pred = alphas_next[i].sqrt() * (
294
- (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
295
- x_next = xt_weighted + weighted_noise_pred
296
- if return_intermediates and i % (
297
- num_steps // return_intermediates) == 0 and i < num_steps - 1:
298
- intermediates.append(x_next)
299
- inter_steps.append(i)
300
- elif return_intermediates and i >= num_steps - 2:
301
- intermediates.append(x_next)
302
- inter_steps.append(i)
303
-
304
- out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
305
- if return_intermediates:
306
- out.update({'intermediates': intermediates})
307
- return x_next, out
308
-
309
- @torch.no_grad()
310
- def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
311
- # fast, but does not allow for exact reconstruction
312
- # t serves as an index to gather the correct alphas
313
- if use_original_steps:
314
- sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
315
- sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
316
- else:
317
- sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
318
- sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
319
-
320
- if noise is None:
321
- noise = torch.randn_like(x0)
322
- return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
323
- extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
324
-
325
- @torch.no_grad()
326
- def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
327
- use_original_steps=False):
328
-
329
- timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
330
- timesteps = timesteps[:t_start]
331
-
332
- time_range = np.flip(timesteps)
333
- total_steps = timesteps.shape[0]
334
- print(f"Running DDIM Sampling with {total_steps} timesteps")
335
-
336
- iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
337
- x_dec = x_latent
338
- for i, step in enumerate(iterator):
339
- index = total_steps - i - 1
340
- ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
341
- x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
342
- unconditional_guidance_scale=unconditional_guidance_scale,
343
- unconditional_conditioning=unconditional_conditioning)
344
- return x_dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/ddpm.py DELETED
@@ -1,1934 +0,0 @@
1
- """
2
- wild mixture of
3
- https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
- https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
- https://github.com/CompVis/taming-transformers
6
- -- merci
7
- """
8
-
9
- import torch
10
- import torch.nn as nn
11
- import numpy as np
12
- import pytorch_lightning as pl
13
- from torch.optim.lr_scheduler import LambdaLR
14
- from einops import rearrange, repeat
15
- from contextlib import contextmanager, nullcontext
16
- from functools import partial
17
- import itertools
18
- from tqdm import tqdm
19
- from torchvision.utils import make_grid
20
- from pytorch_lightning.utilities.distributed import rank_zero_only
21
- from omegaconf import ListConfig
22
-
23
- from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
- from ldm.modules.ema import LitEma
25
- from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
- from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
27
- from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
- from ldm.models.diffusion.ddim import DDIMSampler
29
- from ldm.modules.attention import CrossAttention
30
-
31
-
32
- __conditioning_keys__ = {'concat': 'c_concat',
33
- 'crossattn': 'c_crossattn',
34
- 'adm': 'y'}
35
-
36
-
37
- def disabled_train(self, mode=True):
38
- """Overwrite model.train with this function to make sure train/eval mode
39
- does not change anymore."""
40
- return self
41
-
42
-
43
- def uniform_on_device(r1, r2, shape, device):
44
- return (r1 - r2) * torch.rand(*shape, device=device) + r2
45
-
46
-
47
- class DDPM(pl.LightningModule):
48
- # classic DDPM with Gaussian diffusion, in image space
49
- def __init__(self,
50
- unet_config,
51
- timesteps=1000,
52
- beta_schedule="linear",
53
- loss_type="l2",
54
- ckpt_path=None,
55
- ignore_keys=[],
56
- load_only_unet=False,
57
- monitor="val/loss",
58
- use_ema=True,
59
- first_stage_key="image",
60
- image_size=256,
61
- channels=3,
62
- log_every_t=100,
63
- clip_denoised=True,
64
- linear_start=1e-4,
65
- linear_end=2e-2,
66
- cosine_s=8e-3,
67
- given_betas=None,
68
- original_elbo_weight=0.,
69
- v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
70
- l_simple_weight=1.,
71
- conditioning_key=None,
72
- parameterization="eps", # all assuming fixed variance schedules
73
- scheduler_config=None,
74
- use_positional_encodings=False,
75
- learn_logvar=False,
76
- logvar_init=0.,
77
- make_it_fit=False,
78
- ucg_training=None,
79
- ):
80
- super().__init__()
81
- assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
82
- self.parameterization = parameterization
83
- print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
84
- self.cond_stage_model = None
85
- self.clip_denoised = clip_denoised
86
- self.log_every_t = log_every_t
87
- self.first_stage_key = first_stage_key
88
- self.image_size = image_size # try conv?
89
- self.channels = channels
90
- self.use_positional_encodings = use_positional_encodings
91
- self.model = DiffusionWrapper(unet_config, conditioning_key)
92
- count_params(self.model, verbose=True)
93
- self.use_ema = use_ema
94
- if self.use_ema:
95
- self.model_ema = LitEma(self.model)
96
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
97
-
98
- self.use_scheduler = scheduler_config is not None
99
- if self.use_scheduler:
100
- self.scheduler_config = scheduler_config
101
-
102
- self.v_posterior = v_posterior
103
- self.original_elbo_weight = original_elbo_weight
104
- self.l_simple_weight = l_simple_weight
105
-
106
- if monitor is not None:
107
- self.monitor = monitor
108
- self.make_it_fit = make_it_fit
109
- if ckpt_path is not None:
110
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
111
-
112
- self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
113
- linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
114
-
115
- self.loss_type = loss_type
116
-
117
- self.learn_logvar = learn_logvar
118
- self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
119
- if self.learn_logvar:
120
- self.logvar = nn.Parameter(self.logvar, requires_grad=True)
121
-
122
- self.ucg_training = ucg_training or dict()
123
- if self.ucg_training:
124
- self.ucg_prng = np.random.RandomState()
125
-
126
- def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
127
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
128
- if exists(given_betas):
129
- betas = given_betas
130
- else:
131
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
132
- cosine_s=cosine_s)
133
- alphas = 1. - betas
134
- alphas_cumprod = np.cumprod(alphas, axis=0)
135
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
136
-
137
- timesteps, = betas.shape
138
- self.num_timesteps = int(timesteps)
139
- self.linear_start = linear_start
140
- self.linear_end = linear_end
141
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
142
-
143
- to_torch = partial(torch.tensor, dtype=torch.float32)
144
-
145
- self.register_buffer('betas', to_torch(betas))
146
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
147
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
148
-
149
- # calculations for diffusion q(x_t | x_{t-1}) and others
150
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
151
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
152
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
153
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
154
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
155
-
156
- # calculations for posterior q(x_{t-1} | x_t, x_0)
157
- posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
158
- 1. - alphas_cumprod) + self.v_posterior * betas
159
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
160
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
161
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
162
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
163
- self.register_buffer('posterior_mean_coef1', to_torch(
164
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
165
- self.register_buffer('posterior_mean_coef2', to_torch(
166
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
167
-
168
- if self.parameterization == "eps":
169
- lvlb_weights = self.betas ** 2 / (
170
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
171
- elif self.parameterization == "x0":
172
- lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
173
- else:
174
- raise NotImplementedError("mu not supported")
175
- # TODO how to choose this term
176
- lvlb_weights[0] = lvlb_weights[1]
177
- self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
178
- assert not torch.isnan(self.lvlb_weights).all()
179
-
180
- @contextmanager
181
- def ema_scope(self, context=None):
182
- if self.use_ema:
183
- self.model_ema.store(self.model.parameters())
184
- self.model_ema.copy_to(self.model)
185
- if context is not None:
186
- print(f"{context}: Switched to EMA weights")
187
- try:
188
- yield None
189
- finally:
190
- if self.use_ema:
191
- self.model_ema.restore(self.model.parameters())
192
- if context is not None:
193
- print(f"{context}: Restored training weights")
194
-
195
- @torch.no_grad()
196
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
197
- sd = torch.load(path, map_location="cpu")
198
- if "state_dict" in list(sd.keys()):
199
- sd = sd["state_dict"]
200
- keys = list(sd.keys())
201
- for k in keys:
202
- for ik in ignore_keys:
203
- if k.startswith(ik):
204
- print("Deleting key {} from state_dict.".format(k))
205
- del sd[k]
206
- if self.make_it_fit:
207
- n_params = len([name for name, _ in
208
- itertools.chain(self.named_parameters(),
209
- self.named_buffers())])
210
- for name, param in tqdm(
211
- itertools.chain(self.named_parameters(),
212
- self.named_buffers()),
213
- desc="Fitting old weights to new weights",
214
- total=n_params
215
- ):
216
- if not name in sd:
217
- continue
218
- old_shape = sd[name].shape
219
- new_shape = param.shape
220
- assert len(old_shape)==len(new_shape)
221
- if len(new_shape) > 2:
222
- # we only modify first two axes
223
- assert new_shape[2:] == old_shape[2:]
224
- # assumes first axis corresponds to output dim
225
- if not new_shape == old_shape:
226
- new_param = param.clone()
227
- old_param = sd[name]
228
- if len(new_shape) == 1:
229
- for i in range(new_param.shape[0]):
230
- new_param[i] = old_param[i % old_shape[0]]
231
- elif len(new_shape) >= 2:
232
- for i in range(new_param.shape[0]):
233
- for j in range(new_param.shape[1]):
234
- new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
235
-
236
- n_used_old = torch.ones(old_shape[1])
237
- for j in range(new_param.shape[1]):
238
- n_used_old[j % old_shape[1]] += 1
239
- n_used_new = torch.zeros(new_shape[1])
240
- for j in range(new_param.shape[1]):
241
- n_used_new[j] = n_used_old[j % old_shape[1]]
242
-
243
- n_used_new = n_used_new[None, :]
244
- while len(n_used_new.shape) < len(new_shape):
245
- n_used_new = n_used_new.unsqueeze(-1)
246
- new_param /= n_used_new
247
-
248
- sd[name] = new_param
249
-
250
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
251
- sd, strict=False)
252
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
253
- if len(missing) > 0:
254
- print(f"Missing Keys: {missing}")
255
- if len(unexpected) > 0:
256
- print(f"Unexpected Keys: {unexpected}")
257
-
258
- def q_mean_variance(self, x_start, t):
259
- """
260
- Get the distribution q(x_t | x_0).
261
- :param x_start: the [N x C x ...] tensor of noiseless inputs.
262
- :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
263
- :return: A tuple (mean, variance, log_variance), all of x_start's shape.
264
- """
265
- mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
266
- variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
267
- log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
268
- return mean, variance, log_variance
269
-
270
- def predict_start_from_noise(self, x_t, t, noise):
271
- return (
272
- extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
273
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
274
- )
275
-
276
- def q_posterior(self, x_start, x_t, t):
277
- posterior_mean = (
278
- extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
279
- extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
280
- )
281
- posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
282
- posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
283
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
284
-
285
- def p_mean_variance(self, x, t, clip_denoised: bool):
286
- model_out = self.model(x, t)
287
- if self.parameterization == "eps":
288
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
289
- elif self.parameterization == "x0":
290
- x_recon = model_out
291
- if clip_denoised:
292
- x_recon.clamp_(-1., 1.)
293
-
294
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
295
- return model_mean, posterior_variance, posterior_log_variance
296
-
297
- @torch.no_grad()
298
- def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
299
- b, *_, device = *x.shape, x.device
300
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
301
- noise = noise_like(x.shape, device, repeat_noise)
302
- # no noise when t == 0
303
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
304
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
305
-
306
- @torch.no_grad()
307
- def p_sample_loop(self, shape, return_intermediates=False):
308
- device = self.betas.device
309
- b = shape[0]
310
- img = torch.randn(shape, device=device)
311
- intermediates = [img]
312
- for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
313
- img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
314
- clip_denoised=self.clip_denoised)
315
- if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
316
- intermediates.append(img)
317
- if return_intermediates:
318
- return img, intermediates
319
- return img
320
-
321
- @torch.no_grad()
322
- def sample(self, batch_size=16, return_intermediates=False):
323
- image_size = self.image_size
324
- channels = self.channels
325
- return self.p_sample_loop((batch_size, channels, image_size, image_size),
326
- return_intermediates=return_intermediates)
327
-
328
- def q_sample(self, x_start, t, noise=None):
329
- noise = default(noise, lambda: torch.randn_like(x_start))
330
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
331
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
332
-
333
- def get_loss(self, pred, target, mean=True):
334
- if self.loss_type == 'l1':
335
- loss = (target - pred).abs()
336
- if mean:
337
- loss = loss.mean()
338
- elif self.loss_type == 'l2':
339
- if mean:
340
- loss = torch.nn.functional.mse_loss(target, pred)
341
- else:
342
- loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
343
- else:
344
- raise NotImplementedError("unknown loss type '{loss_type}'")
345
-
346
- return loss
347
-
348
- def p_losses(self, x_start, t, noise=None):
349
- noise = default(noise, lambda: torch.randn_like(x_start))
350
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
351
- model_out = self.model(x_noisy, t)
352
-
353
- loss_dict = {}
354
- if self.parameterization == "eps":
355
- target = noise
356
- elif self.parameterization == "x0":
357
- target = x_start
358
- else:
359
- raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
360
-
361
- loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
362
-
363
- log_prefix = 'train' if self.training else 'val'
364
-
365
- loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
366
- loss_simple = loss.mean() * self.l_simple_weight
367
-
368
- loss_vlb = (self.lvlb_weights[t] * loss).mean()
369
- loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
370
-
371
- loss = loss_simple + self.original_elbo_weight * loss_vlb
372
-
373
- loss_dict.update({f'{log_prefix}/loss': loss})
374
-
375
- return loss, loss_dict
376
-
377
- def forward(self, x, *args, **kwargs):
378
- # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
379
- # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
380
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
381
- return self.p_losses(x, t, *args, **kwargs)
382
-
383
- def get_input(self, batch, k):
384
- x = batch[k]
385
- if len(x.shape) == 3:
386
- x = x[..., None]
387
- x = rearrange(x, 'b h w c -> b c h w')
388
- x = x.to(memory_format=torch.contiguous_format).float()
389
- return x
390
-
391
- def shared_step(self, batch):
392
- x = self.get_input(batch, self.first_stage_key)
393
- loss, loss_dict = self(x)
394
- return loss, loss_dict
395
-
396
- def training_step(self, batch, batch_idx):
397
- for k in self.ucg_training:
398
- p = self.ucg_training[k]["p"]
399
- val = self.ucg_training[k]["val"]
400
- if val is None:
401
- val = ""
402
- for i in range(len(batch[k])):
403
- if self.ucg_prng.choice(2, p=[1-p, p]):
404
- batch[k][i] = val
405
-
406
- loss, loss_dict = self.shared_step(batch)
407
-
408
- self.log_dict(loss_dict, prog_bar=True,
409
- logger=True, on_step=True, on_epoch=True)
410
-
411
- self.log("global_step", self.global_step,
412
- prog_bar=True, logger=True, on_step=True, on_epoch=False)
413
-
414
- if self.use_scheduler:
415
- lr = self.optimizers().param_groups[0]['lr']
416
- self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
417
-
418
- return loss
419
-
420
- @torch.no_grad()
421
- def validation_step(self, batch, batch_idx):
422
- _, loss_dict_no_ema = self.shared_step(batch)
423
- with self.ema_scope():
424
- _, loss_dict_ema = self.shared_step(batch)
425
- loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
426
- self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
427
- self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
428
-
429
- def on_train_batch_end(self, *args, **kwargs):
430
- if self.use_ema:
431
- self.model_ema(self.model)
432
-
433
- def _get_rows_from_list(self, samples):
434
- n_imgs_per_row = len(samples)
435
- denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
436
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
437
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
438
- return denoise_grid
439
-
440
- @torch.no_grad()
441
- def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
442
- log = dict()
443
- x = self.get_input(batch, self.first_stage_key)
444
- N = min(x.shape[0], N)
445
- n_row = min(x.shape[0], n_row)
446
- x = x.to(self.device)[:N]
447
- log["inputs"] = x
448
-
449
- # get diffusion row
450
- diffusion_row = list()
451
- x_start = x[:n_row]
452
-
453
- for t in range(self.num_timesteps):
454
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
455
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
456
- t = t.to(self.device).long()
457
- noise = torch.randn_like(x_start)
458
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
459
- diffusion_row.append(x_noisy)
460
-
461
- log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
462
-
463
- if sample:
464
- # get denoise row
465
- with self.ema_scope("Plotting"):
466
- samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
467
-
468
- log["samples"] = samples
469
- log["denoise_row"] = self._get_rows_from_list(denoise_row)
470
-
471
- if return_keys:
472
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
473
- return log
474
- else:
475
- return {key: log[key] for key in return_keys}
476
- return log
477
-
478
- def configure_optimizers(self):
479
- lr = self.learning_rate
480
- params = list(self.model.parameters())
481
- if self.learn_logvar:
482
- params = params + [self.logvar]
483
- opt = torch.optim.AdamW(params, lr=lr)
484
- return opt
485
-
486
-
487
- class LatentDiffusion(DDPM):
488
- """main class"""
489
- def __init__(self,
490
- first_stage_config,
491
- cond_stage_config,
492
- num_timesteps_cond=None,
493
- cond_stage_key="image",
494
- cond_stage_trainable=False,
495
- concat_mode=True,
496
- cond_stage_forward=None,
497
- conditioning_key=None,
498
- scale_factor=1.0,
499
- scale_by_std=False,
500
- unet_trainable=True,
501
- *args, **kwargs):
502
- self.num_timesteps_cond = default(num_timesteps_cond, 1)
503
- self.scale_by_std = scale_by_std
504
- assert self.num_timesteps_cond <= kwargs['timesteps']
505
- # for backwards compatibility after implementation of DiffusionWrapper
506
- if conditioning_key is None:
507
- conditioning_key = 'concat' if concat_mode else 'crossattn'
508
- if cond_stage_config == '__is_unconditional__':
509
- conditioning_key = None
510
- ckpt_path = kwargs.pop("ckpt_path", None)
511
- ignore_keys = kwargs.pop("ignore_keys", [])
512
- super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
513
- self.concat_mode = concat_mode
514
- self.cond_stage_trainable = cond_stage_trainable
515
- self.unet_trainable = unet_trainable
516
- self.cond_stage_key = cond_stage_key
517
- try:
518
- self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
519
- except:
520
- self.num_downs = 0
521
- if not scale_by_std:
522
- self.scale_factor = scale_factor
523
- else:
524
- self.register_buffer('scale_factor', torch.tensor(scale_factor))
525
- self.instantiate_first_stage(first_stage_config)
526
- self.instantiate_cond_stage(cond_stage_config)
527
- self.cond_stage_forward = cond_stage_forward
528
- self.clip_denoised = False
529
- self.bbox_tokenizer = None
530
-
531
- self.restarted_from_ckpt = False
532
- if ckpt_path is not None:
533
- self.init_from_ckpt(ckpt_path, ignore_keys)
534
- self.restarted_from_ckpt = True
535
-
536
- def make_cond_schedule(self, ):
537
- self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
538
- ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
539
- self.cond_ids[:self.num_timesteps_cond] = ids
540
-
541
- @rank_zero_only
542
- @torch.no_grad()
543
- def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
544
- # only for very first batch
545
- if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
546
- assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
547
- # set rescale weight to 1./std of encodings
548
- print("### USING STD-RESCALING ###")
549
- x = super().get_input(batch, self.first_stage_key)
550
- x = x.to(self.device)
551
- encoder_posterior = self.encode_first_stage(x)
552
- z = self.get_first_stage_encoding(encoder_posterior).detach()
553
- del self.scale_factor
554
- self.register_buffer('scale_factor', 1. / z.flatten().std())
555
- print(f"setting self.scale_factor to {self.scale_factor}")
556
- print("### USING STD-RESCALING ###")
557
-
558
- def register_schedule(self,
559
- given_betas=None, beta_schedule="linear", timesteps=1000,
560
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
561
- super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
562
-
563
- self.shorten_cond_schedule = self.num_timesteps_cond > 1
564
- if self.shorten_cond_schedule:
565
- self.make_cond_schedule()
566
-
567
- def instantiate_first_stage(self, config):
568
- model = instantiate_from_config(config)
569
- self.first_stage_model = model.eval()
570
- self.first_stage_model.train = disabled_train
571
- for param in self.first_stage_model.parameters():
572
- param.requires_grad = False
573
-
574
- def instantiate_cond_stage(self, config):
575
- if not self.cond_stage_trainable:
576
- if config == "__is_first_stage__":
577
- print("Using first stage also as cond stage.")
578
- self.cond_stage_model = self.first_stage_model
579
- elif config == "__is_unconditional__":
580
- print(f"Training {self.__class__.__name__} as an unconditional model.")
581
- self.cond_stage_model = None
582
- # self.be_unconditional = True
583
- else:
584
- model = instantiate_from_config(config)
585
- self.cond_stage_model = model.eval()
586
- # self.cond_stage_model.train = disabled_train
587
- for param in self.cond_stage_model.parameters():
588
- param.requires_grad = False
589
- else:
590
- assert config != '__is_first_stage__'
591
- assert config != '__is_unconditional__'
592
- model = instantiate_from_config(config)
593
- self.cond_stage_model = model
594
-
595
- def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
596
- denoise_row = []
597
- for zd in tqdm(samples, desc=desc):
598
- denoise_row.append(self.decode_first_stage(zd.to(self.device),
599
- force_not_quantize=force_no_decoder_quantization))
600
- n_imgs_per_row = len(denoise_row)
601
- denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
602
- denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
603
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
604
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
605
- return denoise_grid
606
-
607
- def get_first_stage_encoding(self, encoder_posterior):
608
- if isinstance(encoder_posterior, DiagonalGaussianDistribution):
609
- z = encoder_posterior.sample()
610
- elif isinstance(encoder_posterior, torch.Tensor):
611
- z = encoder_posterior
612
- else:
613
- raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
614
- return self.scale_factor * z
615
-
616
- def get_learned_conditioning(self, c):
617
- if self.cond_stage_forward is None:
618
- if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
619
- c = self.cond_stage_model.encode(c)
620
- if isinstance(c, DiagonalGaussianDistribution):
621
- c = c.mode()
622
- else:
623
- c = self.cond_stage_model(c)
624
- else:
625
- assert hasattr(self.cond_stage_model, self.cond_stage_forward)
626
- c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
627
- return c
628
-
629
- def meshgrid(self, h, w):
630
- y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
631
- x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
632
-
633
- arr = torch.cat([y, x], dim=-1)
634
- return arr
635
-
636
- def delta_border(self, h, w):
637
- """
638
- :param h: height
639
- :param w: width
640
- :return: normalized distance to image border,
641
- wtith min distance = 0 at border and max dist = 0.5 at image center
642
- """
643
- lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
644
- arr = self.meshgrid(h, w) / lower_right_corner
645
- dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
646
- dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
647
- edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
648
- return edge_dist
649
-
650
- def get_weighting(self, h, w, Ly, Lx, device):
651
- weighting = self.delta_border(h, w)
652
- weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
653
- self.split_input_params["clip_max_weight"], )
654
- weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
655
-
656
- if self.split_input_params["tie_braker"]:
657
- L_weighting = self.delta_border(Ly, Lx)
658
- L_weighting = torch.clip(L_weighting,
659
- self.split_input_params["clip_min_tie_weight"],
660
- self.split_input_params["clip_max_tie_weight"])
661
-
662
- L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
663
- weighting = weighting * L_weighting
664
- return weighting
665
-
666
- def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
667
- """
668
- :param x: img of size (bs, c, h, w)
669
- :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
670
- """
671
- bs, nc, h, w = x.shape
672
-
673
- # number of crops in image
674
- Ly = (h - kernel_size[0]) // stride[0] + 1
675
- Lx = (w - kernel_size[1]) // stride[1] + 1
676
-
677
- if uf == 1 and df == 1:
678
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
679
- unfold = torch.nn.Unfold(**fold_params)
680
-
681
- fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
682
-
683
- weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
684
- normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
685
- weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
686
-
687
- elif uf > 1 and df == 1:
688
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
689
- unfold = torch.nn.Unfold(**fold_params)
690
-
691
- fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
692
- dilation=1, padding=0,
693
- stride=(stride[0] * uf, stride[1] * uf))
694
- fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
695
-
696
- weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
697
- normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
698
- weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
699
-
700
- elif df > 1 and uf == 1:
701
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
702
- unfold = torch.nn.Unfold(**fold_params)
703
-
704
- fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
705
- dilation=1, padding=0,
706
- stride=(stride[0] // df, stride[1] // df))
707
- fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
708
-
709
- weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
710
- normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
711
- weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
712
-
713
- else:
714
- raise NotImplementedError
715
-
716
- return fold, unfold, normalization, weighting
717
-
718
- @torch.no_grad()
719
- def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
720
- cond_key=None, return_original_cond=False, bs=None, return_x=False):
721
- x = super().get_input(batch, k)
722
- if bs is not None:
723
- x = x[:bs]
724
- x = x.to(self.device)
725
- encoder_posterior = self.encode_first_stage(x)
726
- z = self.get_first_stage_encoding(encoder_posterior).detach()
727
-
728
- if self.model.conditioning_key is not None:
729
- if cond_key is None:
730
- cond_key = self.cond_stage_key
731
- if cond_key != self.first_stage_key:
732
- if cond_key in ['caption', 'coordinates_bbox', "txt"]:
733
- xc = batch[cond_key]
734
- elif cond_key == 'class_label':
735
- xc = batch
736
- else:
737
- xc = super().get_input(batch, cond_key).to(self.device)
738
- else:
739
- xc = x
740
- if not self.cond_stage_trainable or force_c_encode:
741
- if isinstance(xc, dict) or isinstance(xc, list):
742
- c = self.get_learned_conditioning(xc)
743
- else:
744
- c = self.get_learned_conditioning(xc.to(self.device))
745
- else:
746
- c = xc
747
- if bs is not None:
748
- c = c[:bs]
749
-
750
- if self.use_positional_encodings:
751
- pos_x, pos_y = self.compute_latent_shifts(batch)
752
- ckey = __conditioning_keys__[self.model.conditioning_key]
753
- c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
754
-
755
- else:
756
- c = None
757
- xc = None
758
- if self.use_positional_encodings:
759
- pos_x, pos_y = self.compute_latent_shifts(batch)
760
- c = {'pos_x': pos_x, 'pos_y': pos_y}
761
- out = [z, c]
762
- if return_first_stage_outputs:
763
- xrec = self.decode_first_stage(z)
764
- out.extend([x, xrec])
765
- if return_x:
766
- out.extend([x])
767
- if return_original_cond:
768
- out.append(xc)
769
- return out
770
-
771
- @torch.no_grad()
772
- def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
773
- if predict_cids:
774
- if z.dim() == 4:
775
- z = torch.argmax(z.exp(), dim=1).long()
776
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
777
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
778
-
779
- z = 1. / self.scale_factor * z
780
-
781
- if hasattr(self, "split_input_params"):
782
- if self.split_input_params["patch_distributed_vq"]:
783
- ks = self.split_input_params["ks"] # eg. (128, 128)
784
- stride = self.split_input_params["stride"] # eg. (64, 64)
785
- uf = self.split_input_params["vqf"]
786
- bs, nc, h, w = z.shape
787
- if ks[0] > h or ks[1] > w:
788
- ks = (min(ks[0], h), min(ks[1], w))
789
- print("reducing Kernel")
790
-
791
- if stride[0] > h or stride[1] > w:
792
- stride = (min(stride[0], h), min(stride[1], w))
793
- print("reducing stride")
794
-
795
- fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
796
-
797
- z = unfold(z) # (bn, nc * prod(**ks), L)
798
- # 1. Reshape to img shape
799
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
800
-
801
- # 2. apply model loop over last dim
802
- if isinstance(self.first_stage_model, VQModelInterface):
803
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
804
- force_not_quantize=predict_cids or force_not_quantize)
805
- for i in range(z.shape[-1])]
806
- else:
807
-
808
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
809
- for i in range(z.shape[-1])]
810
-
811
- o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
812
- o = o * weighting
813
- # Reverse 1. reshape to img shape
814
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
815
- # stitch crops together
816
- decoded = fold(o)
817
- decoded = decoded / normalization # norm is shape (1, 1, h, w)
818
- return decoded
819
- else:
820
- if isinstance(self.first_stage_model, VQModelInterface):
821
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
822
- else:
823
- return self.first_stage_model.decode(z)
824
-
825
- else:
826
- if isinstance(self.first_stage_model, VQModelInterface):
827
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
828
- else:
829
- return self.first_stage_model.decode(z)
830
-
831
- @torch.no_grad()
832
- def encode_first_stage(self, x):
833
- if hasattr(self, "split_input_params"):
834
- if self.split_input_params["patch_distributed_vq"]:
835
- ks = self.split_input_params["ks"] # eg. (128, 128)
836
- stride = self.split_input_params["stride"] # eg. (64, 64)
837
- df = self.split_input_params["vqf"]
838
- self.split_input_params['original_image_size'] = x.shape[-2:]
839
- bs, nc, h, w = x.shape
840
- if ks[0] > h or ks[1] > w:
841
- ks = (min(ks[0], h), min(ks[1], w))
842
- print("reducing Kernel")
843
-
844
- if stride[0] > h or stride[1] > w:
845
- stride = (min(stride[0], h), min(stride[1], w))
846
- print("reducing stride")
847
-
848
- fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
849
- z = unfold(x) # (bn, nc * prod(**ks), L)
850
- # Reshape to img shape
851
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
852
-
853
- output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
854
- for i in range(z.shape[-1])]
855
-
856
- o = torch.stack(output_list, axis=-1)
857
- o = o * weighting
858
-
859
- # Reverse reshape to img shape
860
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
861
- # stitch crops together
862
- decoded = fold(o)
863
- decoded = decoded / normalization
864
- return decoded
865
-
866
- else:
867
- return self.first_stage_model.encode(x)
868
- else:
869
- return self.first_stage_model.encode(x)
870
-
871
- def shared_step(self, batch, **kwargs):
872
- x, c = self.get_input(batch, self.first_stage_key)
873
- loss = self(x, c)
874
- return loss
875
-
876
- def forward(self, x, c, *args, **kwargs):
877
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
878
- if self.model.conditioning_key is not None:
879
- assert c is not None
880
- if self.cond_stage_trainable:
881
- c = self.get_learned_conditioning(c)
882
- if self.shorten_cond_schedule: # TODO: drop this option
883
- tc = self.cond_ids[t].to(self.device)
884
- c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
885
- return self.p_losses(x, c, t, *args, **kwargs)
886
-
887
- def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
888
- def rescale_bbox(bbox):
889
- x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
890
- y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
891
- w = min(bbox[2] / crop_coordinates[2], 1 - x0)
892
- h = min(bbox[3] / crop_coordinates[3], 1 - y0)
893
- return x0, y0, w, h
894
-
895
- return [rescale_bbox(b) for b in bboxes]
896
-
897
- def apply_model(self, x_noisy, t, cond, return_ids=False):
898
-
899
- if isinstance(cond, dict):
900
- # hybrid case, cond is exptected to be a dict
901
- pass
902
- else:
903
- if not isinstance(cond, list):
904
- cond = [cond]
905
- key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
906
- cond = {key: cond}
907
-
908
- if hasattr(self, "split_input_params"):
909
- assert len(cond) == 1 # todo can only deal with one conditioning atm
910
- assert not return_ids
911
- ks = self.split_input_params["ks"] # eg. (128, 128)
912
- stride = self.split_input_params["stride"] # eg. (64, 64)
913
-
914
- h, w = x_noisy.shape[-2:]
915
-
916
- fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
917
-
918
- z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
919
- # Reshape to img shape
920
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
921
- z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
922
-
923
- if self.cond_stage_key in ["image", "LR_image", "segmentation",
924
- 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
925
- c_key = next(iter(cond.keys())) # get key
926
- c = next(iter(cond.values())) # get value
927
- assert (len(c) == 1) # todo extend to list with more than one elem
928
- c = c[0] # get element
929
-
930
- c = unfold(c)
931
- c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
932
-
933
- cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
934
-
935
- elif self.cond_stage_key == 'coordinates_bbox':
936
- assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
937
-
938
- # assuming padding of unfold is always 0 and its dilation is always 1
939
- n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
940
- full_img_h, full_img_w = self.split_input_params['original_image_size']
941
- # as we are operating on latents, we need the factor from the original image size to the
942
- # spatial latent size to properly rescale the crops for regenerating the bbox annotations
943
- num_downs = self.first_stage_model.encoder.num_resolutions - 1
944
- rescale_latent = 2 ** (num_downs)
945
-
946
- # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
947
- # need to rescale the tl patch coordinates to be in between (0,1)
948
- tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
949
- rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
950
- for patch_nr in range(z.shape[-1])]
951
-
952
- # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
953
- patch_limits = [(x_tl, y_tl,
954
- rescale_latent * ks[0] / full_img_w,
955
- rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
956
- # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
957
-
958
- # tokenize crop coordinates for the bounding boxes of the respective patches
959
- patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
960
- for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
961
- print(patch_limits_tknzd[0].shape)
962
- # cut tknzd crop position from conditioning
963
- assert isinstance(cond, dict), 'cond must be dict to be fed into model'
964
- cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
965
- print(cut_cond.shape)
966
-
967
- adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
968
- adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
969
- print(adapted_cond.shape)
970
- adapted_cond = self.get_learned_conditioning(adapted_cond)
971
- print(adapted_cond.shape)
972
- adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
973
- print(adapted_cond.shape)
974
-
975
- cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
976
-
977
- else:
978
- cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
979
-
980
- # apply model by loop over crops
981
- output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
982
- assert not isinstance(output_list[0],
983
- tuple) # todo cant deal with multiple model outputs check this never happens
984
-
985
- o = torch.stack(output_list, axis=-1)
986
- o = o * weighting
987
- # Reverse reshape to img shape
988
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
989
- # stitch crops together
990
- x_recon = fold(o) / normalization
991
-
992
- else:
993
- x_recon = self.model(x_noisy, t, **cond)
994
-
995
- if isinstance(x_recon, tuple) and not return_ids:
996
- return x_recon[0]
997
- else:
998
- return x_recon
999
-
1000
- def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
1001
- return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
1002
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
1003
-
1004
- def _prior_bpd(self, x_start):
1005
- """
1006
- Get the prior KL term for the variational lower-bound, measured in
1007
- bits-per-dim.
1008
- This term can't be optimized, as it only depends on the encoder.
1009
- :param x_start: the [N x C x ...] tensor of inputs.
1010
- :return: a batch of [N] KL values (in bits), one per batch element.
1011
- """
1012
- batch_size = x_start.shape[0]
1013
- t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1014
- qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1015
- kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1016
- return mean_flat(kl_prior) / np.log(2.0)
1017
-
1018
- def p_losses(self, x_start, cond, t, noise=None):
1019
- noise = default(noise, lambda: torch.randn_like(x_start))
1020
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1021
- model_output = self.apply_model(x_noisy, t, cond)
1022
-
1023
- loss_dict = {}
1024
- prefix = 'train' if self.training else 'val'
1025
-
1026
- if self.parameterization == "x0":
1027
- target = x_start
1028
- elif self.parameterization == "eps":
1029
- target = noise
1030
- else:
1031
- raise NotImplementedError()
1032
-
1033
- loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1034
- loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1035
-
1036
- logvar_t = self.logvar[t].to(self.device)
1037
- loss = loss_simple / torch.exp(logvar_t) + logvar_t
1038
- # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1039
- if self.learn_logvar:
1040
- loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1041
- loss_dict.update({'logvar': self.logvar.data.mean()})
1042
-
1043
- loss = self.l_simple_weight * loss.mean()
1044
-
1045
- loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1046
- loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1047
- loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1048
- loss += (self.original_elbo_weight * loss_vlb)
1049
- loss_dict.update({f'{prefix}/loss': loss})
1050
-
1051
- return loss, loss_dict
1052
-
1053
- def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1054
- return_x0=False, score_corrector=None, corrector_kwargs=None):
1055
- t_in = t
1056
- model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1057
-
1058
- if score_corrector is not None:
1059
- assert self.parameterization == "eps"
1060
- model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1061
-
1062
- if return_codebook_ids:
1063
- model_out, logits = model_out
1064
-
1065
- if self.parameterization == "eps":
1066
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1067
- elif self.parameterization == "x0":
1068
- x_recon = model_out
1069
- else:
1070
- raise NotImplementedError()
1071
-
1072
- if clip_denoised:
1073
- x_recon.clamp_(-1., 1.)
1074
- if quantize_denoised:
1075
- x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1076
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1077
- if return_codebook_ids:
1078
- return model_mean, posterior_variance, posterior_log_variance, logits
1079
- elif return_x0:
1080
- return model_mean, posterior_variance, posterior_log_variance, x_recon
1081
- else:
1082
- return model_mean, posterior_variance, posterior_log_variance
1083
-
1084
- @torch.no_grad()
1085
- def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1086
- return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1087
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1088
- b, *_, device = *x.shape, x.device
1089
- outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1090
- return_codebook_ids=return_codebook_ids,
1091
- quantize_denoised=quantize_denoised,
1092
- return_x0=return_x0,
1093
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1094
- if return_codebook_ids:
1095
- raise DeprecationWarning("Support dropped.")
1096
- model_mean, _, model_log_variance, logits = outputs
1097
- elif return_x0:
1098
- model_mean, _, model_log_variance, x0 = outputs
1099
- else:
1100
- model_mean, _, model_log_variance = outputs
1101
-
1102
- noise = noise_like(x.shape, device, repeat_noise) * temperature
1103
- if noise_dropout > 0.:
1104
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1105
- # no noise when t == 0
1106
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1107
-
1108
- if return_codebook_ids:
1109
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1110
- if return_x0:
1111
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1112
- else:
1113
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1114
-
1115
- @torch.no_grad()
1116
- def p_sample_edit(self, x, c, t, clip_denoised=False, repeat_noise=False,
1117
- return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1118
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1119
- b, *_, device = *x.shape, x.device
1120
- outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1121
- return_codebook_ids=return_codebook_ids,
1122
- quantize_denoised=quantize_denoised,
1123
- return_x0=return_x0,
1124
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1125
- if return_codebook_ids:
1126
- raise DeprecationWarning("Support dropped.")
1127
- model_mean, _, model_log_variance, logits = outputs
1128
- elif return_x0:
1129
- model_mean, _, model_log_variance, x0 = outputs
1130
- else:
1131
- model_mean, _, model_log_variance = outputs
1132
-
1133
- noise = noise_like(x.shape, device, repeat_noise) * temperature
1134
- if noise_dropout > 0.:
1135
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1136
- # no noise when t == 0
1137
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1138
-
1139
- if return_codebook_ids:
1140
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1141
- if return_x0:
1142
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1143
- else:
1144
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, noise
1145
-
1146
- @torch.no_grad()
1147
- def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1148
- img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1149
- score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1150
- log_every_t=None):
1151
- if not log_every_t:
1152
- log_every_t = self.log_every_t
1153
- timesteps = self.num_timesteps
1154
- if batch_size is not None:
1155
- b = batch_size if batch_size is not None else shape[0]
1156
- shape = [batch_size] + list(shape)
1157
- else:
1158
- b = batch_size = shape[0]
1159
- if x_T is None:
1160
- img = torch.randn(shape, device=self.device)
1161
- else:
1162
- img = x_T
1163
- intermediates = []
1164
- if cond is not None:
1165
- if isinstance(cond, dict):
1166
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1167
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1168
- else:
1169
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1170
-
1171
- if start_T is not None:
1172
- timesteps = min(timesteps, start_T)
1173
- iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1174
- total=timesteps) if verbose else reversed(
1175
- range(0, timesteps))
1176
- if type(temperature) == float:
1177
- temperature = [temperature] * timesteps
1178
-
1179
- for i in iterator:
1180
- ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1181
- if self.shorten_cond_schedule:
1182
- assert self.model.conditioning_key != 'hybrid'
1183
- tc = self.cond_ids[ts].to(cond.device)
1184
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1185
-
1186
- img, x0_partial = self.p_sample(img, cond, ts,
1187
- clip_denoised=self.clip_denoised,
1188
- quantize_denoised=quantize_denoised, return_x0=True,
1189
- temperature=temperature[i], noise_dropout=noise_dropout,
1190
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1191
- if mask is not None:
1192
- assert x0 is not None
1193
- img_orig = self.q_sample(x0, ts)
1194
- img = img_orig * mask + (1. - mask) * img
1195
-
1196
- if i % log_every_t == 0 or i == timesteps - 1:
1197
- intermediates.append(x0_partial)
1198
- if callback: callback(i)
1199
- if img_callback: img_callback(img, i)
1200
- return img, intermediates
1201
-
1202
- @torch.no_grad()
1203
- def p_sample_loop(self, cond, shape, return_intermediates=False,
1204
- x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1205
- mask=None, x0=None, img_callback=None, start_T=None,
1206
- log_every_t=None, till_T=None):
1207
-
1208
- if not log_every_t:
1209
- log_every_t = self.log_every_t
1210
- device = self.betas.device
1211
- b = shape[0]
1212
- if x_T is None:
1213
- img = torch.randn(shape, device=device)
1214
- else:
1215
- img = x_T
1216
-
1217
- intermediates = [img]
1218
- if timesteps is None:
1219
- timesteps = self.num_timesteps
1220
-
1221
- if start_T is not None:
1222
- timesteps = min(timesteps, start_T)
1223
- if till_T is not None:
1224
- till = till_T
1225
- else:
1226
- till = 0
1227
- iterator = tqdm(reversed(range(till, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1228
- range(till, timesteps))
1229
-
1230
- if mask is not None:
1231
- assert x0 is not None
1232
- assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1233
-
1234
- for i in iterator:
1235
- ts = torch.full((b,), i, device=device, dtype=torch.long)
1236
- if self.shorten_cond_schedule:
1237
- assert self.model.conditioning_key != 'hybrid'
1238
- tc = self.cond_ids[ts].to(cond.device)
1239
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1240
-
1241
- img = self.p_sample(img, cond, ts,
1242
- clip_denoised=self.clip_denoised,
1243
- quantize_denoised=quantize_denoised)
1244
- if mask is not None:
1245
- img_orig = self.q_sample(x0, ts)
1246
- img = img_orig * mask + (1. - mask) * img
1247
-
1248
- if i % log_every_t == 0 or i == timesteps - 1:
1249
- intermediates.append(img)
1250
- if callback: callback(i)
1251
- if img_callback: img_callback(img, i)
1252
-
1253
- if return_intermediates:
1254
- return img, intermediates
1255
- return img
1256
-
1257
- @torch.no_grad()
1258
- def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1259
- verbose=True, timesteps=None, quantize_denoised=False,
1260
- mask=None, x0=None, till_T=None, shape=None,**kwargs):
1261
- if shape is None:
1262
- shape = (batch_size, self.channels, self.image_size, self.image_size)
1263
- if cond is not None:
1264
- if isinstance(cond, dict):
1265
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1266
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1267
- else:
1268
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1269
- return self.p_sample_loop(cond,
1270
- shape,
1271
- return_intermediates=return_intermediates, x_T=x_T,
1272
- verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1273
- mask=mask, x0=x0,till_T=till_T)
1274
-
1275
- @torch.no_grad()
1276
- def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1277
- if ddim:
1278
- ddim_sampler = DDIMSampler(self)
1279
- shape = (self.channels, self.image_size, self.image_size)
1280
- samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1281
- shape, cond, verbose=False, **kwargs)
1282
-
1283
- else:
1284
- samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1285
- return_intermediates=True, **kwargs)
1286
-
1287
- return samples, intermediates
1288
-
1289
- @torch.no_grad()
1290
- def get_unconditional_conditioning(self, batch_size, null_label=None):
1291
- if null_label is not None:
1292
- xc = null_label
1293
- if isinstance(xc, ListConfig):
1294
- xc = list(xc)
1295
- if isinstance(xc, dict) or isinstance(xc, list):
1296
- c = self.get_learned_conditioning(xc)
1297
- else:
1298
- if hasattr(xc, "to"):
1299
- xc = xc.to(self.device)
1300
- c = self.get_learned_conditioning(xc)
1301
- else:
1302
- # todo: get null label from cond_stage_model
1303
- raise NotImplementedError()
1304
- c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1305
- return c
1306
-
1307
- @torch.no_grad()
1308
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1309
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1310
- plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1311
- use_ema_scope=True,
1312
- **kwargs):
1313
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1314
- use_ddim = ddim_steps is not None
1315
-
1316
- log = dict()
1317
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1318
- return_first_stage_outputs=True,
1319
- force_c_encode=True,
1320
- return_original_cond=True,
1321
- bs=N)
1322
- N = min(x.shape[0], N)
1323
- n_row = min(x.shape[0], n_row)
1324
- log["inputs"] = x
1325
- log["reconstruction"] = xrec
1326
- if self.model.conditioning_key is not None:
1327
- if hasattr(self.cond_stage_model, "decode"):
1328
- xc = self.cond_stage_model.decode(c)
1329
- log["conditioning"] = xc
1330
- elif self.cond_stage_key in ["caption", "txt"]:
1331
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1332
- log["conditioning"] = xc
1333
- elif self.cond_stage_key == 'class_label':
1334
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1335
- log['conditioning'] = xc
1336
- elif isimage(xc):
1337
- log["conditioning"] = xc
1338
- if ismap(xc):
1339
- log["original_conditioning"] = self.to_rgb(xc)
1340
-
1341
- if plot_diffusion_rows:
1342
- # get diffusion row
1343
- diffusion_row = list()
1344
- z_start = z[:n_row]
1345
- for t in range(self.num_timesteps):
1346
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1347
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1348
- t = t.to(self.device).long()
1349
- noise = torch.randn_like(z_start)
1350
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1351
- diffusion_row.append(self.decode_first_stage(z_noisy))
1352
-
1353
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1354
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1355
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1356
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1357
- log["diffusion_row"] = diffusion_grid
1358
-
1359
- if sample:
1360
- # get denoise row
1361
- with ema_scope("Sampling"):
1362
- samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1363
- ddim_steps=ddim_steps,eta=ddim_eta)
1364
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1365
- x_samples = self.decode_first_stage(samples)
1366
- log["samples"] = x_samples
1367
- if plot_denoise_rows:
1368
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1369
- log["denoise_row"] = denoise_grid
1370
-
1371
- if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1372
- self.first_stage_model, IdentityFirstStage):
1373
- # also display when quantizing x0 while sampling
1374
- with ema_scope("Plotting Quantized Denoised"):
1375
- samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1376
- ddim_steps=ddim_steps,eta=ddim_eta,
1377
- quantize_denoised=True)
1378
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1379
- # quantize_denoised=True)
1380
- x_samples = self.decode_first_stage(samples.to(self.device))
1381
- log["samples_x0_quantized"] = x_samples
1382
-
1383
- if unconditional_guidance_scale > 1.0:
1384
- uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1385
- # uc = torch.zeros_like(c)
1386
- with ema_scope("Sampling with classifier-free guidance"):
1387
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1388
- ddim_steps=ddim_steps, eta=ddim_eta,
1389
- unconditional_guidance_scale=unconditional_guidance_scale,
1390
- unconditional_conditioning=uc,
1391
- )
1392
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1393
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1394
-
1395
- if inpaint:
1396
- # make a simple center square
1397
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
1398
- mask = torch.ones(N, h, w).to(self.device)
1399
- # zeros will be filled in
1400
- mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1401
- mask = mask[:, None, ...]
1402
- with ema_scope("Plotting Inpaint"):
1403
-
1404
- samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1405
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1406
- x_samples = self.decode_first_stage(samples.to(self.device))
1407
- log["samples_inpainting"] = x_samples
1408
- log["mask"] = mask
1409
-
1410
- # outpaint
1411
- mask = 1. - mask
1412
- with ema_scope("Plotting Outpaint"):
1413
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1414
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1415
- x_samples = self.decode_first_stage(samples.to(self.device))
1416
- log["samples_outpainting"] = x_samples
1417
-
1418
- if plot_progressive_rows:
1419
- with ema_scope("Plotting Progressives"):
1420
- img, progressives = self.progressive_denoising(c,
1421
- shape=(self.channels, self.image_size, self.image_size),
1422
- batch_size=N)
1423
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1424
- log["progressive_row"] = prog_row
1425
-
1426
- if return_keys:
1427
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1428
- return log
1429
- else:
1430
- return {key: log[key] for key in return_keys}
1431
- return log
1432
-
1433
- def configure_optimizers(self):
1434
- lr = self.learning_rate
1435
- params = []
1436
- if self.unet_trainable == "attn":
1437
- print("Training only unet attention layers")
1438
- for n, m in self.model.named_modules():
1439
- if isinstance(m, CrossAttention) and n.endswith('attn2'):
1440
- params.extend(m.parameters())
1441
- elif self.unet_trainable is True or self.unet_trainable == "all":
1442
- print("Training the full unet")
1443
- params = list(self.model.parameters())
1444
- else:
1445
- raise ValueError(f"Unrecognised setting for unet_trainable: {self.unet_trainable}")
1446
-
1447
- if self.cond_stage_trainable:
1448
- print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1449
- params = params + list(self.cond_stage_model.parameters())
1450
- if self.learn_logvar:
1451
- print('Diffusion model optimizing logvar')
1452
- params.append(self.logvar)
1453
- opt = torch.optim.AdamW(params, lr=lr)
1454
- if self.use_scheduler:
1455
- assert 'target' in self.scheduler_config
1456
- scheduler = instantiate_from_config(self.scheduler_config)
1457
-
1458
- print("Setting up LambdaLR scheduler...")
1459
- scheduler = [
1460
- {
1461
- 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1462
- 'interval': 'step',
1463
- 'frequency': 1
1464
- }]
1465
- return [opt], scheduler
1466
- return opt
1467
-
1468
- @torch.no_grad()
1469
- def to_rgb(self, x):
1470
- x = x.float()
1471
- if not hasattr(self, "colorize"):
1472
- self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1473
- x = nn.functional.conv2d(x, weight=self.colorize)
1474
- x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1475
- return x
1476
-
1477
-
1478
- class DiffusionWrapper(pl.LightningModule):
1479
- def __init__(self, diff_model_config, conditioning_key):
1480
- super().__init__()
1481
- self.diffusion_model = instantiate_from_config(diff_model_config)
1482
- self.conditioning_key = conditioning_key
1483
- assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm']
1484
-
1485
- def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1486
- if self.conditioning_key is None:
1487
- out = self.diffusion_model(x, t)
1488
- elif self.conditioning_key == 'concat':
1489
- xc = torch.cat([x] + c_concat, dim=1)
1490
- out = self.diffusion_model(xc, t)
1491
- elif self.conditioning_key == 'crossattn':
1492
- cc = torch.cat(c_crossattn, 1)
1493
- out = self.diffusion_model(x, t, context=cc)
1494
- elif self.conditioning_key == 'hybrid':
1495
- xc = torch.cat([x] + c_concat, dim=1)
1496
- cc = torch.cat(c_crossattn, 1)
1497
- out = self.diffusion_model(xc, t, context=cc)
1498
- elif self.conditioning_key == 'hybrid-adm':
1499
- assert c_adm is not None
1500
- xc = torch.cat([x] + c_concat, dim=1)
1501
- cc = torch.cat(c_crossattn, 1)
1502
- out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1503
- elif self.conditioning_key == 'adm':
1504
- cc = c_crossattn[0]
1505
- out = self.diffusion_model(x, t, y=cc)
1506
- else:
1507
- raise NotImplementedError()
1508
-
1509
- return out
1510
-
1511
-
1512
- class LatentUpscaleDiffusion(LatentDiffusion):
1513
- def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs):
1514
- super().__init__(*args, **kwargs)
1515
- # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1516
- assert not self.cond_stage_trainable
1517
- self.instantiate_low_stage(low_scale_config)
1518
- self.low_scale_key = low_scale_key
1519
-
1520
- def instantiate_low_stage(self, config):
1521
- model = instantiate_from_config(config)
1522
- self.low_scale_model = model.eval()
1523
- self.low_scale_model.train = disabled_train
1524
- for param in self.low_scale_model.parameters():
1525
- param.requires_grad = False
1526
-
1527
- @torch.no_grad()
1528
- def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1529
- if not log_mode:
1530
- z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1531
- else:
1532
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1533
- force_c_encode=True, return_original_cond=True, bs=bs)
1534
- x_low = batch[self.low_scale_key][:bs]
1535
- x_low = rearrange(x_low, 'b h w c -> b c h w')
1536
- x_low = x_low.to(memory_format=torch.contiguous_format).float()
1537
- zx, noise_level = self.low_scale_model(x_low)
1538
- all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1539
- #import pudb; pu.db
1540
- if log_mode:
1541
- # TODO: maybe disable if too expensive
1542
- interpretability = False
1543
- if interpretability:
1544
- zx = zx[:, :, ::2, ::2]
1545
- x_low_rec = self.low_scale_model.decode(zx)
1546
- return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1547
- return z, all_conds
1548
-
1549
- @torch.no_grad()
1550
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1551
- plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1552
- unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1553
- **kwargs):
1554
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1555
- use_ddim = ddim_steps is not None
1556
-
1557
- log = dict()
1558
- z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1559
- log_mode=True)
1560
- N = min(x.shape[0], N)
1561
- n_row = min(x.shape[0], n_row)
1562
- log["inputs"] = x
1563
- log["reconstruction"] = xrec
1564
- log["x_lr"] = x_low
1565
- log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1566
- if self.model.conditioning_key is not None:
1567
- if hasattr(self.cond_stage_model, "decode"):
1568
- xc = self.cond_stage_model.decode(c)
1569
- log["conditioning"] = xc
1570
- elif self.cond_stage_key in ["caption", "txt"]:
1571
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1572
- log["conditioning"] = xc
1573
- elif self.cond_stage_key == 'class_label':
1574
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1575
- log['conditioning'] = xc
1576
- elif isimage(xc):
1577
- log["conditioning"] = xc
1578
- if ismap(xc):
1579
- log["original_conditioning"] = self.to_rgb(xc)
1580
-
1581
- if plot_diffusion_rows:
1582
- # get diffusion row
1583
- diffusion_row = list()
1584
- z_start = z[:n_row]
1585
- for t in range(self.num_timesteps):
1586
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1587
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1588
- t = t.to(self.device).long()
1589
- noise = torch.randn_like(z_start)
1590
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1591
- diffusion_row.append(self.decode_first_stage(z_noisy))
1592
-
1593
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1594
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1595
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1596
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1597
- log["diffusion_row"] = diffusion_grid
1598
-
1599
- if sample:
1600
- # get denoise row
1601
- with ema_scope("Sampling"):
1602
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1603
- ddim_steps=ddim_steps, eta=ddim_eta)
1604
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1605
- x_samples = self.decode_first_stage(samples)
1606
- log["samples"] = x_samples
1607
- if plot_denoise_rows:
1608
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1609
- log["denoise_row"] = denoise_grid
1610
-
1611
- if unconditional_guidance_scale > 1.0:
1612
- uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1613
- # TODO explore better "unconditional" choices for the other keys
1614
- # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1615
- uc = dict()
1616
- for k in c:
1617
- if k == "c_crossattn":
1618
- assert isinstance(c[k], list) and len(c[k]) == 1
1619
- uc[k] = [uc_tmp]
1620
- elif k == "c_adm": # todo: only run with text-based guidance?
1621
- assert isinstance(c[k], torch.Tensor)
1622
- uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1623
- elif isinstance(c[k], list):
1624
- uc[k] = [c[k][i] for i in range(len(c[k]))]
1625
- else:
1626
- uc[k] = c[k]
1627
-
1628
- with ema_scope("Sampling with classifier-free guidance"):
1629
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1630
- ddim_steps=ddim_steps, eta=ddim_eta,
1631
- unconditional_guidance_scale=unconditional_guidance_scale,
1632
- unconditional_conditioning=uc,
1633
- )
1634
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1635
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1636
-
1637
- if plot_progressive_rows:
1638
- with ema_scope("Plotting Progressives"):
1639
- img, progressives = self.progressive_denoising(c,
1640
- shape=(self.channels, self.image_size, self.image_size),
1641
- batch_size=N)
1642
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1643
- log["progressive_row"] = prog_row
1644
-
1645
- return log
1646
-
1647
-
1648
- class LatentInpaintDiffusion(LatentDiffusion):
1649
- """
1650
- can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1651
- e.g. mask as concat and text via cross-attn.
1652
- To disable finetuning mode, set finetune_keys to None
1653
- """
1654
- def __init__(self,
1655
- finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1656
- "model_ema.diffusion_modelinput_blocks00weight"
1657
- ),
1658
- concat_keys=("mask", "masked_image"),
1659
- masked_image_key="masked_image",
1660
- keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
1661
- c_concat_log_start=None, # to log reconstruction of c_concat codes
1662
- c_concat_log_end=None,
1663
- *args, **kwargs
1664
- ):
1665
- ckpt_path = kwargs.pop("ckpt_path", None)
1666
- ignore_keys = kwargs.pop("ignore_keys", list())
1667
- super().__init__(*args, **kwargs)
1668
- self.masked_image_key = masked_image_key
1669
- assert self.masked_image_key in concat_keys
1670
- self.finetune_keys = finetune_keys
1671
- self.concat_keys = concat_keys
1672
- self.keep_dims = keep_finetune_dims
1673
- self.c_concat_log_start = c_concat_log_start
1674
- self.c_concat_log_end = c_concat_log_end
1675
- if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1676
- if exists(ckpt_path):
1677
- self.init_from_ckpt(ckpt_path, ignore_keys)
1678
-
1679
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1680
- sd = torch.load(path, map_location="cpu")
1681
- if "state_dict" in list(sd.keys()):
1682
- sd = sd["state_dict"]
1683
- keys = list(sd.keys())
1684
- for k in keys:
1685
- for ik in ignore_keys:
1686
- if k.startswith(ik):
1687
- print("Deleting key {} from state_dict.".format(k))
1688
- del sd[k]
1689
-
1690
- # make it explicit, finetune by including extra input channels
1691
- if exists(self.finetune_keys) and k in self.finetune_keys:
1692
- new_entry = None
1693
- for name, param in self.named_parameters():
1694
- if name in self.finetune_keys:
1695
- print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1696
- new_entry = torch.zeros_like(param) # zero init
1697
- assert exists(new_entry), 'did not find matching parameter to modify'
1698
- new_entry[:, :self.keep_dims, ...] = sd[k]
1699
- sd[k] = new_entry
1700
-
1701
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
1702
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1703
- if len(missing) > 0:
1704
- print(f"Missing Keys: {missing}")
1705
- if len(unexpected) > 0:
1706
- print(f"Unexpected Keys: {unexpected}")
1707
-
1708
- @torch.no_grad()
1709
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1710
- # note: restricted to non-trainable encoders currently
1711
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1712
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1713
- force_c_encode=True, return_original_cond=True, bs=bs)
1714
-
1715
- assert exists(self.concat_keys)
1716
- c_cat = list()
1717
- for ck in self.concat_keys:
1718
- cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1719
- if bs is not None:
1720
- cc = cc[:bs]
1721
- cc = cc.to(self.device)
1722
- bchw = z.shape
1723
- if ck != self.masked_image_key:
1724
- cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1725
- else:
1726
- cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1727
- c_cat.append(cc)
1728
- c_cat = torch.cat(c_cat, dim=1)
1729
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1730
- if return_first_stage_outputs:
1731
- return z, all_conds, x, xrec, xc
1732
- return z, all_conds
1733
-
1734
- @torch.no_grad()
1735
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1736
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1737
- plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1738
- use_ema_scope=True,
1739
- **kwargs):
1740
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1741
- use_ddim = ddim_steps is not None
1742
-
1743
- log = dict()
1744
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1745
- c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1746
- N = min(x.shape[0], N)
1747
- n_row = min(x.shape[0], n_row)
1748
- log["inputs"] = x
1749
- log["reconstruction"] = xrec
1750
- if self.model.conditioning_key is not None:
1751
- if hasattr(self.cond_stage_model, "decode"):
1752
- xc = self.cond_stage_model.decode(c)
1753
- log["conditioning"] = xc
1754
- elif self.cond_stage_key in ["caption", "txt"]:
1755
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1756
- log["conditioning"] = xc
1757
- elif self.cond_stage_key == 'class_label':
1758
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1759
- log['conditioning'] = xc
1760
- elif isimage(xc):
1761
- log["conditioning"] = xc
1762
- if ismap(xc):
1763
- log["original_conditioning"] = self.to_rgb(xc)
1764
-
1765
- if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1766
- log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
1767
-
1768
- if plot_diffusion_rows:
1769
- # get diffusion row
1770
- diffusion_row = list()
1771
- z_start = z[:n_row]
1772
- for t in range(self.num_timesteps):
1773
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1774
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1775
- t = t.to(self.device).long()
1776
- noise = torch.randn_like(z_start)
1777
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1778
- diffusion_row.append(self.decode_first_stage(z_noisy))
1779
-
1780
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1781
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1782
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1783
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1784
- log["diffusion_row"] = diffusion_grid
1785
-
1786
- if sample:
1787
- # get denoise row
1788
- with ema_scope("Sampling"):
1789
- samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1790
- batch_size=N, ddim=use_ddim,
1791
- ddim_steps=ddim_steps, eta=ddim_eta)
1792
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1793
- x_samples = self.decode_first_stage(samples)
1794
- log["samples"] = x_samples
1795
- if plot_denoise_rows:
1796
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1797
- log["denoise_row"] = denoise_grid
1798
-
1799
- if unconditional_guidance_scale > 1.0:
1800
- uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1801
- uc_cat = c_cat
1802
- uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1803
- with ema_scope("Sampling with classifier-free guidance"):
1804
- samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1805
- batch_size=N, ddim=use_ddim,
1806
- ddim_steps=ddim_steps, eta=ddim_eta,
1807
- unconditional_guidance_scale=unconditional_guidance_scale,
1808
- unconditional_conditioning=uc_full,
1809
- )
1810
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1811
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1812
-
1813
- log["masked_image"] = rearrange(batch["masked_image"],
1814
- 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1815
- return log
1816
-
1817
-
1818
- class Layout2ImgDiffusion(LatentDiffusion):
1819
- # TODO: move all layout-specific hacks to this class
1820
- def __init__(self, cond_stage_key, *args, **kwargs):
1821
- assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1822
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
1823
-
1824
- def log_images(self, batch, N=8, *args, **kwargs):
1825
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
1826
-
1827
- key = 'train' if self.training else 'validation'
1828
- dset = self.trainer.datamodule.datasets[key]
1829
- mapper = dset.conditional_builders[self.cond_stage_key]
1830
-
1831
- bbox_imgs = []
1832
- map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1833
- for tknzd_bbox in batch[self.cond_stage_key][:N]:
1834
- bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1835
- bbox_imgs.append(bboximg)
1836
-
1837
- cond_img = torch.stack(bbox_imgs, dim=0)
1838
- logs['bbox_image'] = cond_img
1839
- return logs
1840
-
1841
-
1842
- class SimpleUpscaleDiffusion(LatentDiffusion):
1843
- def __init__(self, *args, low_scale_key="LR", **kwargs):
1844
- super().__init__(*args, **kwargs)
1845
- # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1846
- assert not self.cond_stage_trainable
1847
- self.low_scale_key = low_scale_key
1848
-
1849
- @torch.no_grad()
1850
- def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1851
- if not log_mode:
1852
- z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1853
- else:
1854
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1855
- force_c_encode=True, return_original_cond=True, bs=bs)
1856
- x_low = batch[self.low_scale_key][:bs]
1857
- x_low = rearrange(x_low, 'b h w c -> b c h w')
1858
- x_low = x_low.to(memory_format=torch.contiguous_format).float()
1859
-
1860
- encoder_posterior = self.encode_first_stage(x_low)
1861
- zx = self.get_first_stage_encoding(encoder_posterior).detach()
1862
- all_conds = {"c_concat": [zx], "c_crossattn": [c]}
1863
-
1864
- if log_mode:
1865
- # TODO: maybe disable if too expensive
1866
- interpretability = False
1867
- if interpretability:
1868
- zx = zx[:, :, ::2, ::2]
1869
- return z, all_conds, x, xrec, xc, x_low
1870
- return z, all_conds
1871
-
1872
- @torch.no_grad()
1873
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1874
- plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1875
- unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1876
- **kwargs):
1877
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1878
- use_ddim = ddim_steps is not None
1879
-
1880
- log = dict()
1881
- z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
1882
- N = min(x.shape[0], N)
1883
- n_row = min(x.shape[0], n_row)
1884
- log["inputs"] = x
1885
- log["reconstruction"] = xrec
1886
- log["x_lr"] = x_low
1887
-
1888
- if self.model.conditioning_key is not None:
1889
- if hasattr(self.cond_stage_model, "decode"):
1890
- xc = self.cond_stage_model.decode(c)
1891
- log["conditioning"] = xc
1892
- elif self.cond_stage_key in ["caption", "txt"]:
1893
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1894
- log["conditioning"] = xc
1895
- elif self.cond_stage_key == 'class_label':
1896
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1897
- log['conditioning'] = xc
1898
- elif isimage(xc):
1899
- log["conditioning"] = xc
1900
- if ismap(xc):
1901
- log["original_conditioning"] = self.to_rgb(xc)
1902
-
1903
- if sample:
1904
- # get denoise row
1905
- with ema_scope("Sampling"):
1906
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1907
- ddim_steps=ddim_steps, eta=ddim_eta)
1908
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1909
- x_samples = self.decode_first_stage(samples)
1910
- log["samples"] = x_samples
1911
-
1912
- if unconditional_guidance_scale > 1.0:
1913
- uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1914
- uc = dict()
1915
- for k in c:
1916
- if k == "c_crossattn":
1917
- assert isinstance(c[k], list) and len(c[k]) == 1
1918
- uc[k] = [uc_tmp]
1919
- elif isinstance(c[k], list):
1920
- uc[k] = [c[k][i] for i in range(len(c[k]))]
1921
- else:
1922
- uc[k] = c[k]
1923
-
1924
- with ema_scope("Sampling with classifier-free guidance"):
1925
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1926
- ddim_steps=ddim_steps, eta=ddim_eta,
1927
- unconditional_guidance_scale=unconditional_guidance_scale,
1928
- unconditional_conditioning=uc,
1929
- )
1930
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1931
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1932
-
1933
-
1934
- return log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .sampler import DPMSolverSampler
 
 
stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py DELETED
@@ -1,1184 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- import math
4
-
5
-
6
- class NoiseScheduleVP:
7
- def __init__(
8
- self,
9
- schedule='discrete',
10
- betas=None,
11
- alphas_cumprod=None,
12
- continuous_beta_0=0.1,
13
- continuous_beta_1=20.,
14
- ):
15
- """Create a wrapper class for the forward SDE (VP type).
16
-
17
- ***
18
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
- ***
21
-
22
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
23
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
24
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
25
-
26
- log_alpha_t = self.marginal_log_mean_coeff(t)
27
- sigma_t = self.marginal_std(t)
28
- lambda_t = self.marginal_lambda(t)
29
-
30
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
31
-
32
- t = self.inverse_lambda(lambda_t)
33
-
34
- ===============================================================
35
-
36
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
37
-
38
- 1. For discrete-time DPMs:
39
-
40
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
41
- t_i = (i + 1) / N
42
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
43
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
44
-
45
- Args:
46
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
47
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
48
-
49
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
50
-
51
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
52
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
53
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
54
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
55
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
56
- and
57
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
58
-
59
-
60
- 2. For continuous-time DPMs:
61
-
62
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
63
- schedule are the default settings in DDPM and improved-DDPM:
64
-
65
- Args:
66
- beta_min: A `float` number. The smallest beta for the linear schedule.
67
- beta_max: A `float` number. The largest beta for the linear schedule.
68
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
69
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
70
- T: A `float` number. The ending time of the forward process.
71
-
72
- ===============================================================
73
-
74
- Args:
75
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
76
- 'linear' or 'cosine' for continuous-time DPMs.
77
- Returns:
78
- A wrapper object of the forward SDE (VP type).
79
-
80
- ===============================================================
81
-
82
- Example:
83
-
84
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
85
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
86
-
87
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
88
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
89
-
90
- # For continuous-time DPMs (VPSDE), linear schedule:
91
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
92
-
93
- """
94
-
95
- if schedule not in ['discrete', 'linear', 'cosine']:
96
- raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
97
-
98
- self.schedule = schedule
99
- if schedule == 'discrete':
100
- if betas is not None:
101
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
102
- else:
103
- assert alphas_cumprod is not None
104
- log_alphas = 0.5 * torch.log(alphas_cumprod)
105
- self.total_N = len(log_alphas)
106
- self.T = 1.
107
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
108
- self.log_alpha_array = log_alphas.reshape((1, -1,))
109
- else:
110
- self.total_N = 1000
111
- self.beta_0 = continuous_beta_0
112
- self.beta_1 = continuous_beta_1
113
- self.cosine_s = 0.008
114
- self.cosine_beta_max = 999.
115
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
116
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
117
- self.schedule = schedule
118
- if schedule == 'cosine':
119
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
120
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
121
- self.T = 0.9946
122
- else:
123
- self.T = 1.
124
-
125
- def marginal_log_mean_coeff(self, t):
126
- """
127
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
128
- """
129
- if self.schedule == 'discrete':
130
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
131
- elif self.schedule == 'linear':
132
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
133
- elif self.schedule == 'cosine':
134
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
135
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
136
- return log_alpha_t
137
-
138
- def marginal_alpha(self, t):
139
- """
140
- Compute alpha_t of a given continuous-time label t in [0, T].
141
- """
142
- return torch.exp(self.marginal_log_mean_coeff(t))
143
-
144
- def marginal_std(self, t):
145
- """
146
- Compute sigma_t of a given continuous-time label t in [0, T].
147
- """
148
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
149
-
150
- def marginal_lambda(self, t):
151
- """
152
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
153
- """
154
- log_mean_coeff = self.marginal_log_mean_coeff(t)
155
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
156
- return log_mean_coeff - log_std
157
-
158
- def inverse_lambda(self, lamb):
159
- """
160
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
161
- """
162
- if self.schedule == 'linear':
163
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
164
- Delta = self.beta_0**2 + tmp
165
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
166
- elif self.schedule == 'discrete':
167
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
168
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
169
- return t.reshape((-1,))
170
- else:
171
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
172
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
173
- t = t_fn(log_alpha)
174
- return t
175
-
176
-
177
- def model_wrapper(
178
- model,
179
- noise_schedule,
180
- model_type="noise",
181
- model_kwargs={},
182
- guidance_type="uncond",
183
- condition=None,
184
- unconditional_condition=None,
185
- guidance_scale=1.,
186
- classifier_fn=None,
187
- classifier_kwargs={},
188
- ):
189
- """Create a wrapper function for the noise prediction model.
190
-
191
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
192
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
193
-
194
- We support four types of the diffusion model by setting `model_type`:
195
-
196
- 1. "noise": noise prediction model. (Trained by predicting noise).
197
-
198
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
199
-
200
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
201
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
202
-
203
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
204
- arXiv preprint arXiv:2202.00512 (2022).
205
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
206
- arXiv preprint arXiv:2210.02303 (2022).
207
-
208
- 4. "score": marginal score function. (Trained by denoising score matching).
209
- Note that the score function and the noise prediction model follows a simple relationship:
210
- ```
211
- noise(x_t, t) = -sigma_t * score(x_t, t)
212
- ```
213
-
214
- We support three types of guided sampling by DPMs by setting `guidance_type`:
215
- 1. "uncond": unconditional sampling by DPMs.
216
- The input `model` has the following format:
217
- ``
218
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
219
- ``
220
-
221
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
222
- The input `model` has the following format:
223
- ``
224
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
225
- ``
226
-
227
- The input `classifier_fn` has the following format:
228
- ``
229
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
230
- ``
231
-
232
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
233
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
234
-
235
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
236
- The input `model` has the following format:
237
- ``
238
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
239
- ``
240
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
241
-
242
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
243
- arXiv preprint arXiv:2207.12598 (2022).
244
-
245
-
246
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
247
- or continuous-time labels (i.e. epsilon to T).
248
-
249
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
250
- ``
251
- def model_fn(x, t_continuous) -> noise:
252
- t_input = get_model_input_time(t_continuous)
253
- return noise_pred(model, x, t_input, **model_kwargs)
254
- ``
255
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
256
-
257
- ===============================================================
258
-
259
- Args:
260
- model: A diffusion model with the corresponding format described above.
261
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
262
- model_type: A `str`. The parameterization type of the diffusion model.
263
- "noise" or "x_start" or "v" or "score".
264
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
265
- guidance_type: A `str`. The type of the guidance for sampling.
266
- "uncond" or "classifier" or "classifier-free".
267
- condition: A pytorch tensor. The condition for the guided sampling.
268
- Only used for "classifier" or "classifier-free" guidance type.
269
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
270
- Only used for "classifier-free" guidance type.
271
- guidance_scale: A `float`. The scale for the guided sampling.
272
- classifier_fn: A classifier function. Only used for the classifier guidance.
273
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
274
- Returns:
275
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
276
- """
277
-
278
- def get_model_input_time(t_continuous):
279
- """
280
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
281
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
282
- For continuous-time DPMs, we just use `t_continuous`.
283
- """
284
- if noise_schedule.schedule == 'discrete':
285
- return (t_continuous - 1. / noise_schedule.total_N) * 1000.
286
- else:
287
- return t_continuous
288
-
289
- def noise_pred_fn(x, t_continuous, cond=None):
290
- if t_continuous.reshape((-1,)).shape[0] == 1:
291
- t_continuous = t_continuous.expand((x.shape[0]))
292
- t_input = get_model_input_time(t_continuous)
293
- if cond is None:
294
- output = model(x, t_input, **model_kwargs)
295
- else:
296
- output = model(x, t_input, cond, **model_kwargs)
297
- if model_type == "noise":
298
- return output
299
- elif model_type == "x_start":
300
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
301
- dims = x.dim()
302
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
303
- elif model_type == "v":
304
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
305
- dims = x.dim()
306
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
307
- elif model_type == "score":
308
- sigma_t = noise_schedule.marginal_std(t_continuous)
309
- dims = x.dim()
310
- return -expand_dims(sigma_t, dims) * output
311
-
312
- def cond_grad_fn(x, t_input):
313
- """
314
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
315
- """
316
- with torch.enable_grad():
317
- x_in = x.detach().requires_grad_(True)
318
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
319
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
320
-
321
- def model_fn(x, t_continuous):
322
- """
323
- The noise predicition model function that is used for DPM-Solver.
324
- """
325
- if t_continuous.reshape((-1,)).shape[0] == 1:
326
- t_continuous = t_continuous.expand((x.shape[0]))
327
- if guidance_type == "uncond":
328
- return noise_pred_fn(x, t_continuous)
329
- elif guidance_type == "classifier":
330
- assert classifier_fn is not None
331
- t_input = get_model_input_time(t_continuous)
332
- cond_grad = cond_grad_fn(x, t_input)
333
- sigma_t = noise_schedule.marginal_std(t_continuous)
334
- noise = noise_pred_fn(x, t_continuous)
335
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
336
- elif guidance_type == "classifier-free":
337
- if guidance_scale == 1. or unconditional_condition is None:
338
- return noise_pred_fn(x, t_continuous, cond=condition)
339
- else:
340
- x_in = torch.cat([x] * 2)
341
- t_in = torch.cat([t_continuous] * 2)
342
- c_in = torch.cat([unconditional_condition, condition])
343
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
344
- return noise_uncond + guidance_scale * (noise - noise_uncond)
345
-
346
- assert model_type in ["noise", "x_start", "v"]
347
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
348
- return model_fn
349
-
350
-
351
- class DPM_Solver:
352
- def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
353
- """Construct a DPM-Solver.
354
-
355
- We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
356
- If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
357
- If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
358
- In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
359
- The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
360
-
361
- Args:
362
- model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
363
- ``
364
- def model_fn(x, t_continuous):
365
- return noise
366
- ``
367
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
368
- predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
369
- thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
370
- max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
371
-
372
- [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
373
- """
374
- self.model = model_fn
375
- self.noise_schedule = noise_schedule
376
- self.predict_x0 = predict_x0
377
- self.thresholding = thresholding
378
- self.max_val = max_val
379
-
380
- def noise_prediction_fn(self, x, t):
381
- """
382
- Return the noise prediction model.
383
- """
384
- return self.model(x, t)
385
-
386
- def data_prediction_fn(self, x, t):
387
- """
388
- Return the data prediction model (with thresholding).
389
- """
390
- noise = self.noise_prediction_fn(x, t)
391
- dims = x.dim()
392
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
393
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
394
- if self.thresholding:
395
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
396
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
397
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
398
- x0 = torch.clamp(x0, -s, s) / s
399
- return x0
400
-
401
- def model_fn(self, x, t):
402
- """
403
- Convert the model to the noise prediction model or the data prediction model.
404
- """
405
- if self.predict_x0:
406
- return self.data_prediction_fn(x, t)
407
- else:
408
- return self.noise_prediction_fn(x, t)
409
-
410
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
411
- """Compute the intermediate time steps for sampling.
412
-
413
- Args:
414
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
415
- - 'logSNR': uniform logSNR for the time steps.
416
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
417
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
418
- t_T: A `float`. The starting time of the sampling (default is T).
419
- t_0: A `float`. The ending time of the sampling (default is epsilon).
420
- N: A `int`. The total number of the spacing of the time steps.
421
- device: A torch device.
422
- Returns:
423
- A pytorch tensor of the time steps, with the shape (N + 1,).
424
- """
425
- if skip_type == 'logSNR':
426
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
427
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
428
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
429
- return self.noise_schedule.inverse_lambda(logSNR_steps)
430
- elif skip_type == 'time_uniform':
431
- return torch.linspace(t_T, t_0, N + 1).to(device)
432
- elif skip_type == 'time_quadratic':
433
- t_order = 2
434
- t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
435
- return t
436
- else:
437
- raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
438
-
439
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
440
- """
441
- Get the order of each step for sampling by the singlestep DPM-Solver.
442
-
443
- We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
444
- Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
445
- - If order == 1:
446
- We take `steps` of DPM-Solver-1 (i.e. DDIM).
447
- - If order == 2:
448
- - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
449
- - If steps % 2 == 0, we use K steps of DPM-Solver-2.
450
- - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
451
- - If order == 3:
452
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
453
- - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
454
- - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
455
- - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
456
-
457
- ============================================
458
- Args:
459
- order: A `int`. The max order for the solver (2 or 3).
460
- steps: A `int`. The total number of function evaluations (NFE).
461
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
462
- - 'logSNR': uniform logSNR for the time steps.
463
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
464
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
465
- t_T: A `float`. The starting time of the sampling (default is T).
466
- t_0: A `float`. The ending time of the sampling (default is epsilon).
467
- device: A torch device.
468
- Returns:
469
- orders: A list of the solver order of each step.
470
- """
471
- if order == 3:
472
- K = steps // 3 + 1
473
- if steps % 3 == 0:
474
- orders = [3,] * (K - 2) + [2, 1]
475
- elif steps % 3 == 1:
476
- orders = [3,] * (K - 1) + [1]
477
- else:
478
- orders = [3,] * (K - 1) + [2]
479
- elif order == 2:
480
- if steps % 2 == 0:
481
- K = steps // 2
482
- orders = [2,] * K
483
- else:
484
- K = steps // 2 + 1
485
- orders = [2,] * (K - 1) + [1]
486
- elif order == 1:
487
- K = 1
488
- orders = [1,] * steps
489
- else:
490
- raise ValueError("'order' must be '1' or '2' or '3'.")
491
- if skip_type == 'logSNR':
492
- # To reproduce the results in DPM-Solver paper
493
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
494
- else:
495
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders)).to(device)]
496
- return timesteps_outer, orders
497
-
498
- def denoise_to_zero_fn(self, x, s):
499
- """
500
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
501
- """
502
- return self.data_prediction_fn(x, s)
503
-
504
- def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
505
- """
506
- DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
507
-
508
- Args:
509
- x: A pytorch tensor. The initial value at time `s`.
510
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
511
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
512
- model_s: A pytorch tensor. The model function evaluated at time `s`.
513
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
514
- return_intermediate: A `bool`. If true, also return the model value at time `s`.
515
- Returns:
516
- x_t: A pytorch tensor. The approximated solution at time `t`.
517
- """
518
- ns = self.noise_schedule
519
- dims = x.dim()
520
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
521
- h = lambda_t - lambda_s
522
- log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
523
- sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
524
- alpha_t = torch.exp(log_alpha_t)
525
-
526
- if self.predict_x0:
527
- phi_1 = torch.expm1(-h)
528
- if model_s is None:
529
- model_s = self.model_fn(x, s)
530
- x_t = (
531
- expand_dims(sigma_t / sigma_s, dims) * x
532
- - expand_dims(alpha_t * phi_1, dims) * model_s
533
- )
534
- if return_intermediate:
535
- return x_t, {'model_s': model_s}
536
- else:
537
- return x_t
538
- else:
539
- phi_1 = torch.expm1(h)
540
- if model_s is None:
541
- model_s = self.model_fn(x, s)
542
- x_t = (
543
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
544
- - expand_dims(sigma_t * phi_1, dims) * model_s
545
- )
546
- if return_intermediate:
547
- return x_t, {'model_s': model_s}
548
- else:
549
- return x_t
550
-
551
- def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
552
- """
553
- Singlestep solver DPM-Solver-2 from time `s` to time `t`.
554
-
555
- Args:
556
- x: A pytorch tensor. The initial value at time `s`.
557
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
558
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
559
- r1: A `float`. The hyperparameter of the second-order solver.
560
- model_s: A pytorch tensor. The model function evaluated at time `s`.
561
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
562
- return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
563
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
564
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
565
- Returns:
566
- x_t: A pytorch tensor. The approximated solution at time `t`.
567
- """
568
- if solver_type not in ['dpm_solver', 'taylor']:
569
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
570
- if r1 is None:
571
- r1 = 0.5
572
- ns = self.noise_schedule
573
- dims = x.dim()
574
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
575
- h = lambda_t - lambda_s
576
- lambda_s1 = lambda_s + r1 * h
577
- s1 = ns.inverse_lambda(lambda_s1)
578
- log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
579
- sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
580
- alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
581
-
582
- if self.predict_x0:
583
- phi_11 = torch.expm1(-r1 * h)
584
- phi_1 = torch.expm1(-h)
585
-
586
- if model_s is None:
587
- model_s = self.model_fn(x, s)
588
- x_s1 = (
589
- expand_dims(sigma_s1 / sigma_s, dims) * x
590
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
591
- )
592
- model_s1 = self.model_fn(x_s1, s1)
593
- if solver_type == 'dpm_solver':
594
- x_t = (
595
- expand_dims(sigma_t / sigma_s, dims) * x
596
- - expand_dims(alpha_t * phi_1, dims) * model_s
597
- - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
598
- )
599
- elif solver_type == 'taylor':
600
- x_t = (
601
- expand_dims(sigma_t / sigma_s, dims) * x
602
- - expand_dims(alpha_t * phi_1, dims) * model_s
603
- + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
604
- )
605
- else:
606
- phi_11 = torch.expm1(r1 * h)
607
- phi_1 = torch.expm1(h)
608
-
609
- if model_s is None:
610
- model_s = self.model_fn(x, s)
611
- x_s1 = (
612
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
613
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
614
- )
615
- model_s1 = self.model_fn(x_s1, s1)
616
- if solver_type == 'dpm_solver':
617
- x_t = (
618
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
619
- - expand_dims(sigma_t * phi_1, dims) * model_s
620
- - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
621
- )
622
- elif solver_type == 'taylor':
623
- x_t = (
624
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
625
- - expand_dims(sigma_t * phi_1, dims) * model_s
626
- - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
627
- )
628
- if return_intermediate:
629
- return x_t, {'model_s': model_s, 'model_s1': model_s1}
630
- else:
631
- return x_t
632
-
633
- def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
634
- """
635
- Singlestep solver DPM-Solver-3 from time `s` to time `t`.
636
-
637
- Args:
638
- x: A pytorch tensor. The initial value at time `s`.
639
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
640
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
641
- r1: A `float`. The hyperparameter of the third-order solver.
642
- r2: A `float`. The hyperparameter of the third-order solver.
643
- model_s: A pytorch tensor. The model function evaluated at time `s`.
644
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
645
- model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
646
- If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
647
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
648
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
649
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
650
- Returns:
651
- x_t: A pytorch tensor. The approximated solution at time `t`.
652
- """
653
- if solver_type not in ['dpm_solver', 'taylor']:
654
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
655
- if r1 is None:
656
- r1 = 1. / 3.
657
- if r2 is None:
658
- r2 = 2. / 3.
659
- ns = self.noise_schedule
660
- dims = x.dim()
661
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
662
- h = lambda_t - lambda_s
663
- lambda_s1 = lambda_s + r1 * h
664
- lambda_s2 = lambda_s + r2 * h
665
- s1 = ns.inverse_lambda(lambda_s1)
666
- s2 = ns.inverse_lambda(lambda_s2)
667
- log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
668
- sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
669
- alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
670
-
671
- if self.predict_x0:
672
- phi_11 = torch.expm1(-r1 * h)
673
- phi_12 = torch.expm1(-r2 * h)
674
- phi_1 = torch.expm1(-h)
675
- phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
676
- phi_2 = phi_1 / h + 1.
677
- phi_3 = phi_2 / h - 0.5
678
-
679
- if model_s is None:
680
- model_s = self.model_fn(x, s)
681
- if model_s1 is None:
682
- x_s1 = (
683
- expand_dims(sigma_s1 / sigma_s, dims) * x
684
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
685
- )
686
- model_s1 = self.model_fn(x_s1, s1)
687
- x_s2 = (
688
- expand_dims(sigma_s2 / sigma_s, dims) * x
689
- - expand_dims(alpha_s2 * phi_12, dims) * model_s
690
- + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
691
- )
692
- model_s2 = self.model_fn(x_s2, s2)
693
- if solver_type == 'dpm_solver':
694
- x_t = (
695
- expand_dims(sigma_t / sigma_s, dims) * x
696
- - expand_dims(alpha_t * phi_1, dims) * model_s
697
- + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
698
- )
699
- elif solver_type == 'taylor':
700
- D1_0 = (1. / r1) * (model_s1 - model_s)
701
- D1_1 = (1. / r2) * (model_s2 - model_s)
702
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
703
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
704
- x_t = (
705
- expand_dims(sigma_t / sigma_s, dims) * x
706
- - expand_dims(alpha_t * phi_1, dims) * model_s
707
- + expand_dims(alpha_t * phi_2, dims) * D1
708
- - expand_dims(alpha_t * phi_3, dims) * D2
709
- )
710
- else:
711
- phi_11 = torch.expm1(r1 * h)
712
- phi_12 = torch.expm1(r2 * h)
713
- phi_1 = torch.expm1(h)
714
- phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
715
- phi_2 = phi_1 / h - 1.
716
- phi_3 = phi_2 / h - 0.5
717
-
718
- if model_s is None:
719
- model_s = self.model_fn(x, s)
720
- if model_s1 is None:
721
- x_s1 = (
722
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
723
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
724
- )
725
- model_s1 = self.model_fn(x_s1, s1)
726
- x_s2 = (
727
- expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
728
- - expand_dims(sigma_s2 * phi_12, dims) * model_s
729
- - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
730
- )
731
- model_s2 = self.model_fn(x_s2, s2)
732
- if solver_type == 'dpm_solver':
733
- x_t = (
734
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
735
- - expand_dims(sigma_t * phi_1, dims) * model_s
736
- - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
737
- )
738
- elif solver_type == 'taylor':
739
- D1_0 = (1. / r1) * (model_s1 - model_s)
740
- D1_1 = (1. / r2) * (model_s2 - model_s)
741
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
742
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
743
- x_t = (
744
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
745
- - expand_dims(sigma_t * phi_1, dims) * model_s
746
- - expand_dims(sigma_t * phi_2, dims) * D1
747
- - expand_dims(sigma_t * phi_3, dims) * D2
748
- )
749
-
750
- if return_intermediate:
751
- return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
752
- else:
753
- return x_t
754
-
755
- def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
756
- """
757
- Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
758
-
759
- Args:
760
- x: A pytorch tensor. The initial value at time `s`.
761
- model_prev_list: A list of pytorch tensor. The previous computed model values.
762
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
763
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
764
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
765
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
766
- Returns:
767
- x_t: A pytorch tensor. The approximated solution at time `t`.
768
- """
769
- if solver_type not in ['dpm_solver', 'taylor']:
770
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
771
- ns = self.noise_schedule
772
- dims = x.dim()
773
- model_prev_1, model_prev_0 = model_prev_list
774
- t_prev_1, t_prev_0 = t_prev_list
775
- lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
776
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
777
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
778
- alpha_t = torch.exp(log_alpha_t)
779
-
780
- h_0 = lambda_prev_0 - lambda_prev_1
781
- h = lambda_t - lambda_prev_0
782
- r0 = h_0 / h
783
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
784
- if self.predict_x0:
785
- if solver_type == 'dpm_solver':
786
- x_t = (
787
- expand_dims(sigma_t / sigma_prev_0, dims) * x
788
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
789
- - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
790
- )
791
- elif solver_type == 'taylor':
792
- x_t = (
793
- expand_dims(sigma_t / sigma_prev_0, dims) * x
794
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
795
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
796
- )
797
- else:
798
- if solver_type == 'dpm_solver':
799
- x_t = (
800
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
801
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
802
- - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
803
- )
804
- elif solver_type == 'taylor':
805
- x_t = (
806
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
807
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
808
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
809
- )
810
- return x_t
811
-
812
- def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
813
- """
814
- Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
815
-
816
- Args:
817
- x: A pytorch tensor. The initial value at time `s`.
818
- model_prev_list: A list of pytorch tensor. The previous computed model values.
819
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
820
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
821
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
822
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
823
- Returns:
824
- x_t: A pytorch tensor. The approximated solution at time `t`.
825
- """
826
- ns = self.noise_schedule
827
- dims = x.dim()
828
- model_prev_2, model_prev_1, model_prev_0 = model_prev_list
829
- t_prev_2, t_prev_1, t_prev_0 = t_prev_list
830
- lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
831
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
832
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
833
- alpha_t = torch.exp(log_alpha_t)
834
-
835
- h_1 = lambda_prev_1 - lambda_prev_2
836
- h_0 = lambda_prev_0 - lambda_prev_1
837
- h = lambda_t - lambda_prev_0
838
- r0, r1 = h_0 / h, h_1 / h
839
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
840
- D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
841
- D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
842
- D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
843
- if self.predict_x0:
844
- x_t = (
845
- expand_dims(sigma_t / sigma_prev_0, dims) * x
846
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
847
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
848
- - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
849
- )
850
- else:
851
- x_t = (
852
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
853
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
854
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
855
- - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
856
- )
857
- return x_t
858
-
859
- def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
860
- """
861
- Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
862
-
863
- Args:
864
- x: A pytorch tensor. The initial value at time `s`.
865
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
866
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
867
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
868
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
869
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
870
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
871
- r1: A `float`. The hyperparameter of the second-order or third-order solver.
872
- r2: A `float`. The hyperparameter of the third-order solver.
873
- Returns:
874
- x_t: A pytorch tensor. The approximated solution at time `t`.
875
- """
876
- if order == 1:
877
- return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
878
- elif order == 2:
879
- return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
880
- elif order == 3:
881
- return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
882
- else:
883
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
884
-
885
- def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
886
- """
887
- Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
888
-
889
- Args:
890
- x: A pytorch tensor. The initial value at time `s`.
891
- model_prev_list: A list of pytorch tensor. The previous computed model values.
892
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
893
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
894
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
895
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
896
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
897
- Returns:
898
- x_t: A pytorch tensor. The approximated solution at time `t`.
899
- """
900
- if order == 1:
901
- return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
902
- elif order == 2:
903
- return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
904
- elif order == 3:
905
- return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
906
- else:
907
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
908
-
909
- def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
910
- """
911
- The adaptive step size solver based on singlestep DPM-Solver.
912
-
913
- Args:
914
- x: A pytorch tensor. The initial value at time `t_T`.
915
- order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
916
- t_T: A `float`. The starting time of the sampling (default is T).
917
- t_0: A `float`. The ending time of the sampling (default is epsilon).
918
- h_init: A `float`. The initial step size (for logSNR).
919
- atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
920
- rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
921
- theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
922
- t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
923
- current time and `t_0` is less than `t_err`. The default setting is 1e-5.
924
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
925
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
926
- Returns:
927
- x_0: A pytorch tensor. The approximated solution at time `t_0`.
928
-
929
- [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
930
- """
931
- ns = self.noise_schedule
932
- s = t_T * torch.ones((x.shape[0],)).to(x)
933
- lambda_s = ns.marginal_lambda(s)
934
- lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
935
- h = h_init * torch.ones_like(s).to(x)
936
- x_prev = x
937
- nfe = 0
938
- if order == 2:
939
- r1 = 0.5
940
- lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
941
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
942
- elif order == 3:
943
- r1, r2 = 1. / 3., 2. / 3.
944
- lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
945
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
946
- else:
947
- raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
948
- while torch.abs((s - t_0)).mean() > t_err:
949
- t = ns.inverse_lambda(lambda_s + h)
950
- x_lower, lower_noise_kwargs = lower_update(x, s, t)
951
- x_higher = higher_update(x, s, t, **lower_noise_kwargs)
952
- delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
953
- norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
954
- E = norm_fn((x_higher - x_lower) / delta).max()
955
- if torch.all(E <= 1.):
956
- x = x_higher
957
- s = t
958
- x_prev = x_lower
959
- lambda_s = ns.marginal_lambda(s)
960
- h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
961
- nfe += order
962
- print('adaptive solver nfe', nfe)
963
- return x
964
-
965
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
966
- method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
967
- atol=0.0078, rtol=0.05,
968
- ):
969
- """
970
- Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
971
-
972
- =====================================================
973
-
974
- We support the following algorithms for both noise prediction model and data prediction model:
975
- - 'singlestep':
976
- Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
977
- We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
978
- The total number of function evaluations (NFE) == `steps`.
979
- Given a fixed NFE == `steps`, the sampling procedure is:
980
- - If `order` == 1:
981
- - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
982
- - If `order` == 2:
983
- - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
984
- - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
985
- - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
986
- - If `order` == 3:
987
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
988
- - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
989
- - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
990
- - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
991
- - 'multistep':
992
- Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
993
- We initialize the first `order` values by lower order multistep solvers.
994
- Given a fixed NFE == `steps`, the sampling procedure is:
995
- Denote K = steps.
996
- - If `order` == 1:
997
- - We use K steps of DPM-Solver-1 (i.e. DDIM).
998
- - If `order` == 2:
999
- - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
1000
- - If `order` == 3:
1001
- - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
1002
- - 'singlestep_fixed':
1003
- Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
1004
- We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
1005
- - 'adaptive':
1006
- Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
1007
- We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
1008
- You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
1009
- (NFE) and the sample quality.
1010
- - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
1011
- - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
1012
-
1013
- =====================================================
1014
-
1015
- Some advices for choosing the algorithm:
1016
- - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
1017
- Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
1018
- e.g.
1019
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
1020
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1021
- skip_type='time_uniform', method='singlestep')
1022
- - For **guided sampling with large guidance scale** by DPMs:
1023
- Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
1024
- e.g.
1025
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
1026
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1027
- skip_type='time_uniform', method='multistep')
1028
-
1029
- We support three types of `skip_type`:
1030
- - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1031
- - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1032
- - 'time_quadratic': quadratic time for the time steps.
1033
-
1034
- =====================================================
1035
- Args:
1036
- x: A pytorch tensor. The initial value at time `t_start`
1037
- e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1038
- steps: A `int`. The total number of function evaluations (NFE).
1039
- t_start: A `float`. The starting time of the sampling.
1040
- If `T` is None, we use self.noise_schedule.T (default is 1.0).
1041
- t_end: A `float`. The ending time of the sampling.
1042
- If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1043
- e.g. if total_N == 1000, we have `t_end` == 1e-3.
1044
- For discrete-time DPMs:
1045
- - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1046
- For continuous-time DPMs:
1047
- - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1048
- order: A `int`. The order of DPM-Solver.
1049
- skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1050
- method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1051
- denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1052
- Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1053
-
1054
- This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1055
- score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1056
- for diffusion models sampling by diffusion SDEs for low-resolutional images
1057
- (such as CIFAR-10). However, we observed that such trick does not matter for
1058
- high-resolutional images. As it needs an additional NFE, we do not recommend
1059
- it for high-resolutional images.
1060
- lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1061
- Only valid for `method=multistep` and `steps < 15`. We empirically find that
1062
- this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1063
- (especially for steps <= 10). So we recommend to set it to be `True`.
1064
- solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1065
- atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1066
- rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1067
- Returns:
1068
- x_end: A pytorch tensor. The approximated solution at time `t_end`.
1069
-
1070
- """
1071
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1072
- t_T = self.noise_schedule.T if t_start is None else t_start
1073
- device = x.device
1074
- if method == 'adaptive':
1075
- with torch.no_grad():
1076
- x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
1077
- elif method == 'multistep':
1078
- assert steps >= order
1079
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1080
- assert timesteps.shape[0] - 1 == steps
1081
- with torch.no_grad():
1082
- vec_t = timesteps[0].expand((x.shape[0]))
1083
- model_prev_list = [self.model_fn(x, vec_t)]
1084
- t_prev_list = [vec_t]
1085
- # Init the first `order` values by lower order multistep DPM-Solver.
1086
- for init_order in range(1, order):
1087
- vec_t = timesteps[init_order].expand(x.shape[0])
1088
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type)
1089
- model_prev_list.append(self.model_fn(x, vec_t))
1090
- t_prev_list.append(vec_t)
1091
- # Compute the remaining values by `order`-th order multistep DPM-Solver.
1092
- for step in range(order, steps + 1):
1093
- vec_t = timesteps[step].expand(x.shape[0])
1094
- if lower_order_final and steps < 15:
1095
- step_order = min(order, steps + 1 - step)
1096
- else:
1097
- step_order = order
1098
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type)
1099
- for i in range(order - 1):
1100
- t_prev_list[i] = t_prev_list[i + 1]
1101
- model_prev_list[i] = model_prev_list[i + 1]
1102
- t_prev_list[-1] = vec_t
1103
- # We do not need to evaluate the final model value.
1104
- if step < steps:
1105
- model_prev_list[-1] = self.model_fn(x, vec_t)
1106
- elif method in ['singlestep', 'singlestep_fixed']:
1107
- if method == 'singlestep':
1108
- timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
1109
- elif method == 'singlestep_fixed':
1110
- K = steps // order
1111
- orders = [order,] * K
1112
- timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1113
- for i, order in enumerate(orders):
1114
- t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1115
- timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device)
1116
- lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1117
- vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1118
- h = lambda_inner[-1] - lambda_inner[0]
1119
- r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1120
- r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1121
- x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1122
- if denoise_to_zero:
1123
- x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1124
- return x
1125
-
1126
-
1127
-
1128
- #############################################################
1129
- # other utility functions
1130
- #############################################################
1131
-
1132
- def interpolate_fn(x, xp, yp):
1133
- """
1134
- A piecewise linear function y = f(x), using xp and yp as keypoints.
1135
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
1136
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1137
-
1138
- Args:
1139
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1140
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1141
- yp: PyTorch tensor with shape [C, K].
1142
- Returns:
1143
- The function values f(x), with shape [N, C].
1144
- """
1145
- N, K = x.shape[0], xp.shape[1]
1146
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1147
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1148
- x_idx = torch.argmin(x_indices, dim=2)
1149
- cand_start_idx = x_idx - 1
1150
- start_idx = torch.where(
1151
- torch.eq(x_idx, 0),
1152
- torch.tensor(1, device=x.device),
1153
- torch.where(
1154
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1155
- ),
1156
- )
1157
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1158
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1159
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1160
- start_idx2 = torch.where(
1161
- torch.eq(x_idx, 0),
1162
- torch.tensor(0, device=x.device),
1163
- torch.where(
1164
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1165
- ),
1166
- )
1167
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1168
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1169
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1170
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1171
- return cand
1172
-
1173
-
1174
- def expand_dims(v, dims):
1175
- """
1176
- Expand the tensor `v` to the dim `dims`.
1177
-
1178
- Args:
1179
- `v`: a PyTorch tensor with shape [N].
1180
- `dim`: a `int`.
1181
- Returns:
1182
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1183
- """
1184
- return v[(...,) + (None,)*(dims - 1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py DELETED
@@ -1,82 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
-
5
- from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
6
-
7
-
8
- class DPMSolverSampler(object):
9
- def __init__(self, model, **kwargs):
10
- super().__init__()
11
- self.model = model
12
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
13
- self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
14
-
15
- def register_buffer(self, name, attr):
16
- if type(attr) == torch.Tensor:
17
- if attr.device != torch.device("cuda"):
18
- attr = attr.to(torch.device("cuda"))
19
- setattr(self, name, attr)
20
-
21
- @torch.no_grad()
22
- def sample(self,
23
- S,
24
- batch_size,
25
- shape,
26
- conditioning=None,
27
- callback=None,
28
- normals_sequence=None,
29
- img_callback=None,
30
- quantize_x0=False,
31
- eta=0.,
32
- mask=None,
33
- x0=None,
34
- temperature=1.,
35
- noise_dropout=0.,
36
- score_corrector=None,
37
- corrector_kwargs=None,
38
- verbose=True,
39
- x_T=None,
40
- log_every_t=100,
41
- unconditional_guidance_scale=1.,
42
- unconditional_conditioning=None,
43
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
44
- **kwargs
45
- ):
46
- if conditioning is not None:
47
- if isinstance(conditioning, dict):
48
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
49
- if cbs != batch_size:
50
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
51
- else:
52
- if conditioning.shape[0] != batch_size:
53
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
54
-
55
- # sampling
56
- C, H, W = shape
57
- size = (batch_size, C, H, W)
58
-
59
- # print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
60
-
61
- device = self.model.betas.device
62
- if x_T is None:
63
- img = torch.randn(size, device=device)
64
- else:
65
- img = x_T
66
-
67
- ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
68
-
69
- model_fn = model_wrapper(
70
- lambda x, t, c: self.model.apply_model(x, t, c),
71
- ns,
72
- model_type="noise",
73
- guidance_type="classifier-free",
74
- condition=conditioning,
75
- unconditional_condition=unconditional_conditioning,
76
- guidance_scale=unconditional_guidance_scale,
77
- )
78
-
79
- dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
80
- x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
81
-
82
- return x.to(device), None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/plms.py DELETED
@@ -1,259 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
- import numpy as np
5
- from tqdm import tqdm
6
- from functools import partial
7
-
8
- from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
- from ldm.models.diffusion.sampling_util import norm_thresholding
10
-
11
-
12
- class PLMSSampler(object):
13
- def __init__(self, model, schedule="linear", **kwargs):
14
- super().__init__()
15
- self.model = model
16
- self.ddpm_num_timesteps = model.num_timesteps
17
- self.schedule = schedule
18
-
19
- def register_buffer(self, name, attr):
20
- if type(attr) == torch.Tensor:
21
- if attr.device != torch.device("cuda"):
22
- attr = attr.to(torch.device("cuda"))
23
- setattr(self, name, attr)
24
-
25
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
- if ddim_eta != 0:
27
- raise ValueError('ddim_eta must be 0 for PLMS')
28
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
- alphas_cumprod = self.model.alphas_cumprod
31
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
-
34
- self.register_buffer('betas', to_torch(self.model.betas))
35
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
-
38
- # calculations for diffusion q(x_t | x_{t-1}) and others
39
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
-
45
- # ddim sampling parameters
46
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
- ddim_timesteps=self.ddim_timesteps,
48
- eta=ddim_eta,verbose=verbose)
49
- self.register_buffer('ddim_sigmas', ddim_sigmas)
50
- self.register_buffer('ddim_alphas', ddim_alphas)
51
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
-
58
- @torch.no_grad()
59
- def sample(self,
60
- S,
61
- batch_size,
62
- shape,
63
- conditioning=None,
64
- callback=None,
65
- normals_sequence=None,
66
- img_callback=None,
67
- quantize_x0=False,
68
- eta=0.,
69
- mask=None,
70
- x0=None,
71
- temperature=1.,
72
- noise_dropout=0.,
73
- score_corrector=None,
74
- corrector_kwargs=None,
75
- verbose=True,
76
- x_T=None,
77
- log_every_t=100,
78
- unconditional_guidance_scale=1.,
79
- unconditional_conditioning=None,
80
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
- dynamic_threshold=None,
82
- **kwargs
83
- ):
84
- if conditioning is not None:
85
- if isinstance(conditioning, dict):
86
- ctmp = conditioning[list(conditioning.keys())[0]]
87
- while isinstance(ctmp, list): ctmp = ctmp[0]
88
- cbs = ctmp.shape[0]
89
- if cbs != batch_size:
90
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
91
- else:
92
- if conditioning.shape[0] != batch_size:
93
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
94
-
95
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
96
- # sampling
97
- C, H, W = shape
98
- size = (batch_size, C, H, W)
99
- print(f'Data shape for PLMS sampling is {size}')
100
-
101
- samples, intermediates = self.plms_sampling(conditioning, size,
102
- callback=callback,
103
- img_callback=img_callback,
104
- quantize_denoised=quantize_x0,
105
- mask=mask, x0=x0,
106
- ddim_use_original_steps=False,
107
- noise_dropout=noise_dropout,
108
- temperature=temperature,
109
- score_corrector=score_corrector,
110
- corrector_kwargs=corrector_kwargs,
111
- x_T=x_T,
112
- log_every_t=log_every_t,
113
- unconditional_guidance_scale=unconditional_guidance_scale,
114
- unconditional_conditioning=unconditional_conditioning,
115
- dynamic_threshold=dynamic_threshold,
116
- )
117
- return samples, intermediates
118
-
119
- @torch.no_grad()
120
- def plms_sampling(self, cond, shape,
121
- x_T=None, ddim_use_original_steps=False,
122
- callback=None, timesteps=None, quantize_denoised=False,
123
- mask=None, x0=None, img_callback=None, log_every_t=100,
124
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
125
- unconditional_guidance_scale=1., unconditional_conditioning=None,
126
- dynamic_threshold=None):
127
- device = self.model.betas.device
128
- b = shape[0]
129
- if x_T is None:
130
- img = torch.randn(shape, device=device)
131
- else:
132
- img = x_T
133
-
134
- if timesteps is None:
135
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
136
- elif timesteps is not None and not ddim_use_original_steps:
137
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
138
- timesteps = self.ddim_timesteps[:subset_end]
139
-
140
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
141
- time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
142
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
143
- print(f"Running PLMS Sampling with {total_steps} timesteps")
144
-
145
- iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
146
- old_eps = []
147
-
148
- for i, step in enumerate(iterator):
149
- index = total_steps - i - 1
150
- ts = torch.full((b,), step, device=device, dtype=torch.long)
151
- ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
152
-
153
- if mask is not None:
154
- assert x0 is not None
155
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
156
- img = img_orig * mask + (1. - mask) * img
157
-
158
- outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
159
- quantize_denoised=quantize_denoised, temperature=temperature,
160
- noise_dropout=noise_dropout, score_corrector=score_corrector,
161
- corrector_kwargs=corrector_kwargs,
162
- unconditional_guidance_scale=unconditional_guidance_scale,
163
- unconditional_conditioning=unconditional_conditioning,
164
- old_eps=old_eps, t_next=ts_next,
165
- dynamic_threshold=dynamic_threshold)
166
- img, pred_x0, e_t = outs
167
- old_eps.append(e_t)
168
- if len(old_eps) >= 4:
169
- old_eps.pop(0)
170
- if callback: callback(i)
171
- if img_callback: img_callback(pred_x0, i)
172
-
173
- if index % log_every_t == 0 or index == total_steps - 1:
174
- intermediates['x_inter'].append(img)
175
- intermediates['pred_x0'].append(pred_x0)
176
-
177
- return img, intermediates
178
-
179
- @torch.no_grad()
180
- def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
181
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
182
- unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
183
- dynamic_threshold=None):
184
- b, *_, device = *x.shape, x.device
185
-
186
- def get_model_output(x, t):
187
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
- e_t = self.model.apply_model(x, t, c)
189
- else:
190
- x_in = torch.cat([x] * 2)
191
- t_in = torch.cat([t] * 2)
192
- if isinstance(c, dict):
193
- assert isinstance(unconditional_conditioning, dict)
194
- c_in = dict()
195
- for k in c:
196
- if isinstance(c[k], list):
197
- c_in[k] = [torch.cat([
198
- unconditional_conditioning[k][i],
199
- c[k][i]]) for i in range(len(c[k]))]
200
- else:
201
- c_in[k] = torch.cat([
202
- unconditional_conditioning[k],
203
- c[k]])
204
- else:
205
- c_in = torch.cat([unconditional_conditioning, c])
206
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
207
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
208
-
209
- if score_corrector is not None:
210
- assert self.model.parameterization == "eps"
211
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
212
-
213
- return e_t
214
-
215
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
216
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
217
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
218
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
219
-
220
- def get_x_prev_and_pred_x0(e_t, index):
221
- # select parameters corresponding to the currently considered timestep
222
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
223
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
224
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
225
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
226
-
227
- # current prediction for x_0
228
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
229
- if quantize_denoised:
230
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
231
- if dynamic_threshold is not None:
232
- pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
233
- # direction pointing to x_t
234
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
235
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
236
- if noise_dropout > 0.:
237
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
238
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
239
- return x_prev, pred_x0
240
-
241
- e_t = get_model_output(x, t)
242
- if len(old_eps) == 0:
243
- # Pseudo Improved Euler (2nd order)
244
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
245
- e_t_next = get_model_output(x_prev, t_next)
246
- e_t_prime = (e_t + e_t_next) / 2
247
- elif len(old_eps) == 1:
248
- # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
249
- e_t_prime = (3 * e_t - old_eps[-1]) / 2
250
- elif len(old_eps) == 2:
251
- # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
252
- e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
253
- elif len(old_eps) >= 3:
254
- # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
255
- e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
256
-
257
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
258
-
259
- return x_prev, pred_x0, e_t
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/models/diffusion/sampling_util.py DELETED
@@ -1,50 +0,0 @@
1
- import torch
2
- import numpy as np
3
-
4
-
5
- def append_dims(x, target_dims):
6
- """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
- From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
- dims_to_append = target_dims - x.ndim
9
- if dims_to_append < 0:
10
- raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
- return x[(...,) + (None,) * dims_to_append]
12
-
13
-
14
- def renorm_thresholding(x0, value):
15
- # renorm
16
- pred_max = x0.max()
17
- pred_min = x0.min()
18
- pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
19
- pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
20
-
21
- s = torch.quantile(
22
- rearrange(pred_x0, 'b ... -> b (...)').abs(),
23
- value,
24
- dim=-1
25
- )
26
- s.clamp_(min=1.0)
27
- s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
28
-
29
- # clip by threshold
30
- # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
31
-
32
- # temporary hack: numpy on cpu
33
- pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
34
- pred_x0 = torch.tensor(pred_x0).to(self.model.device)
35
-
36
- # re.renorm
37
- pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
38
- pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
39
- return pred_x0
40
-
41
-
42
- def norm_thresholding(x0, value):
43
- s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
44
- return x0 * (value / s)
45
-
46
-
47
- def spatial_norm_thresholding(x0, value):
48
- # b c h w
49
- s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
50
- return x0 * (value / s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/attention.py DELETED
@@ -1,269 +0,0 @@
1
- from inspect import isfunction
2
- import math
3
- import torch
4
- import torch.nn.functional as F
5
- from torch import nn, einsum
6
- from einops import rearrange, repeat
7
-
8
- from ldm.modules.diffusionmodules.util import checkpoint
9
-
10
-
11
- def exists(val):
12
- return val is not None
13
-
14
-
15
- def uniq(arr):
16
- return{el: True for el in arr}.keys()
17
-
18
-
19
- def default(val, d):
20
- if exists(val):
21
- return val
22
- return d() if isfunction(d) else d
23
-
24
-
25
- def max_neg_value(t):
26
- return -torch.finfo(t.dtype).max
27
-
28
-
29
- def init_(tensor):
30
- dim = tensor.shape[-1]
31
- std = 1 / math.sqrt(dim)
32
- tensor.uniform_(-std, std)
33
- return tensor
34
-
35
-
36
- # feedforward
37
- class GEGLU(nn.Module):
38
- def __init__(self, dim_in, dim_out):
39
- super().__init__()
40
- self.proj = nn.Linear(dim_in, dim_out * 2)
41
-
42
- def forward(self, x):
43
- x, gate = self.proj(x).chunk(2, dim=-1)
44
- return x * F.gelu(gate)
45
-
46
-
47
- class FeedForward(nn.Module):
48
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
49
- super().__init__()
50
- inner_dim = int(dim * mult)
51
- dim_out = default(dim_out, dim)
52
- project_in = nn.Sequential(
53
- nn.Linear(dim, inner_dim),
54
- nn.GELU()
55
- ) if not glu else GEGLU(dim, inner_dim)
56
-
57
- self.net = nn.Sequential(
58
- project_in,
59
- nn.Dropout(dropout),
60
- nn.Linear(inner_dim, dim_out)
61
- )
62
-
63
- def forward(self, x):
64
- return self.net(x)
65
-
66
-
67
- def zero_module(module):
68
- """
69
- Zero out the parameters of a module and return it.
70
- """
71
- for p in module.parameters():
72
- p.detach().zero_()
73
- return module
74
-
75
-
76
- def Normalize(in_channels):
77
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
78
-
79
-
80
- class LinearAttention(nn.Module):
81
- def __init__(self, dim, heads=4, dim_head=32):
82
- super().__init__()
83
- self.heads = heads
84
- hidden_dim = dim_head * heads
85
- self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
86
- self.to_out = nn.Conv2d(hidden_dim, dim, 1)
87
-
88
- def forward(self, x):
89
- b, c, h, w = x.shape
90
- qkv = self.to_qkv(x)
91
- q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
92
- k = k.softmax(dim=-1)
93
- context = torch.einsum('bhdn,bhen->bhde', k, v)
94
- out = torch.einsum('bhde,bhdn->bhen', context, q)
95
- out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
96
- return self.to_out(out)
97
-
98
-
99
- class SpatialSelfAttention(nn.Module):
100
- def __init__(self, in_channels):
101
- super().__init__()
102
- self.in_channels = in_channels
103
-
104
- self.norm = Normalize(in_channels)
105
- self.q = torch.nn.Conv2d(in_channels,
106
- in_channels,
107
- kernel_size=1,
108
- stride=1,
109
- padding=0)
110
- self.k = torch.nn.Conv2d(in_channels,
111
- in_channels,
112
- kernel_size=1,
113
- stride=1,
114
- padding=0)
115
- self.v = torch.nn.Conv2d(in_channels,
116
- in_channels,
117
- kernel_size=1,
118
- stride=1,
119
- padding=0)
120
- self.proj_out = torch.nn.Conv2d(in_channels,
121
- in_channels,
122
- kernel_size=1,
123
- stride=1,
124
- padding=0)
125
-
126
- def forward(self, x):
127
- h_ = x
128
- h_ = self.norm(h_)
129
- q = self.q(h_)
130
- k = self.k(h_)
131
- v = self.v(h_)
132
-
133
- # compute attention
134
- b,c,h,w = q.shape
135
- q = rearrange(q, 'b c h w -> b (h w) c')
136
- k = rearrange(k, 'b c h w -> b c (h w)')
137
- w_ = torch.einsum('bij,bjk->bik', q, k)
138
-
139
- w_ = w_ * (int(c)**(-0.5))
140
- w_ = torch.nn.functional.softmax(w_, dim=2)
141
-
142
- # attend to values
143
- v = rearrange(v, 'b c h w -> b c (h w)')
144
- w_ = rearrange(w_, 'b i j -> b j i')
145
- h_ = torch.einsum('bij,bjk->bik', v, w_)
146
- h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
147
- h_ = self.proj_out(h_)
148
-
149
- return x+h_
150
-
151
-
152
- class CrossAttention(nn.Module):
153
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
154
- super().__init__()
155
- inner_dim = dim_head * heads
156
- context_dim = default(context_dim, query_dim)
157
-
158
- self.scale = dim_head ** -0.5
159
- self.heads = heads
160
-
161
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
162
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
163
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
164
-
165
- # self.attn_soft = nn.Softmax(dim=-1)
166
- # self.attn_soft = nn.Identity()
167
- self.to_out = nn.Sequential(
168
- nn.Linear(inner_dim, query_dim),
169
- nn.Dropout(dropout)
170
- )
171
-
172
- def forward(self, x, context=None, mask=None):
173
- h = self.heads
174
-
175
- q = self.to_q(x)
176
- context = default(context, x)
177
- k = self.to_k(context)
178
- v = self.to_v(context)
179
-
180
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
181
-
182
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
183
-
184
- if exists(mask):
185
- mask = rearrange(mask, 'b ... -> b (...)')
186
- max_neg_value = -torch.finfo(sim.dtype).max
187
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
188
- sim.masked_fill_(~mask, max_neg_value)
189
-
190
- # attention, what we cannot get enough of
191
- # attn = self.attn_soft(sim)
192
- attn = sim.softmax(dim=-1)
193
- # attn = self.attn_soft(attn)
194
- out = einsum('b i j, b j d -> b i d', attn, v)
195
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
196
- return self.to_out(out)
197
-
198
-
199
- class BasicTransformerBlock(nn.Module):
200
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
201
- disable_self_attn=False):
202
- super().__init__()
203
- self.disable_self_attn = disable_self_attn
204
- self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
205
- context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
206
- self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
207
- self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
208
- heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
209
- self.norm1 = nn.LayerNorm(dim)
210
- self.norm2 = nn.LayerNorm(dim)
211
- self.norm3 = nn.LayerNorm(dim)
212
- self.checkpoint = checkpoint
213
-
214
- def forward(self, x, context=None):
215
- return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
216
-
217
- def _forward(self, x, context=None):
218
- x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
219
- x = self.attn2(self.norm2(x), context=context) + x
220
- x = self.ff(self.norm3(x)) + x
221
- return x
222
-
223
-
224
- class SpatialTransformer(nn.Module):
225
- """
226
- Transformer block for image-like data.
227
- First, project the input (aka embedding)
228
- and reshape to b, t, d.
229
- Then apply standard transformer action.
230
- Finally, reshape to image
231
- """
232
- def __init__(self, in_channels, n_heads, d_head,
233
- depth=1, dropout=0., context_dim=None,
234
- disable_self_attn=False):
235
- super().__init__()
236
- self.in_channels = in_channels
237
- inner_dim = n_heads * d_head
238
- self.norm = Normalize(in_channels)
239
-
240
- self.proj_in = nn.Conv2d(in_channels,
241
- inner_dim,
242
- kernel_size=1,
243
- stride=1,
244
- padding=0)
245
-
246
- self.transformer_blocks = nn.ModuleList(
247
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
248
- disable_self_attn=disable_self_attn)
249
- for d in range(depth)]
250
- )
251
-
252
- self.proj_out = zero_module(nn.Conv2d(inner_dim,
253
- in_channels,
254
- kernel_size=1,
255
- stride=1,
256
- padding=0))
257
-
258
- def forward(self, x, context=None):
259
- # note: if no context is given, cross-attention defaults to self-attention
260
- b, c, h, w = x.shape
261
- x_in = x
262
- x = self.norm(x)
263
- x = self.proj_in(x)
264
- x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
265
- for block in self.transformer_blocks:
266
- x = block(x, context=context)
267
- x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
268
- x = self.proj_out(x)
269
- return x + x_in
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/diffusionmodules/__init__.py DELETED
File without changes
stable_diffusion/ldm/modules/diffusionmodules/model.py DELETED
@@ -1,835 +0,0 @@
1
- # pytorch_diffusion + derived encoder decoder
2
- import math
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- from einops import rearrange
7
-
8
- from ldm.util import instantiate_from_config
9
- from ldm.modules.attention import LinearAttention
10
-
11
-
12
- def get_timestep_embedding(timesteps, embedding_dim):
13
- """
14
- This matches the implementation in Denoising Diffusion Probabilistic Models:
15
- From Fairseq.
16
- Build sinusoidal embeddings.
17
- This matches the implementation in tensor2tensor, but differs slightly
18
- from the description in Section 3.5 of "Attention Is All You Need".
19
- """
20
- assert len(timesteps.shape) == 1
21
-
22
- half_dim = embedding_dim // 2
23
- emb = math.log(10000) / (half_dim - 1)
24
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
- emb = emb.to(device=timesteps.device)
26
- emb = timesteps.float()[:, None] * emb[None, :]
27
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
- if embedding_dim % 2 == 1: # zero pad
29
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
- return emb
31
-
32
-
33
- def nonlinearity(x):
34
- # swish
35
- return x*torch.sigmoid(x)
36
-
37
-
38
- def Normalize(in_channels, num_groups=32):
39
- return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
-
41
-
42
- class Upsample(nn.Module):
43
- def __init__(self, in_channels, with_conv):
44
- super().__init__()
45
- self.with_conv = with_conv
46
- if self.with_conv:
47
- self.conv = torch.nn.Conv2d(in_channels,
48
- in_channels,
49
- kernel_size=3,
50
- stride=1,
51
- padding=1)
52
-
53
- def forward(self, x):
54
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
- if self.with_conv:
56
- x = self.conv(x)
57
- return x
58
-
59
-
60
- class Downsample(nn.Module):
61
- def __init__(self, in_channels, with_conv):
62
- super().__init__()
63
- self.with_conv = with_conv
64
- if self.with_conv:
65
- # no asymmetric padding in torch conv, must do it ourselves
66
- self.conv = torch.nn.Conv2d(in_channels,
67
- in_channels,
68
- kernel_size=3,
69
- stride=2,
70
- padding=0)
71
-
72
- def forward(self, x):
73
- if self.with_conv:
74
- pad = (0,1,0,1)
75
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
- x = self.conv(x)
77
- else:
78
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
- return x
80
-
81
-
82
- class ResnetBlock(nn.Module):
83
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
- dropout, temb_channels=512):
85
- super().__init__()
86
- self.in_channels = in_channels
87
- out_channels = in_channels if out_channels is None else out_channels
88
- self.out_channels = out_channels
89
- self.use_conv_shortcut = conv_shortcut
90
-
91
- self.norm1 = Normalize(in_channels)
92
- self.conv1 = torch.nn.Conv2d(in_channels,
93
- out_channels,
94
- kernel_size=3,
95
- stride=1,
96
- padding=1)
97
- if temb_channels > 0:
98
- self.temb_proj = torch.nn.Linear(temb_channels,
99
- out_channels)
100
- self.norm2 = Normalize(out_channels)
101
- self.dropout = torch.nn.Dropout(dropout)
102
- self.conv2 = torch.nn.Conv2d(out_channels,
103
- out_channels,
104
- kernel_size=3,
105
- stride=1,
106
- padding=1)
107
- if self.in_channels != self.out_channels:
108
- if self.use_conv_shortcut:
109
- self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
- out_channels,
111
- kernel_size=3,
112
- stride=1,
113
- padding=1)
114
- else:
115
- self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
- out_channels,
117
- kernel_size=1,
118
- stride=1,
119
- padding=0)
120
-
121
- def forward(self, x, temb):
122
- h = x
123
- h = self.norm1(h)
124
- h = nonlinearity(h)
125
- h = self.conv1(h)
126
-
127
- if temb is not None:
128
- h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
-
130
- h = self.norm2(h)
131
- h = nonlinearity(h)
132
- h = self.dropout(h)
133
- h = self.conv2(h)
134
-
135
- if self.in_channels != self.out_channels:
136
- if self.use_conv_shortcut:
137
- x = self.conv_shortcut(x)
138
- else:
139
- x = self.nin_shortcut(x)
140
-
141
- return x+h
142
-
143
-
144
- class LinAttnBlock(LinearAttention):
145
- """to match AttnBlock usage"""
146
- def __init__(self, in_channels):
147
- super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
-
149
-
150
- class AttnBlock(nn.Module):
151
- def __init__(self, in_channels):
152
- super().__init__()
153
- self.in_channels = in_channels
154
-
155
- self.norm = Normalize(in_channels)
156
- self.q = torch.nn.Conv2d(in_channels,
157
- in_channels,
158
- kernel_size=1,
159
- stride=1,
160
- padding=0)
161
- self.k = torch.nn.Conv2d(in_channels,
162
- in_channels,
163
- kernel_size=1,
164
- stride=1,
165
- padding=0)
166
- self.v = torch.nn.Conv2d(in_channels,
167
- in_channels,
168
- kernel_size=1,
169
- stride=1,
170
- padding=0)
171
- self.proj_out = torch.nn.Conv2d(in_channels,
172
- in_channels,
173
- kernel_size=1,
174
- stride=1,
175
- padding=0)
176
-
177
-
178
- def forward(self, x):
179
- h_ = x
180
- h_ = self.norm(h_)
181
- q = self.q(h_)
182
- k = self.k(h_)
183
- v = self.v(h_)
184
-
185
- # compute attention
186
- b,c,h,w = q.shape
187
- q = q.reshape(b,c,h*w)
188
- q = q.permute(0,2,1) # b,hw,c
189
- k = k.reshape(b,c,h*w) # b,c,hw
190
- w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
- w_ = w_ * (int(c)**(-0.5))
192
- w_ = torch.nn.functional.softmax(w_, dim=2)
193
-
194
- # attend to values
195
- v = v.reshape(b,c,h*w)
196
- w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
- h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
- h_ = h_.reshape(b,c,h,w)
199
-
200
- h_ = self.proj_out(h_)
201
-
202
- return x+h_
203
-
204
-
205
- def make_attn(in_channels, attn_type="vanilla"):
206
- assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
- print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
- if attn_type == "vanilla":
209
- return AttnBlock(in_channels)
210
- elif attn_type == "none":
211
- return nn.Identity(in_channels)
212
- else:
213
- return LinAttnBlock(in_channels)
214
-
215
-
216
- class Model(nn.Module):
217
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
- super().__init__()
221
- if use_linear_attn: attn_type = "linear"
222
- self.ch = ch
223
- self.temb_ch = self.ch*4
224
- self.num_resolutions = len(ch_mult)
225
- self.num_res_blocks = num_res_blocks
226
- self.resolution = resolution
227
- self.in_channels = in_channels
228
-
229
- self.use_timestep = use_timestep
230
- if self.use_timestep:
231
- # timestep embedding
232
- self.temb = nn.Module()
233
- self.temb.dense = nn.ModuleList([
234
- torch.nn.Linear(self.ch,
235
- self.temb_ch),
236
- torch.nn.Linear(self.temb_ch,
237
- self.temb_ch),
238
- ])
239
-
240
- # downsampling
241
- self.conv_in = torch.nn.Conv2d(in_channels,
242
- self.ch,
243
- kernel_size=3,
244
- stride=1,
245
- padding=1)
246
-
247
- curr_res = resolution
248
- in_ch_mult = (1,)+tuple(ch_mult)
249
- self.down = nn.ModuleList()
250
- for i_level in range(self.num_resolutions):
251
- block = nn.ModuleList()
252
- attn = nn.ModuleList()
253
- block_in = ch*in_ch_mult[i_level]
254
- block_out = ch*ch_mult[i_level]
255
- for i_block in range(self.num_res_blocks):
256
- block.append(ResnetBlock(in_channels=block_in,
257
- out_channels=block_out,
258
- temb_channels=self.temb_ch,
259
- dropout=dropout))
260
- block_in = block_out
261
- if curr_res in attn_resolutions:
262
- attn.append(make_attn(block_in, attn_type=attn_type))
263
- down = nn.Module()
264
- down.block = block
265
- down.attn = attn
266
- if i_level != self.num_resolutions-1:
267
- down.downsample = Downsample(block_in, resamp_with_conv)
268
- curr_res = curr_res // 2
269
- self.down.append(down)
270
-
271
- # middle
272
- self.mid = nn.Module()
273
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
- out_channels=block_in,
275
- temb_channels=self.temb_ch,
276
- dropout=dropout)
277
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
- out_channels=block_in,
280
- temb_channels=self.temb_ch,
281
- dropout=dropout)
282
-
283
- # upsampling
284
- self.up = nn.ModuleList()
285
- for i_level in reversed(range(self.num_resolutions)):
286
- block = nn.ModuleList()
287
- attn = nn.ModuleList()
288
- block_out = ch*ch_mult[i_level]
289
- skip_in = ch*ch_mult[i_level]
290
- for i_block in range(self.num_res_blocks+1):
291
- if i_block == self.num_res_blocks:
292
- skip_in = ch*in_ch_mult[i_level]
293
- block.append(ResnetBlock(in_channels=block_in+skip_in,
294
- out_channels=block_out,
295
- temb_channels=self.temb_ch,
296
- dropout=dropout))
297
- block_in = block_out
298
- if curr_res in attn_resolutions:
299
- attn.append(make_attn(block_in, attn_type=attn_type))
300
- up = nn.Module()
301
- up.block = block
302
- up.attn = attn
303
- if i_level != 0:
304
- up.upsample = Upsample(block_in, resamp_with_conv)
305
- curr_res = curr_res * 2
306
- self.up.insert(0, up) # prepend to get consistent order
307
-
308
- # end
309
- self.norm_out = Normalize(block_in)
310
- self.conv_out = torch.nn.Conv2d(block_in,
311
- out_ch,
312
- kernel_size=3,
313
- stride=1,
314
- padding=1)
315
-
316
- def forward(self, x, t=None, context=None):
317
- #assert x.shape[2] == x.shape[3] == self.resolution
318
- if context is not None:
319
- # assume aligned context, cat along channel axis
320
- x = torch.cat((x, context), dim=1)
321
- if self.use_timestep:
322
- # timestep embedding
323
- assert t is not None
324
- temb = get_timestep_embedding(t, self.ch)
325
- temb = self.temb.dense[0](temb)
326
- temb = nonlinearity(temb)
327
- temb = self.temb.dense[1](temb)
328
- else:
329
- temb = None
330
-
331
- # downsampling
332
- hs = [self.conv_in(x)]
333
- for i_level in range(self.num_resolutions):
334
- for i_block in range(self.num_res_blocks):
335
- h = self.down[i_level].block[i_block](hs[-1], temb)
336
- if len(self.down[i_level].attn) > 0:
337
- h = self.down[i_level].attn[i_block](h)
338
- hs.append(h)
339
- if i_level != self.num_resolutions-1:
340
- hs.append(self.down[i_level].downsample(hs[-1]))
341
-
342
- # middle
343
- h = hs[-1]
344
- h = self.mid.block_1(h, temb)
345
- h = self.mid.attn_1(h)
346
- h = self.mid.block_2(h, temb)
347
-
348
- # upsampling
349
- for i_level in reversed(range(self.num_resolutions)):
350
- for i_block in range(self.num_res_blocks+1):
351
- h = self.up[i_level].block[i_block](
352
- torch.cat([h, hs.pop()], dim=1), temb)
353
- if len(self.up[i_level].attn) > 0:
354
- h = self.up[i_level].attn[i_block](h)
355
- if i_level != 0:
356
- h = self.up[i_level].upsample(h)
357
-
358
- # end
359
- h = self.norm_out(h)
360
- h = nonlinearity(h)
361
- h = self.conv_out(h)
362
- return h
363
-
364
- def get_last_layer(self):
365
- return self.conv_out.weight
366
-
367
-
368
- class Encoder(nn.Module):
369
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
- **ignore_kwargs):
373
- super().__init__()
374
- if use_linear_attn: attn_type = "linear"
375
- self.ch = ch
376
- self.temb_ch = 0
377
- self.num_resolutions = len(ch_mult)
378
- self.num_res_blocks = num_res_blocks
379
- self.resolution = resolution
380
- self.in_channels = in_channels
381
-
382
- # downsampling
383
- self.conv_in = torch.nn.Conv2d(in_channels,
384
- self.ch,
385
- kernel_size=3,
386
- stride=1,
387
- padding=1)
388
-
389
- curr_res = resolution
390
- in_ch_mult = (1,)+tuple(ch_mult)
391
- self.in_ch_mult = in_ch_mult
392
- self.down = nn.ModuleList()
393
- for i_level in range(self.num_resolutions):
394
- block = nn.ModuleList()
395
- attn = nn.ModuleList()
396
- block_in = ch*in_ch_mult[i_level]
397
- block_out = ch*ch_mult[i_level]
398
- for i_block in range(self.num_res_blocks):
399
- block.append(ResnetBlock(in_channels=block_in,
400
- out_channels=block_out,
401
- temb_channels=self.temb_ch,
402
- dropout=dropout))
403
- block_in = block_out
404
- if curr_res in attn_resolutions:
405
- attn.append(make_attn(block_in, attn_type=attn_type))
406
- down = nn.Module()
407
- down.block = block
408
- down.attn = attn
409
- if i_level != self.num_resolutions-1:
410
- down.downsample = Downsample(block_in, resamp_with_conv)
411
- curr_res = curr_res // 2
412
- self.down.append(down)
413
-
414
- # middle
415
- self.mid = nn.Module()
416
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
- out_channels=block_in,
418
- temb_channels=self.temb_ch,
419
- dropout=dropout)
420
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
- out_channels=block_in,
423
- temb_channels=self.temb_ch,
424
- dropout=dropout)
425
-
426
- # end
427
- self.norm_out = Normalize(block_in)
428
- self.conv_out = torch.nn.Conv2d(block_in,
429
- 2*z_channels if double_z else z_channels,
430
- kernel_size=3,
431
- stride=1,
432
- padding=1)
433
-
434
- def forward(self, x):
435
- # timestep embedding
436
- temb = None
437
-
438
- # downsampling
439
- hs = [self.conv_in(x)]
440
- for i_level in range(self.num_resolutions):
441
- for i_block in range(self.num_res_blocks):
442
- h = self.down[i_level].block[i_block](hs[-1], temb)
443
- if len(self.down[i_level].attn) > 0:
444
- h = self.down[i_level].attn[i_block](h)
445
- hs.append(h)
446
- if i_level != self.num_resolutions-1:
447
- hs.append(self.down[i_level].downsample(hs[-1]))
448
-
449
- # middle
450
- h = hs[-1]
451
- h = self.mid.block_1(h, temb)
452
- h = self.mid.attn_1(h)
453
- h = self.mid.block_2(h, temb)
454
-
455
- # end
456
- h = self.norm_out(h)
457
- h = nonlinearity(h)
458
- h = self.conv_out(h)
459
- return h
460
-
461
-
462
- class Decoder(nn.Module):
463
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
- attn_type="vanilla", **ignorekwargs):
467
- super().__init__()
468
- if use_linear_attn: attn_type = "linear"
469
- self.ch = ch
470
- self.temb_ch = 0
471
- self.num_resolutions = len(ch_mult)
472
- self.num_res_blocks = num_res_blocks
473
- self.resolution = resolution
474
- self.in_channels = in_channels
475
- self.give_pre_end = give_pre_end
476
- self.tanh_out = tanh_out
477
-
478
- # compute in_ch_mult, block_in and curr_res at lowest res
479
- in_ch_mult = (1,)+tuple(ch_mult)
480
- block_in = ch*ch_mult[self.num_resolutions-1]
481
- curr_res = resolution // 2**(self.num_resolutions-1)
482
- self.z_shape = (1,z_channels,curr_res,curr_res)
483
- print("Working with z of shape {} = {} dimensions.".format(
484
- self.z_shape, np.prod(self.z_shape)))
485
-
486
- # z to block_in
487
- self.conv_in = torch.nn.Conv2d(z_channels,
488
- block_in,
489
- kernel_size=3,
490
- stride=1,
491
- padding=1)
492
-
493
- # middle
494
- self.mid = nn.Module()
495
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
- out_channels=block_in,
497
- temb_channels=self.temb_ch,
498
- dropout=dropout)
499
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
- out_channels=block_in,
502
- temb_channels=self.temb_ch,
503
- dropout=dropout)
504
-
505
- # upsampling
506
- self.up = nn.ModuleList()
507
- for i_level in reversed(range(self.num_resolutions)):
508
- block = nn.ModuleList()
509
- attn = nn.ModuleList()
510
- block_out = ch*ch_mult[i_level]
511
- for i_block in range(self.num_res_blocks+1):
512
- block.append(ResnetBlock(in_channels=block_in,
513
- out_channels=block_out,
514
- temb_channels=self.temb_ch,
515
- dropout=dropout))
516
- block_in = block_out
517
- if curr_res in attn_resolutions:
518
- attn.append(make_attn(block_in, attn_type=attn_type))
519
- up = nn.Module()
520
- up.block = block
521
- up.attn = attn
522
- if i_level != 0:
523
- up.upsample = Upsample(block_in, resamp_with_conv)
524
- curr_res = curr_res * 2
525
- self.up.insert(0, up) # prepend to get consistent order
526
-
527
- # end
528
- self.norm_out = Normalize(block_in)
529
- self.conv_out = torch.nn.Conv2d(block_in,
530
- out_ch,
531
- kernel_size=3,
532
- stride=1,
533
- padding=1)
534
-
535
- def forward(self, z):
536
- #assert z.shape[1:] == self.z_shape[1:]
537
- self.last_z_shape = z.shape
538
-
539
- # timestep embedding
540
- temb = None
541
-
542
- # z to block_in
543
- h = self.conv_in(z)
544
-
545
- # middle
546
- h = self.mid.block_1(h, temb)
547
- h = self.mid.attn_1(h)
548
- h = self.mid.block_2(h, temb)
549
-
550
- # upsampling
551
- for i_level in reversed(range(self.num_resolutions)):
552
- for i_block in range(self.num_res_blocks+1):
553
- h = self.up[i_level].block[i_block](h, temb)
554
- if len(self.up[i_level].attn) > 0:
555
- h = self.up[i_level].attn[i_block](h)
556
- if i_level != 0:
557
- h = self.up[i_level].upsample(h)
558
-
559
- # end
560
- if self.give_pre_end:
561
- return h
562
-
563
- h = self.norm_out(h)
564
- h = nonlinearity(h)
565
- h = self.conv_out(h)
566
- if self.tanh_out:
567
- h = torch.tanh(h)
568
- return h
569
-
570
-
571
- class SimpleDecoder(nn.Module):
572
- def __init__(self, in_channels, out_channels, *args, **kwargs):
573
- super().__init__()
574
- self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
- ResnetBlock(in_channels=in_channels,
576
- out_channels=2 * in_channels,
577
- temb_channels=0, dropout=0.0),
578
- ResnetBlock(in_channels=2 * in_channels,
579
- out_channels=4 * in_channels,
580
- temb_channels=0, dropout=0.0),
581
- ResnetBlock(in_channels=4 * in_channels,
582
- out_channels=2 * in_channels,
583
- temb_channels=0, dropout=0.0),
584
- nn.Conv2d(2*in_channels, in_channels, 1),
585
- Upsample(in_channels, with_conv=True)])
586
- # end
587
- self.norm_out = Normalize(in_channels)
588
- self.conv_out = torch.nn.Conv2d(in_channels,
589
- out_channels,
590
- kernel_size=3,
591
- stride=1,
592
- padding=1)
593
-
594
- def forward(self, x):
595
- for i, layer in enumerate(self.model):
596
- if i in [1,2,3]:
597
- x = layer(x, None)
598
- else:
599
- x = layer(x)
600
-
601
- h = self.norm_out(x)
602
- h = nonlinearity(h)
603
- x = self.conv_out(h)
604
- return x
605
-
606
-
607
- class UpsampleDecoder(nn.Module):
608
- def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
- ch_mult=(2,2), dropout=0.0):
610
- super().__init__()
611
- # upsampling
612
- self.temb_ch = 0
613
- self.num_resolutions = len(ch_mult)
614
- self.num_res_blocks = num_res_blocks
615
- block_in = in_channels
616
- curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
- self.res_blocks = nn.ModuleList()
618
- self.upsample_blocks = nn.ModuleList()
619
- for i_level in range(self.num_resolutions):
620
- res_block = []
621
- block_out = ch * ch_mult[i_level]
622
- for i_block in range(self.num_res_blocks + 1):
623
- res_block.append(ResnetBlock(in_channels=block_in,
624
- out_channels=block_out,
625
- temb_channels=self.temb_ch,
626
- dropout=dropout))
627
- block_in = block_out
628
- self.res_blocks.append(nn.ModuleList(res_block))
629
- if i_level != self.num_resolutions - 1:
630
- self.upsample_blocks.append(Upsample(block_in, True))
631
- curr_res = curr_res * 2
632
-
633
- # end
634
- self.norm_out = Normalize(block_in)
635
- self.conv_out = torch.nn.Conv2d(block_in,
636
- out_channels,
637
- kernel_size=3,
638
- stride=1,
639
- padding=1)
640
-
641
- def forward(self, x):
642
- # upsampling
643
- h = x
644
- for k, i_level in enumerate(range(self.num_resolutions)):
645
- for i_block in range(self.num_res_blocks + 1):
646
- h = self.res_blocks[i_level][i_block](h, None)
647
- if i_level != self.num_resolutions - 1:
648
- h = self.upsample_blocks[k](h)
649
- h = self.norm_out(h)
650
- h = nonlinearity(h)
651
- h = self.conv_out(h)
652
- return h
653
-
654
-
655
- class LatentRescaler(nn.Module):
656
- def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
- super().__init__()
658
- # residual block, interpolate, residual block
659
- self.factor = factor
660
- self.conv_in = nn.Conv2d(in_channels,
661
- mid_channels,
662
- kernel_size=3,
663
- stride=1,
664
- padding=1)
665
- self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
- out_channels=mid_channels,
667
- temb_channels=0,
668
- dropout=0.0) for _ in range(depth)])
669
- self.attn = AttnBlock(mid_channels)
670
- self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
- out_channels=mid_channels,
672
- temb_channels=0,
673
- dropout=0.0) for _ in range(depth)])
674
-
675
- self.conv_out = nn.Conv2d(mid_channels,
676
- out_channels,
677
- kernel_size=1,
678
- )
679
-
680
- def forward(self, x):
681
- x = self.conv_in(x)
682
- for block in self.res_block1:
683
- x = block(x, None)
684
- x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
- x = self.attn(x)
686
- for block in self.res_block2:
687
- x = block(x, None)
688
- x = self.conv_out(x)
689
- return x
690
-
691
-
692
- class MergedRescaleEncoder(nn.Module):
693
- def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
- attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
- ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
- super().__init__()
697
- intermediate_chn = ch * ch_mult[-1]
698
- self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
- z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
- attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
- out_ch=None)
702
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
- mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
-
705
- def forward(self, x):
706
- x = self.encoder(x)
707
- x = self.rescaler(x)
708
- return x
709
-
710
-
711
- class MergedRescaleDecoder(nn.Module):
712
- def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
- dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
- super().__init__()
715
- tmp_chn = z_channels*ch_mult[-1]
716
- self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
- resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
- ch_mult=ch_mult, resolution=resolution, ch=ch)
719
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
- out_channels=tmp_chn, depth=rescale_module_depth)
721
-
722
- def forward(self, x):
723
- x = self.rescaler(x)
724
- x = self.decoder(x)
725
- return x
726
-
727
-
728
- class Upsampler(nn.Module):
729
- def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
- super().__init__()
731
- assert out_size >= in_size
732
- num_blocks = int(np.log2(out_size//in_size))+1
733
- factor_up = 1.+ (out_size % in_size)
734
- print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
- self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
- out_channels=in_channels)
737
- self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
- attn_resolutions=[], in_channels=None, ch=in_channels,
739
- ch_mult=[ch_mult for _ in range(num_blocks)])
740
-
741
- def forward(self, x):
742
- x = self.rescaler(x)
743
- x = self.decoder(x)
744
- return x
745
-
746
-
747
- class Resize(nn.Module):
748
- def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
- super().__init__()
750
- self.with_conv = learned
751
- self.mode = mode
752
- if self.with_conv:
753
- print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
- raise NotImplementedError()
755
- assert in_channels is not None
756
- # no asymmetric padding in torch conv, must do it ourselves
757
- self.conv = torch.nn.Conv2d(in_channels,
758
- in_channels,
759
- kernel_size=4,
760
- stride=2,
761
- padding=1)
762
-
763
- def forward(self, x, scale_factor=1.0):
764
- if scale_factor==1.0:
765
- return x
766
- else:
767
- x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
- return x
769
-
770
- class FirstStagePostProcessor(nn.Module):
771
-
772
- def __init__(self, ch_mult:list, in_channels,
773
- pretrained_model:nn.Module=None,
774
- reshape=False,
775
- n_channels=None,
776
- dropout=0.,
777
- pretrained_config=None):
778
- super().__init__()
779
- if pretrained_config is None:
780
- assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
- self.pretrained_model = pretrained_model
782
- else:
783
- assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
- self.instantiate_pretrained(pretrained_config)
785
-
786
- self.do_reshape = reshape
787
-
788
- if n_channels is None:
789
- n_channels = self.pretrained_model.encoder.ch
790
-
791
- self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
- self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
- stride=1,padding=1)
794
-
795
- blocks = []
796
- downs = []
797
- ch_in = n_channels
798
- for m in ch_mult:
799
- blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
- ch_in = m * n_channels
801
- downs.append(Downsample(ch_in, with_conv=False))
802
-
803
- self.model = nn.ModuleList(blocks)
804
- self.downsampler = nn.ModuleList(downs)
805
-
806
-
807
- def instantiate_pretrained(self, config):
808
- model = instantiate_from_config(config)
809
- self.pretrained_model = model.eval()
810
- # self.pretrained_model.train = False
811
- for param in self.pretrained_model.parameters():
812
- param.requires_grad = False
813
-
814
-
815
- @torch.no_grad()
816
- def encode_with_pretrained(self,x):
817
- c = self.pretrained_model.encode(x)
818
- if isinstance(c, DiagonalGaussianDistribution):
819
- c = c.mode()
820
- return c
821
-
822
- def forward(self,x):
823
- z_fs = self.encode_with_pretrained(x)
824
- z = self.proj_norm(z_fs)
825
- z = self.proj(z)
826
- z = nonlinearity(z)
827
-
828
- for submodel, downmodel in zip(self.model,self.downsampler):
829
- z = submodel(z,temb=None)
830
- z = downmodel(z)
831
-
832
- if self.do_reshape:
833
- z = rearrange(z,'b c h w -> b (h w) c')
834
- return z
835
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py DELETED
@@ -1,1001 +0,0 @@
1
- from abc import abstractmethod
2
- from functools import partial
3
- import math
4
- from typing import Iterable
5
-
6
- import numpy as np
7
- import torch as th
8
- import torch.nn as nn
9
- import torch.nn.functional as F
10
-
11
- from ldm.modules.diffusionmodules.util import (
12
- checkpoint,
13
- conv_nd,
14
- linear,
15
- avg_pool_nd,
16
- zero_module,
17
- normalization,
18
- timestep_embedding,
19
- )
20
- from ldm.modules.attention import SpatialTransformer
21
- from ldm.util import exists
22
-
23
-
24
- # dummy replace
25
- def convert_module_to_f16(x):
26
- pass
27
-
28
- def convert_module_to_f32(x):
29
- pass
30
-
31
-
32
- ## go
33
- class AttentionPool2d(nn.Module):
34
- """
35
- Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
36
- """
37
-
38
- def __init__(
39
- self,
40
- spacial_dim: int,
41
- embed_dim: int,
42
- num_heads_channels: int,
43
- output_dim: int = None,
44
- ):
45
- super().__init__()
46
- self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
47
- self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
48
- self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
49
- self.num_heads = embed_dim // num_heads_channels
50
- self.attention = QKVAttention(self.num_heads)
51
-
52
- def forward(self, x):
53
- b, c, *_spatial = x.shape
54
- x = x.reshape(b, c, -1) # NC(HW)
55
- x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
56
- x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
57
- x = self.qkv_proj(x)
58
- x = self.attention(x)
59
- x = self.c_proj(x)
60
- return x[:, :, 0]
61
-
62
-
63
- class TimestepBlock(nn.Module):
64
- """
65
- Any module where forward() takes timestep embeddings as a second argument.
66
- """
67
-
68
- @abstractmethod
69
- def forward(self, x, emb):
70
- """
71
- Apply the module to `x` given `emb` timestep embeddings.
72
- """
73
-
74
-
75
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
76
- """
77
- A sequential module that passes timestep embeddings to the children that
78
- support it as an extra input.
79
- """
80
-
81
- def forward(self, x, emb, context=None):
82
- for layer in self:
83
- if isinstance(layer, TimestepBlock):
84
- x = layer(x, emb)
85
- elif isinstance(layer, SpatialTransformer):
86
- x = layer(x, context)
87
- else:
88
- x = layer(x)
89
- return x
90
-
91
-
92
- class Upsample(nn.Module):
93
- """
94
- An upsampling layer with an optional convolution.
95
- :param channels: channels in the inputs and outputs.
96
- :param use_conv: a bool determining if a convolution is applied.
97
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
98
- upsampling occurs in the inner-two dimensions.
99
- """
100
-
101
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
102
- super().__init__()
103
- self.channels = channels
104
- self.out_channels = out_channels or channels
105
- self.use_conv = use_conv
106
- self.dims = dims
107
- if use_conv:
108
- self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
109
-
110
- def forward(self, x):
111
- assert x.shape[1] == self.channels
112
- if self.dims == 3:
113
- x = F.interpolate(
114
- x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
115
- )
116
- else:
117
- x = F.interpolate(x, scale_factor=2, mode="nearest")
118
- if self.use_conv:
119
- x = self.conv(x)
120
- return x
121
-
122
- class TransposedUpsample(nn.Module):
123
- 'Learned 2x upsampling without padding'
124
- def __init__(self, channels, out_channels=None, ks=5):
125
- super().__init__()
126
- self.channels = channels
127
- self.out_channels = out_channels or channels
128
-
129
- self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
130
-
131
- def forward(self,x):
132
- return self.up(x)
133
-
134
-
135
- class Downsample(nn.Module):
136
- """
137
- A downsampling layer with an optional convolution.
138
- :param channels: channels in the inputs and outputs.
139
- :param use_conv: a bool determining if a convolution is applied.
140
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
141
- downsampling occurs in the inner-two dimensions.
142
- """
143
-
144
- def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
145
- super().__init__()
146
- self.channels = channels
147
- self.out_channels = out_channels or channels
148
- self.use_conv = use_conv
149
- self.dims = dims
150
- stride = 2 if dims != 3 else (1, 2, 2)
151
- if use_conv:
152
- self.op = conv_nd(
153
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
154
- )
155
- else:
156
- assert self.channels == self.out_channels
157
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
158
-
159
- def forward(self, x):
160
- assert x.shape[1] == self.channels
161
- return self.op(x)
162
-
163
-
164
- class ResBlock(TimestepBlock):
165
- """
166
- A residual block that can optionally change the number of channels.
167
- :param channels: the number of input channels.
168
- :param emb_channels: the number of timestep embedding channels.
169
- :param dropout: the rate of dropout.
170
- :param out_channels: if specified, the number of out channels.
171
- :param use_conv: if True and out_channels is specified, use a spatial
172
- convolution instead of a smaller 1x1 convolution to change the
173
- channels in the skip connection.
174
- :param dims: determines if the signal is 1D, 2D, or 3D.
175
- :param use_checkpoint: if True, use gradient checkpointing on this module.
176
- :param up: if True, use this block for upsampling.
177
- :param down: if True, use this block for downsampling.
178
- """
179
-
180
- def __init__(
181
- self,
182
- channels,
183
- emb_channels,
184
- dropout,
185
- out_channels=None,
186
- use_conv=False,
187
- use_scale_shift_norm=False,
188
- dims=2,
189
- use_checkpoint=False,
190
- up=False,
191
- down=False,
192
- ):
193
- super().__init__()
194
- self.channels = channels
195
- self.emb_channels = emb_channels
196
- self.dropout = dropout
197
- self.out_channels = out_channels or channels
198
- self.use_conv = use_conv
199
- self.use_checkpoint = use_checkpoint
200
- self.use_scale_shift_norm = use_scale_shift_norm
201
-
202
- self.in_layers = nn.Sequential(
203
- normalization(channels),
204
- nn.SiLU(),
205
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
206
- )
207
-
208
- self.updown = up or down
209
-
210
- if up:
211
- self.h_upd = Upsample(channels, False, dims)
212
- self.x_upd = Upsample(channels, False, dims)
213
- elif down:
214
- self.h_upd = Downsample(channels, False, dims)
215
- self.x_upd = Downsample(channels, False, dims)
216
- else:
217
- self.h_upd = self.x_upd = nn.Identity()
218
-
219
- self.emb_layers = nn.Sequential(
220
- nn.SiLU(),
221
- linear(
222
- emb_channels,
223
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
224
- ),
225
- )
226
- self.out_layers = nn.Sequential(
227
- normalization(self.out_channels),
228
- nn.SiLU(),
229
- nn.Dropout(p=dropout),
230
- zero_module(
231
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
232
- ),
233
- )
234
-
235
- if self.out_channels == channels:
236
- self.skip_connection = nn.Identity()
237
- elif use_conv:
238
- self.skip_connection = conv_nd(
239
- dims, channels, self.out_channels, 3, padding=1
240
- )
241
- else:
242
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
243
-
244
- def forward(self, x, emb):
245
- """
246
- Apply the block to a Tensor, conditioned on a timestep embedding.
247
- :param x: an [N x C x ...] Tensor of features.
248
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
249
- :return: an [N x C x ...] Tensor of outputs.
250
- """
251
- return checkpoint(
252
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
253
- )
254
-
255
-
256
- def _forward(self, x, emb):
257
- if self.updown:
258
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
259
- h = in_rest(x)
260
- h = self.h_upd(h)
261
- x = self.x_upd(x)
262
- h = in_conv(h)
263
- else:
264
- h = self.in_layers(x)
265
- emb_out = self.emb_layers(emb).type(h.dtype)
266
- while len(emb_out.shape) < len(h.shape):
267
- emb_out = emb_out[..., None]
268
- if self.use_scale_shift_norm:
269
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
270
- scale, shift = th.chunk(emb_out, 2, dim=1)
271
- h = out_norm(h) * (1 + scale) + shift
272
- h = out_rest(h)
273
- else:
274
- h = h + emb_out
275
- h = self.out_layers(h)
276
- return self.skip_connection(x) + h
277
-
278
-
279
- class AttentionBlock(nn.Module):
280
- """
281
- An attention block that allows spatial positions to attend to each other.
282
- Originally ported from here, but adapted to the N-d case.
283
- https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
284
- """
285
-
286
- def __init__(
287
- self,
288
- channels,
289
- num_heads=1,
290
- num_head_channels=-1,
291
- use_checkpoint=False,
292
- use_new_attention_order=False,
293
- ):
294
- super().__init__()
295
- self.channels = channels
296
- if num_head_channels == -1:
297
- self.num_heads = num_heads
298
- else:
299
- assert (
300
- channels % num_head_channels == 0
301
- ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
302
- self.num_heads = channels // num_head_channels
303
- self.use_checkpoint = use_checkpoint
304
- self.norm = normalization(channels)
305
- self.qkv = conv_nd(1, channels, channels * 3, 1)
306
- if use_new_attention_order:
307
- # split qkv before split heads
308
- self.attention = QKVAttention(self.num_heads)
309
- else:
310
- # split heads before split qkv
311
- self.attention = QKVAttentionLegacy(self.num_heads)
312
-
313
- self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
314
-
315
- def forward(self, x):
316
- return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
317
- #return pt_checkpoint(self._forward, x) # pytorch
318
-
319
- def _forward(self, x):
320
- b, c, *spatial = x.shape
321
- x = x.reshape(b, c, -1)
322
- qkv = self.qkv(self.norm(x))
323
- h = self.attention(qkv)
324
- h = self.proj_out(h)
325
- return (x + h).reshape(b, c, *spatial)
326
-
327
-
328
- def count_flops_attn(model, _x, y):
329
- """
330
- A counter for the `thop` package to count the operations in an
331
- attention operation.
332
- Meant to be used like:
333
- macs, params = thop.profile(
334
- model,
335
- inputs=(inputs, timestamps),
336
- custom_ops={QKVAttention: QKVAttention.count_flops},
337
- )
338
- """
339
- b, c, *spatial = y[0].shape
340
- num_spatial = int(np.prod(spatial))
341
- # We perform two matmuls with the same number of ops.
342
- # The first computes the weight matrix, the second computes
343
- # the combination of the value vectors.
344
- matmul_ops = 2 * b * (num_spatial ** 2) * c
345
- model.total_ops += th.DoubleTensor([matmul_ops])
346
-
347
-
348
- class QKVAttentionLegacy(nn.Module):
349
- """
350
- A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
351
- """
352
-
353
- def __init__(self, n_heads):
354
- super().__init__()
355
- self.n_heads = n_heads
356
-
357
- def forward(self, qkv):
358
- """
359
- Apply QKV attention.
360
- :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
361
- :return: an [N x (H * C) x T] tensor after attention.
362
- """
363
- bs, width, length = qkv.shape
364
- assert width % (3 * self.n_heads) == 0
365
- ch = width // (3 * self.n_heads)
366
- q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
367
- scale = 1 / math.sqrt(math.sqrt(ch))
368
- weight = th.einsum(
369
- "bct,bcs->bts", q * scale, k * scale
370
- ) # More stable with f16 than dividing afterwards
371
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
372
- a = th.einsum("bts,bcs->bct", weight, v)
373
- return a.reshape(bs, -1, length)
374
-
375
- @staticmethod
376
- def count_flops(model, _x, y):
377
- return count_flops_attn(model, _x, y)
378
-
379
-
380
- class QKVAttention(nn.Module):
381
- """
382
- A module which performs QKV attention and splits in a different order.
383
- """
384
-
385
- def __init__(self, n_heads):
386
- super().__init__()
387
- self.n_heads = n_heads
388
-
389
- def forward(self, qkv):
390
- """
391
- Apply QKV attention.
392
- :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
393
- :return: an [N x (H * C) x T] tensor after attention.
394
- """
395
- bs, width, length = qkv.shape
396
- assert width % (3 * self.n_heads) == 0
397
- ch = width // (3 * self.n_heads)
398
- q, k, v = qkv.chunk(3, dim=1)
399
- scale = 1 / math.sqrt(math.sqrt(ch))
400
- weight = th.einsum(
401
- "bct,bcs->bts",
402
- (q * scale).view(bs * self.n_heads, ch, length),
403
- (k * scale).view(bs * self.n_heads, ch, length),
404
- ) # More stable with f16 than dividing afterwards
405
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
406
- a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
407
- return a.reshape(bs, -1, length)
408
-
409
- @staticmethod
410
- def count_flops(model, _x, y):
411
- return count_flops_attn(model, _x, y)
412
-
413
-
414
- class UNetModel(nn.Module):
415
- """
416
- The full UNet model with attention and timestep embedding.
417
- :param in_channels: channels in the input Tensor.
418
- :param model_channels: base channel count for the model.
419
- :param out_channels: channels in the output Tensor.
420
- :param num_res_blocks: number of residual blocks per downsample.
421
- :param attention_resolutions: a collection of downsample rates at which
422
- attention will take place. May be a set, list, or tuple.
423
- For example, if this contains 4, then at 4x downsampling, attention
424
- will be used.
425
- :param dropout: the dropout probability.
426
- :param channel_mult: channel multiplier for each level of the UNet.
427
- :param conv_resample: if True, use learned convolutions for upsampling and
428
- downsampling.
429
- :param dims: determines if the signal is 1D, 2D, or 3D.
430
- :param num_classes: if specified (as an int), then this model will be
431
- class-conditional with `num_classes` classes.
432
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
433
- :param num_heads: the number of attention heads in each attention layer.
434
- :param num_heads_channels: if specified, ignore num_heads and instead use
435
- a fixed channel width per attention head.
436
- :param num_heads_upsample: works with num_heads to set a different number
437
- of heads for upsampling. Deprecated.
438
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
439
- :param resblock_updown: use residual blocks for up/downsampling.
440
- :param use_new_attention_order: use a different attention pattern for potentially
441
- increased efficiency.
442
- """
443
-
444
- def __init__(
445
- self,
446
- image_size,
447
- in_channels,
448
- model_channels,
449
- out_channels,
450
- num_res_blocks,
451
- attention_resolutions,
452
- dropout=0,
453
- channel_mult=(1, 2, 4, 8),
454
- conv_resample=True,
455
- dims=2,
456
- num_classes=None,
457
- use_checkpoint=False,
458
- use_fp16=False,
459
- num_heads=-1,
460
- num_head_channels=-1,
461
- num_heads_upsample=-1,
462
- use_scale_shift_norm=False,
463
- resblock_updown=False,
464
- use_new_attention_order=False,
465
- use_spatial_transformer=False, # custom transformer support
466
- transformer_depth=1, # custom transformer support
467
- context_dim=None, # custom transformer support
468
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
469
- legacy=True,
470
- disable_self_attentions=None,
471
- num_attention_blocks=None
472
- ):
473
- super().__init__()
474
- if use_spatial_transformer:
475
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
476
-
477
- if context_dim is not None:
478
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
479
- from omegaconf.listconfig import ListConfig
480
- if type(context_dim) == ListConfig:
481
- context_dim = list(context_dim)
482
-
483
- if num_heads_upsample == -1:
484
- num_heads_upsample = num_heads
485
-
486
- if num_heads == -1:
487
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
488
-
489
- if num_head_channels == -1:
490
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
491
-
492
- self.image_size = image_size
493
- self.in_channels = in_channels
494
- self.model_channels = model_channels
495
- self.out_channels = out_channels
496
- if isinstance(num_res_blocks, int):
497
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
498
- else:
499
- if len(num_res_blocks) != len(channel_mult):
500
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
501
- "as a list/tuple (per-level) with the same length as channel_mult")
502
- self.num_res_blocks = num_res_blocks
503
- #self.num_res_blocks = num_res_blocks
504
- if disable_self_attentions is not None:
505
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
506
- assert len(disable_self_attentions) == len(channel_mult)
507
- if num_attention_blocks is not None:
508
- assert len(num_attention_blocks) == len(self.num_res_blocks)
509
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
510
- print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
511
- f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
512
- f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
513
- f"attention will still not be set.") # todo: convert to warning
514
-
515
- self.attention_resolutions = attention_resolutions
516
- self.dropout = dropout
517
- self.channel_mult = channel_mult
518
- self.conv_resample = conv_resample
519
- self.num_classes = num_classes
520
- self.use_checkpoint = use_checkpoint
521
- self.dtype = th.float16 if use_fp16 else th.float32
522
- self.num_heads = num_heads
523
- self.num_head_channels = num_head_channels
524
- self.num_heads_upsample = num_heads_upsample
525
- self.predict_codebook_ids = n_embed is not None
526
- self.dim_heads = []
527
- time_embed_dim = model_channels * 4
528
- self.time_embed = nn.Sequential(
529
- linear(model_channels, time_embed_dim),
530
- nn.SiLU(),
531
- linear(time_embed_dim, time_embed_dim),
532
- )
533
-
534
- if self.num_classes is not None:
535
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
536
-
537
- self.input_blocks = nn.ModuleList(
538
- [
539
- TimestepEmbedSequential(
540
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
541
- )
542
- ]
543
- )
544
- self._feature_size = model_channels
545
- input_block_chans = [model_channels]
546
- ch = model_channels
547
- ds = 1
548
- for level, mult in enumerate(channel_mult):
549
- for nr in range(self.num_res_blocks[level]):
550
- layers = [
551
- ResBlock(
552
- ch,
553
- time_embed_dim,
554
- dropout,
555
- out_channels=mult * model_channels,
556
- dims=dims,
557
- use_checkpoint=use_checkpoint,
558
- use_scale_shift_norm=use_scale_shift_norm,
559
- )
560
- ]
561
- ch = mult * model_channels
562
- if ds in attention_resolutions:
563
- if num_head_channels == -1:
564
- dim_head = ch // num_heads
565
- else:
566
- num_heads = ch // num_head_channels
567
- dim_head = num_head_channels
568
- if legacy:
569
- #num_heads = 1
570
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
571
- if exists(disable_self_attentions):
572
- disabled_sa = disable_self_attentions[level]
573
- else:
574
- disabled_sa = False
575
-
576
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
577
- self.dim_heads.append(dim_head)
578
- layers.append(
579
- AttentionBlock(
580
- ch,
581
- use_checkpoint=use_checkpoint,
582
- num_heads=num_heads,
583
- num_head_channels=dim_head,
584
- use_new_attention_order=use_new_attention_order,
585
- ) if not use_spatial_transformer else SpatialTransformer(
586
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
587
- disable_self_attn=disabled_sa
588
- )
589
- )
590
- self.input_blocks.append(TimestepEmbedSequential(*layers))
591
- self._feature_size += ch
592
- input_block_chans.append(ch)
593
- if level != len(channel_mult) - 1:
594
- out_ch = ch
595
- self.input_blocks.append(
596
- TimestepEmbedSequential(
597
- ResBlock(
598
- ch,
599
- time_embed_dim,
600
- dropout,
601
- out_channels=out_ch,
602
- dims=dims,
603
- use_checkpoint=use_checkpoint,
604
- use_scale_shift_norm=use_scale_shift_norm,
605
- down=True,
606
- )
607
- if resblock_updown
608
- else Downsample(
609
- ch, conv_resample, dims=dims, out_channels=out_ch
610
- )
611
- )
612
- )
613
- ch = out_ch
614
- input_block_chans.append(ch)
615
- ds *= 2
616
- self._feature_size += ch
617
-
618
- if num_head_channels == -1:
619
- dim_head = ch // num_heads
620
- else:
621
- num_heads = ch // num_head_channels
622
- dim_head = num_head_channels
623
- if legacy:
624
- #num_heads = 1
625
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
626
- print(dim_head)
627
- print('legacy')
628
- self.dim_heads.append(dim_head)
629
- self.middle_block = TimestepEmbedSequential(
630
- ResBlock(
631
- ch,
632
- time_embed_dim,
633
- dropout,
634
- dims=dims,
635
- use_checkpoint=use_checkpoint,
636
- use_scale_shift_norm=use_scale_shift_norm,
637
- ),
638
- AttentionBlock(
639
- ch,
640
- use_checkpoint=use_checkpoint,
641
- num_heads=num_heads,
642
- num_head_channels=dim_head,
643
- use_new_attention_order=use_new_attention_order,
644
- ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
645
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
646
- ),
647
- ResBlock(
648
- ch,
649
- time_embed_dim,
650
- dropout,
651
- dims=dims,
652
- use_checkpoint=use_checkpoint,
653
- use_scale_shift_norm=use_scale_shift_norm,
654
- ),
655
- )
656
- self._feature_size += ch
657
-
658
- self.output_blocks = nn.ModuleList([])
659
- for level, mult in list(enumerate(channel_mult))[::-1]:
660
- for i in range(self.num_res_blocks[level] + 1):
661
- ich = input_block_chans.pop()
662
- layers = [
663
- ResBlock(
664
- ch + ich,
665
- time_embed_dim,
666
- dropout,
667
- out_channels=model_channels * mult,
668
- dims=dims,
669
- use_checkpoint=use_checkpoint,
670
- use_scale_shift_norm=use_scale_shift_norm,
671
- )
672
- ]
673
- ch = model_channels * mult
674
- if ds in attention_resolutions:
675
- if num_head_channels == -1:
676
- dim_head = ch // num_heads
677
- else:
678
- num_heads = ch // num_head_channels
679
- dim_head = num_head_channels
680
- if legacy:
681
- #num_heads = 1
682
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
683
- if exists(disable_self_attentions):
684
- disabled_sa = disable_self_attentions[level]
685
- else:
686
- disabled_sa = False
687
-
688
- if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
689
- self.dim_heads.append(dim_head)
690
- layers.append(
691
- AttentionBlock(
692
- ch,
693
- use_checkpoint=use_checkpoint,
694
- num_heads=num_heads_upsample,
695
- num_head_channels=dim_head,
696
- use_new_attention_order=use_new_attention_order,
697
- ) if not use_spatial_transformer else SpatialTransformer(
698
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
699
- disable_self_attn=disabled_sa
700
- )
701
- )
702
- if level and i == self.num_res_blocks[level]:
703
- out_ch = ch
704
- layers.append(
705
- ResBlock(
706
- ch,
707
- time_embed_dim,
708
- dropout,
709
- out_channels=out_ch,
710
- dims=dims,
711
- use_checkpoint=use_checkpoint,
712
- use_scale_shift_norm=use_scale_shift_norm,
713
- up=True,
714
- )
715
- if resblock_updown
716
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
717
- )
718
- ds //= 2
719
- self.output_blocks.append(TimestepEmbedSequential(*layers))
720
- self._feature_size += ch
721
-
722
- self.out = nn.Sequential(
723
- normalization(ch),
724
- nn.SiLU(),
725
- zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
726
- )
727
- if self.predict_codebook_ids:
728
- self.id_predictor = nn.Sequential(
729
- normalization(ch),
730
- conv_nd(dims, model_channels, n_embed, 1),
731
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
732
- )
733
-
734
- def convert_to_fp16(self):
735
- """
736
- Convert the torso of the model to float16.
737
- """
738
- self.input_blocks.apply(convert_module_to_f16)
739
- self.middle_block.apply(convert_module_to_f16)
740
- self.output_blocks.apply(convert_module_to_f16)
741
-
742
- def convert_to_fp32(self):
743
- """
744
- Convert the torso of the model to float32.
745
- """
746
- self.input_blocks.apply(convert_module_to_f32)
747
- self.middle_block.apply(convert_module_to_f32)
748
- self.output_blocks.apply(convert_module_to_f32)
749
-
750
- def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
751
- """
752
- Apply the model to an input batch.
753
- :param x: an [N x C x ...] Tensor of inputs.
754
- :param timesteps: a 1-D batch of timesteps.
755
- :param context: conditioning plugged in via crossattn
756
- :param y: an [N] Tensor of labels, if class-conditional.
757
- :return: an [N x C x ...] Tensor of outputs.
758
- """
759
- assert (y is not None) == (
760
- self.num_classes is not None
761
- ), "must specify y if and only if the model is class-conditional"
762
- hs = []
763
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
764
- emb = self.time_embed(t_emb)
765
-
766
- if self.num_classes is not None:
767
- assert y.shape == (x.shape[0],)
768
- emb = emb + self.label_emb(y)
769
-
770
- h = x.type(self.dtype)
771
- for module in self.input_blocks:
772
- h = module(h, emb, context)
773
- hs.append(h)
774
- h = self.middle_block(h, emb, context)
775
- for module in self.output_blocks:
776
- h = th.cat([h, hs.pop()], dim=1)
777
- h = module(h, emb, context)
778
- h = h.type(x.dtype)
779
- if self.predict_codebook_ids:
780
- return self.id_predictor(h)
781
- else:
782
- return self.out(h)
783
-
784
-
785
- class EncoderUNetModel(nn.Module):
786
- """
787
- The half UNet model with attention and timestep embedding.
788
- For usage, see UNet.
789
- """
790
-
791
- def __init__(
792
- self,
793
- image_size,
794
- in_channels,
795
- model_channels,
796
- out_channels,
797
- num_res_blocks,
798
- attention_resolutions,
799
- dropout=0,
800
- channel_mult=(1, 2, 4, 8),
801
- conv_resample=True,
802
- dims=2,
803
- use_checkpoint=False,
804
- use_fp16=False,
805
- num_heads=1,
806
- num_head_channels=-1,
807
- num_heads_upsample=-1,
808
- use_scale_shift_norm=False,
809
- resblock_updown=False,
810
- use_new_attention_order=False,
811
- pool="adaptive",
812
- *args,
813
- **kwargs
814
- ):
815
- super().__init__()
816
-
817
- if num_heads_upsample == -1:
818
- num_heads_upsample = num_heads
819
-
820
- self.in_channels = in_channels
821
- self.model_channels = model_channels
822
- self.out_channels = out_channels
823
- self.num_res_blocks = num_res_blocks
824
- self.attention_resolutions = attention_resolutions
825
- self.dropout = dropout
826
- self.channel_mult = channel_mult
827
- self.conv_resample = conv_resample
828
- self.use_checkpoint = use_checkpoint
829
- self.dtype = th.float16 if use_fp16 else th.float32
830
- self.num_heads = num_heads
831
- self.num_head_channels = num_head_channels
832
- self.num_heads_upsample = num_heads_upsample
833
-
834
- time_embed_dim = model_channels * 4
835
- self.time_embed = nn.Sequential(
836
- linear(model_channels, time_embed_dim),
837
- nn.SiLU(),
838
- linear(time_embed_dim, time_embed_dim),
839
- )
840
-
841
- self.input_blocks = nn.ModuleList(
842
- [
843
- TimestepEmbedSequential(
844
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
845
- )
846
- ]
847
- )
848
- self._feature_size = model_channels
849
- input_block_chans = [model_channels]
850
- ch = model_channels
851
- ds = 1
852
- for level, mult in enumerate(channel_mult):
853
- for _ in range(num_res_blocks):
854
- layers = [
855
- ResBlock(
856
- ch,
857
- time_embed_dim,
858
- dropout,
859
- out_channels=mult * model_channels,
860
- dims=dims,
861
- use_checkpoint=use_checkpoint,
862
- use_scale_shift_norm=use_scale_shift_norm,
863
- )
864
- ]
865
- ch = mult * model_channels
866
- if ds in attention_resolutions:
867
- layers.append(
868
- AttentionBlock(
869
- ch,
870
- use_checkpoint=use_checkpoint,
871
- num_heads=num_heads,
872
- num_head_channels=num_head_channels,
873
- use_new_attention_order=use_new_attention_order,
874
- )
875
- )
876
- self.input_blocks.append(TimestepEmbedSequential(*layers))
877
- self._feature_size += ch
878
- input_block_chans.append(ch)
879
- if level != len(channel_mult) - 1:
880
- out_ch = ch
881
- self.input_blocks.append(
882
- TimestepEmbedSequential(
883
- ResBlock(
884
- ch,
885
- time_embed_dim,
886
- dropout,
887
- out_channels=out_ch,
888
- dims=dims,
889
- use_checkpoint=use_checkpoint,
890
- use_scale_shift_norm=use_scale_shift_norm,
891
- down=True,
892
- )
893
- if resblock_updown
894
- else Downsample(
895
- ch, conv_resample, dims=dims, out_channels=out_ch
896
- )
897
- )
898
- )
899
- ch = out_ch
900
- input_block_chans.append(ch)
901
- ds *= 2
902
- self._feature_size += ch
903
-
904
- self.middle_block = TimestepEmbedSequential(
905
- ResBlock(
906
- ch,
907
- time_embed_dim,
908
- dropout,
909
- dims=dims,
910
- use_checkpoint=use_checkpoint,
911
- use_scale_shift_norm=use_scale_shift_norm,
912
- ),
913
- AttentionBlock(
914
- ch,
915
- use_checkpoint=use_checkpoint,
916
- num_heads=num_heads,
917
- num_head_channels=num_head_channels,
918
- use_new_attention_order=use_new_attention_order,
919
- ),
920
- ResBlock(
921
- ch,
922
- time_embed_dim,
923
- dropout,
924
- dims=dims,
925
- use_checkpoint=use_checkpoint,
926
- use_scale_shift_norm=use_scale_shift_norm,
927
- ),
928
- )
929
- self._feature_size += ch
930
- self.pool = pool
931
- if pool == "adaptive":
932
- self.out = nn.Sequential(
933
- normalization(ch),
934
- nn.SiLU(),
935
- nn.AdaptiveAvgPool2d((1, 1)),
936
- zero_module(conv_nd(dims, ch, out_channels, 1)),
937
- nn.Flatten(),
938
- )
939
- elif pool == "attention":
940
- assert num_head_channels != -1
941
- self.out = nn.Sequential(
942
- normalization(ch),
943
- nn.SiLU(),
944
- AttentionPool2d(
945
- (image_size // ds), ch, num_head_channels, out_channels
946
- ),
947
- )
948
- elif pool == "spatial":
949
- self.out = nn.Sequential(
950
- nn.Linear(self._feature_size, 2048),
951
- nn.ReLU(),
952
- nn.Linear(2048, self.out_channels),
953
- )
954
- elif pool == "spatial_v2":
955
- self.out = nn.Sequential(
956
- nn.Linear(self._feature_size, 2048),
957
- normalization(2048),
958
- nn.SiLU(),
959
- nn.Linear(2048, self.out_channels),
960
- )
961
- else:
962
- raise NotImplementedError(f"Unexpected {pool} pooling")
963
-
964
- def convert_to_fp16(self):
965
- """
966
- Convert the torso of the model to float16.
967
- """
968
- self.input_blocks.apply(convert_module_to_f16)
969
- self.middle_block.apply(convert_module_to_f16)
970
-
971
- def convert_to_fp32(self):
972
- """
973
- Convert the torso of the model to float32.
974
- """
975
- self.input_blocks.apply(convert_module_to_f32)
976
- self.middle_block.apply(convert_module_to_f32)
977
-
978
- def forward(self, x, timesteps):
979
- """
980
- Apply the model to an input batch.
981
- :param x: an [N x C x ...] Tensor of inputs.
982
- :param timesteps: a 1-D batch of timesteps.
983
- :return: an [N x K] Tensor of outputs.
984
- """
985
- emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
986
-
987
- results = []
988
- h = x.type(self.dtype)
989
- for module in self.input_blocks:
990
- h = module(h, emb)
991
- if self.pool.startswith("spatial"):
992
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
993
- h = self.middle_block(h, emb)
994
- if self.pool.startswith("spatial"):
995
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
996
- h = th.cat(results, axis=-1)
997
- return self.out(h)
998
- else:
999
- h = h.type(x.dtype)
1000
- return self.out(h)
1001
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/diffusionmodules/util.py DELETED
@@ -1,267 +0,0 @@
1
- # adopted from
2
- # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
- # and
4
- # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
- # and
6
- # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
- #
8
- # thanks!
9
-
10
-
11
- import os
12
- import math
13
- import torch
14
- import torch.nn as nn
15
- import numpy as np
16
- from einops import repeat
17
-
18
- from ldm.util import instantiate_from_config
19
-
20
-
21
- def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
- if schedule == "linear":
23
- betas = (
24
- torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
- )
26
-
27
- elif schedule == "cosine":
28
- timesteps = (
29
- torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
- )
31
- alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
- alphas = torch.cos(alphas).pow(2)
33
- alphas = alphas / alphas[0]
34
- betas = 1 - alphas[1:] / alphas[:-1]
35
- betas = np.clip(betas, a_min=0, a_max=0.999)
36
-
37
- elif schedule == "sqrt_linear":
38
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
- elif schedule == "sqrt":
40
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
- else:
42
- raise ValueError(f"schedule '{schedule}' unknown.")
43
- return betas.numpy()
44
-
45
-
46
- def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
- if ddim_discr_method == 'uniform':
48
- c = num_ddpm_timesteps // num_ddim_timesteps
49
- ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
- elif ddim_discr_method == 'quad':
51
- ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
- else:
53
- raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
-
55
- # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
- # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
- steps_out = ddim_timesteps + 1
58
- if verbose:
59
- print(f'Selected timesteps for ddim sampler: {steps_out}')
60
- return steps_out
61
-
62
-
63
- def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
- # select alphas for computing the variance schedule
65
- alphas = alphacums[ddim_timesteps]
66
- alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
-
68
- # according the the formula provided in https://arxiv.org/abs/2010.02502
69
- sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
- if verbose:
71
- print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
- print(f'For the chosen value of eta, which is {eta}, '
73
- f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
- return sigmas, alphas, alphas_prev
75
-
76
-
77
- def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
- """
79
- Create a beta schedule that discretizes the given alpha_t_bar function,
80
- which defines the cumulative product of (1-beta) over time from t = [0,1].
81
- :param num_diffusion_timesteps: the number of betas to produce.
82
- :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
- produces the cumulative product of (1-beta) up to that
84
- part of the diffusion process.
85
- :param max_beta: the maximum beta to use; use values lower than 1 to
86
- prevent singularities.
87
- """
88
- betas = []
89
- for i in range(num_diffusion_timesteps):
90
- t1 = i / num_diffusion_timesteps
91
- t2 = (i + 1) / num_diffusion_timesteps
92
- betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
- return np.array(betas)
94
-
95
-
96
- def extract_into_tensor(a, t, x_shape):
97
- b, *_ = t.shape
98
- out = a.gather(-1, t)
99
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
-
101
-
102
- def checkpoint(func, inputs, params, flag):
103
- """
104
- Evaluate a function without caching intermediate activations, allowing for
105
- reduced memory at the expense of extra compute in the backward pass.
106
- :param func: the function to evaluate.
107
- :param inputs: the argument sequence to pass to `func`.
108
- :param params: a sequence of parameters `func` depends on but does not
109
- explicitly take as arguments.
110
- :param flag: if False, disable gradient checkpointing.
111
- """
112
- if flag:
113
- args = tuple(inputs) + tuple(params)
114
- return CheckpointFunction.apply(func, len(inputs), *args)
115
- else:
116
- return func(*inputs)
117
-
118
-
119
- class CheckpointFunction(torch.autograd.Function):
120
- @staticmethod
121
- def forward(ctx, run_function, length, *args):
122
- ctx.run_function = run_function
123
- ctx.input_tensors = list(args[:length])
124
- ctx.input_params = list(args[length:])
125
-
126
- with torch.no_grad():
127
- output_tensors = ctx.run_function(*ctx.input_tensors)
128
- return output_tensors
129
-
130
- @staticmethod
131
- def backward(ctx, *output_grads):
132
- ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
133
- with torch.enable_grad():
134
- # Fixes a bug where the first op in run_function modifies the
135
- # Tensor storage in place, which is not allowed for detach()'d
136
- # Tensors.
137
- shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
138
- output_tensors = ctx.run_function(*shallow_copies)
139
- input_grads = torch.autograd.grad(
140
- output_tensors,
141
- ctx.input_tensors + ctx.input_params,
142
- output_grads,
143
- allow_unused=True,
144
- )
145
- del ctx.input_tensors
146
- del ctx.input_params
147
- del output_tensors
148
- return (None, None) + input_grads
149
-
150
-
151
- def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
152
- """
153
- Create sinusoidal timestep embeddings.
154
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
155
- These may be fractional.
156
- :param dim: the dimension of the output.
157
- :param max_period: controls the minimum frequency of the embeddings.
158
- :return: an [N x dim] Tensor of positional embeddings.
159
- """
160
- if not repeat_only:
161
- half = dim // 2
162
- freqs = torch.exp(
163
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
164
- ).to(device=timesteps.device)
165
- args = timesteps[:, None].float() * freqs[None]
166
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
167
- if dim % 2:
168
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
169
- else:
170
- embedding = repeat(timesteps, 'b -> b d', d=dim)
171
- return embedding
172
-
173
-
174
- def zero_module(module):
175
- """
176
- Zero out the parameters of a module and return it.
177
- """
178
- for p in module.parameters():
179
- p.detach().zero_()
180
- return module
181
-
182
-
183
- def scale_module(module, scale):
184
- """
185
- Scale the parameters of a module and return it.
186
- """
187
- for p in module.parameters():
188
- p.detach().mul_(scale)
189
- return module
190
-
191
-
192
- def mean_flat(tensor):
193
- """
194
- Take the mean over all non-batch dimensions.
195
- """
196
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
197
-
198
-
199
- def normalization(channels):
200
- """
201
- Make a standard normalization layer.
202
- :param channels: number of input channels.
203
- :return: an nn.Module for normalization.
204
- """
205
- return GroupNorm32(32, channels)
206
-
207
-
208
- # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
209
- class SiLU(nn.Module):
210
- def forward(self, x):
211
- return x * torch.sigmoid(x)
212
-
213
-
214
- class GroupNorm32(nn.GroupNorm):
215
- def forward(self, x):
216
- return super().forward(x.float()).type(x.dtype)
217
-
218
- def conv_nd(dims, *args, **kwargs):
219
- """
220
- Create a 1D, 2D, or 3D convolution module.
221
- """
222
- if dims == 1:
223
- return nn.Conv1d(*args, **kwargs)
224
- elif dims == 2:
225
- return nn.Conv2d(*args, **kwargs)
226
- elif dims == 3:
227
- return nn.Conv3d(*args, **kwargs)
228
- raise ValueError(f"unsupported dimensions: {dims}")
229
-
230
-
231
- def linear(*args, **kwargs):
232
- """
233
- Create a linear module.
234
- """
235
- return nn.Linear(*args, **kwargs)
236
-
237
-
238
- def avg_pool_nd(dims, *args, **kwargs):
239
- """
240
- Create a 1D, 2D, or 3D average pooling module.
241
- """
242
- if dims == 1:
243
- return nn.AvgPool1d(*args, **kwargs)
244
- elif dims == 2:
245
- return nn.AvgPool2d(*args, **kwargs)
246
- elif dims == 3:
247
- return nn.AvgPool3d(*args, **kwargs)
248
- raise ValueError(f"unsupported dimensions: {dims}")
249
-
250
-
251
- class HybridConditioner(nn.Module):
252
-
253
- def __init__(self, c_concat_config, c_crossattn_config):
254
- super().__init__()
255
- self.concat_conditioner = instantiate_from_config(c_concat_config)
256
- self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
257
-
258
- def forward(self, c_concat, c_crossattn):
259
- c_concat = self.concat_conditioner(c_concat)
260
- c_crossattn = self.crossattn_conditioner(c_crossattn)
261
- return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
262
-
263
-
264
- def noise_like(shape, device, repeat=False):
265
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
266
- noise = lambda: torch.randn(shape, device=device)
267
- return repeat_noise() if repeat else noise()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/distributions/__init__.py DELETED
File without changes
stable_diffusion/ldm/modules/distributions/distributions.py DELETED
@@ -1,92 +0,0 @@
1
- import torch
2
- import numpy as np
3
-
4
-
5
- class AbstractDistribution:
6
- def sample(self):
7
- raise NotImplementedError()
8
-
9
- def mode(self):
10
- raise NotImplementedError()
11
-
12
-
13
- class DiracDistribution(AbstractDistribution):
14
- def __init__(self, value):
15
- self.value = value
16
-
17
- def sample(self):
18
- return self.value
19
-
20
- def mode(self):
21
- return self.value
22
-
23
-
24
- class DiagonalGaussianDistribution(object):
25
- def __init__(self, parameters, deterministic=False):
26
- self.parameters = parameters
27
- self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
- self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
- self.deterministic = deterministic
30
- self.std = torch.exp(0.5 * self.logvar)
31
- self.var = torch.exp(self.logvar)
32
- if self.deterministic:
33
- self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
-
35
- def sample(self):
36
- x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
- return x
38
-
39
- def kl(self, other=None):
40
- if self.deterministic:
41
- return torch.Tensor([0.])
42
- else:
43
- if other is None:
44
- return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
- + self.var - 1.0 - self.logvar,
46
- dim=[1, 2, 3])
47
- else:
48
- return 0.5 * torch.sum(
49
- torch.pow(self.mean - other.mean, 2) / other.var
50
- + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
- dim=[1, 2, 3])
52
-
53
- def nll(self, sample, dims=[1,2,3]):
54
- if self.deterministic:
55
- return torch.Tensor([0.])
56
- logtwopi = np.log(2.0 * np.pi)
57
- return 0.5 * torch.sum(
58
- logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
- dim=dims)
60
-
61
- def mode(self):
62
- return self.mean
63
-
64
-
65
- def normal_kl(mean1, logvar1, mean2, logvar2):
66
- """
67
- source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
- Compute the KL divergence between two gaussians.
69
- Shapes are automatically broadcasted, so batches can be compared to
70
- scalars, among other use cases.
71
- """
72
- tensor = None
73
- for obj in (mean1, logvar1, mean2, logvar2):
74
- if isinstance(obj, torch.Tensor):
75
- tensor = obj
76
- break
77
- assert tensor is not None, "at least one argument must be a Tensor"
78
-
79
- # Force variances to be Tensors. Broadcasting helps convert scalars to
80
- # Tensors, but it does not work for torch.exp().
81
- logvar1, logvar2 = [
82
- x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
- for x in (logvar1, logvar2)
84
- ]
85
-
86
- return 0.5 * (
87
- -1.0
88
- + logvar2
89
- - logvar1
90
- + torch.exp(logvar1 - logvar2)
91
- + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/ema.py DELETED
@@ -1,76 +0,0 @@
1
- import torch
2
- from torch import nn
3
-
4
-
5
- class LitEma(nn.Module):
6
- def __init__(self, model, decay=0.9999, use_num_upates=True):
7
- super().__init__()
8
- if decay < 0.0 or decay > 1.0:
9
- raise ValueError('Decay must be between 0 and 1')
10
-
11
- self.m_name2s_name = {}
12
- self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
- self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
14
- else torch.tensor(-1,dtype=torch.int))
15
-
16
- for name, p in model.named_parameters():
17
- if p.requires_grad:
18
- #remove as '.'-character is not allowed in buffers
19
- s_name = name.replace('.','')
20
- self.m_name2s_name.update({name:s_name})
21
- self.register_buffer(s_name,p.clone().detach().data)
22
-
23
- self.collected_params = []
24
-
25
- def forward(self,model):
26
- decay = self.decay
27
-
28
- if self.num_updates >= 0:
29
- self.num_updates += 1
30
- decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
31
-
32
- one_minus_decay = 1.0 - decay
33
-
34
- with torch.no_grad():
35
- m_param = dict(model.named_parameters())
36
- shadow_params = dict(self.named_buffers())
37
-
38
- for key in m_param:
39
- if m_param[key].requires_grad:
40
- sname = self.m_name2s_name[key]
41
- shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
42
- shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
43
- else:
44
- assert not key in self.m_name2s_name
45
-
46
- def copy_to(self, model):
47
- m_param = dict(model.named_parameters())
48
- shadow_params = dict(self.named_buffers())
49
- for key in m_param:
50
- if m_param[key].requires_grad:
51
- m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
52
- else:
53
- assert not key in self.m_name2s_name
54
-
55
- def store(self, parameters):
56
- """
57
- Save the current parameters for restoring later.
58
- Args:
59
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
60
- temporarily stored.
61
- """
62
- self.collected_params = [param.clone() for param in parameters]
63
-
64
- def restore(self, parameters):
65
- """
66
- Restore the parameters stored with the `store` method.
67
- Useful to validate the model with EMA parameters without affecting the
68
- original optimization process. Store the parameters before the
69
- `copy_to` method. After validation (or model saving), use this to
70
- restore the former parameters.
71
- Args:
72
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
73
- updated with the stored parameters.
74
- """
75
- for c_param, param in zip(self.collected_params, parameters):
76
- param.data.copy_(c_param.data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/encoders/__init__.py DELETED
File without changes
stable_diffusion/ldm/modules/encoders/modules.py DELETED
@@ -1,425 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import numpy as np
4
- from functools import partial
5
- import kornia
6
-
7
- from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
8
- from ldm.util import default
9
- import clip
10
-
11
-
12
- class AbstractEncoder(nn.Module):
13
- def __init__(self):
14
- super().__init__()
15
-
16
- def encode(self, *args, **kwargs):
17
- raise NotImplementedError
18
-
19
- class IdentityEncoder(AbstractEncoder):
20
-
21
- def encode(self, x):
22
- return x
23
-
24
-
25
- class ClassEmbedder(nn.Module):
26
- def __init__(self, embed_dim, n_classes=1000, key='class'):
27
- super().__init__()
28
- self.key = key
29
- self.embedding = nn.Embedding(n_classes, embed_dim)
30
-
31
- def forward(self, batch, key=None):
32
- if key is None:
33
- key = self.key
34
- # this is for use in crossattn
35
- c = batch[key][:, None]
36
- c = self.embedding(c)
37
- return c
38
-
39
-
40
- class TransformerEmbedder(AbstractEncoder):
41
- """Some transformer encoder layers"""
42
- def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
43
- super().__init__()
44
- self.device = device
45
- self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
46
- attn_layers=Encoder(dim=n_embed, depth=n_layer))
47
-
48
- def forward(self, tokens):
49
- tokens = tokens.to(self.device) # meh
50
- z = self.transformer(tokens, return_embeddings=True)
51
- return z
52
-
53
- def encode(self, x):
54
- return self(x)
55
-
56
-
57
- class BERTTokenizer(AbstractEncoder):
58
- """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
59
- def __init__(self, device="cuda", vq_interface=True, max_length=77):
60
- super().__init__()
61
- from transformers import BertTokenizerFast # TODO: add to reuquirements
62
- self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
63
- self.device = device
64
- self.vq_interface = vq_interface
65
- self.max_length = max_length
66
-
67
- def forward(self, text):
68
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
69
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
70
- tokens = batch_encoding["input_ids"].to(self.device)
71
- return tokens
72
-
73
- @torch.no_grad()
74
- def encode(self, text):
75
- tokens = self(text)
76
- if not self.vq_interface:
77
- return tokens
78
- return None, None, [None, None, tokens]
79
-
80
- def decode(self, text):
81
- return text
82
-
83
-
84
- class BERTEmbedder(AbstractEncoder):
85
- """Uses the BERT tokenizr model and add some transformer encoder layers"""
86
- def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
87
- device="cuda",use_tokenizer=True, embedding_dropout=0.0):
88
- super().__init__()
89
- self.use_tknz_fn = use_tokenizer
90
- if self.use_tknz_fn:
91
- self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
92
- self.device = device
93
- self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
94
- attn_layers=Encoder(dim=n_embed, depth=n_layer),
95
- emb_dropout=embedding_dropout)
96
-
97
- def forward(self, text):
98
- if self.use_tknz_fn:
99
- tokens = self.tknz_fn(text)#.to(self.device)
100
- else:
101
- tokens = text
102
- z = self.transformer(tokens, return_embeddings=True)
103
- return z
104
-
105
- def encode(self, text):
106
- # output of length 77
107
- return self(text)
108
-
109
-
110
- from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
111
-
112
- def disabled_train(self, mode=True):
113
- """Overwrite model.train with this function to make sure train/eval mode
114
- does not change anymore."""
115
- return self
116
-
117
-
118
- class FrozenT5Embedder(AbstractEncoder):
119
- """Uses the T5 transformer encoder for text"""
120
- def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
121
- super().__init__()
122
- self.tokenizer = T5Tokenizer.from_pretrained(version)
123
- self.transformer = T5EncoderModel.from_pretrained(version)
124
- self.device = device
125
- self.max_length = max_length # TODO: typical value?
126
- self.freeze()
127
-
128
- def freeze(self):
129
- self.transformer = self.transformer.eval()
130
- #self.train = disabled_train
131
- for param in self.parameters():
132
- param.requires_grad = False
133
-
134
- def forward(self, text):
135
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
136
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
137
- tokens = batch_encoding["input_ids"].to(self.device)
138
- outputs = self.transformer(input_ids=tokens)
139
-
140
- z = outputs.last_hidden_state
141
- return z
142
-
143
- def encode(self, text):
144
- return self(text)
145
-
146
- from ldm.thirdp.psp.id_loss import IDFeatures
147
- import kornia.augmentation as K
148
-
149
- class FrozenFaceEncoder(AbstractEncoder):
150
- def __init__(self, model_path, augment=False):
151
- super().__init__()
152
- self.loss_fn = IDFeatures(model_path)
153
- # face encoder is frozen
154
- for p in self.loss_fn.parameters():
155
- p.requires_grad = False
156
- # Mapper is trainable
157
- self.mapper = torch.nn.Linear(512, 768)
158
- p = 0.25
159
- if augment:
160
- self.augment = K.AugmentationSequential(
161
- K.RandomHorizontalFlip(p=0.5),
162
- K.RandomEqualize(p=p),
163
- K.RandomPlanckianJitter(p=p),
164
- K.RandomPlasmaBrightness(p=p),
165
- K.RandomPlasmaContrast(p=p),
166
- K.ColorJiggle(0.02, 0.2, 0.2, p=p),
167
- )
168
- else:
169
- self.augment = False
170
-
171
- def forward(self, img):
172
- if isinstance(img, list):
173
- # Uncondition
174
- return torch.zeros((1, 1, 768), device=self.mapper.weight.device)
175
-
176
- if self.augment is not None:
177
- # Transforms require 0-1
178
- img = self.augment((img + 1)/2)
179
- img = 2*img - 1
180
-
181
- feat = self.loss_fn(img, crop=True)
182
- feat = self.mapper(feat.unsqueeze(1))
183
- return feat
184
-
185
- def encode(self, img):
186
- return self(img)
187
-
188
- class FrozenCLIPEmbedder(AbstractEncoder):
189
- """Uses the CLIP transformer encoder for text (from huggingface)"""
190
- def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
191
- super().__init__()
192
- self.tokenizer = CLIPTokenizer.from_pretrained(version)
193
- self.transformer = CLIPTextModel.from_pretrained(version)
194
- self.device = device
195
- self.max_length = max_length # TODO: typical value?
196
- self.freeze()
197
-
198
- def freeze(self):
199
- self.transformer = self.transformer.eval()
200
- #self.train = disabled_train
201
- for param in self.parameters():
202
- param.requires_grad = False
203
-
204
- def forward(self, text):
205
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
206
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
207
- tokens = batch_encoding["input_ids"].to(self.device)
208
- outputs = self.transformer(input_ids=tokens)
209
-
210
- z = outputs.last_hidden_state
211
- return z
212
-
213
- def encode(self, text):
214
- return self(text)
215
-
216
- import torch.nn.functional as F
217
- from transformers import CLIPVisionModel
218
- class ClipImageProjector(AbstractEncoder):
219
- """
220
- Uses the CLIP image encoder.
221
- """
222
- def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): # clip-vit-base-patch32
223
- super().__init__()
224
- self.model = CLIPVisionModel.from_pretrained(version)
225
- self.model.train()
226
- self.max_length = max_length # TODO: typical value?
227
- self.antialias = True
228
- self.mapper = torch.nn.Linear(1024, 768)
229
- self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
230
- self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
231
- null_cond = self.get_null_cond(version, max_length)
232
- self.register_buffer('null_cond', null_cond)
233
-
234
- @torch.no_grad()
235
- def get_null_cond(self, version, max_length):
236
- device = self.mean.device
237
- embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
238
- null_cond = embedder([""])
239
- return null_cond
240
-
241
- def preprocess(self, x):
242
- # Expects inputs in the range -1, 1
243
- x = kornia.geometry.resize(x, (224, 224),
244
- interpolation='bicubic',align_corners=True,
245
- antialias=self.antialias)
246
- x = (x + 1.) / 2.
247
- # renormalize according to clip
248
- x = kornia.enhance.normalize(x, self.mean, self.std)
249
- return x
250
-
251
- def forward(self, x):
252
- if isinstance(x, list):
253
- return self.null_cond
254
- # x is assumed to be in range [-1,1]
255
- x = self.preprocess(x)
256
- outputs = self.model(pixel_values=x)
257
- last_hidden_state = outputs.last_hidden_state
258
- last_hidden_state = self.mapper(last_hidden_state)
259
- return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0])
260
-
261
- def encode(self, im):
262
- return self(im)
263
-
264
- class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
265
- def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
266
- super().__init__()
267
- self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
268
- self.projection = torch.nn.Linear(768, 768)
269
-
270
- def forward(self, text):
271
- z = self.embedder(text)
272
- return self.projection(z)
273
-
274
- def encode(self, text):
275
- return self(text)
276
-
277
- class FrozenCLIPImageEmbedder(AbstractEncoder):
278
- """
279
- Uses the CLIP image encoder.
280
- Not actually frozen... If you want that set cond_stage_trainable=False in cfg
281
- """
282
- def __init__(
283
- self,
284
- model='ViT-L/14',
285
- jit=False,
286
- device='cpu',
287
- antialias=False,
288
- ):
289
- super().__init__()
290
- self.model, _ = clip.load(name=model, device=device, jit=jit)
291
- # We don't use the text part so delete it
292
- del self.model.transformer
293
- self.antialias = antialias
294
- self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
295
- self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
296
-
297
- def preprocess(self, x):
298
- # Expects inputs in the range -1, 1
299
- x = kornia.geometry.resize(x, (224, 224),
300
- interpolation='bicubic',align_corners=True,
301
- antialias=self.antialias)
302
- x = (x + 1.) / 2.
303
- # renormalize according to clip
304
- x = kornia.enhance.normalize(x, self.mean, self.std)
305
- return x
306
-
307
- def forward(self, x):
308
- # x is assumed to be in range [-1,1]
309
- if isinstance(x, list):
310
- # [""] denotes condition dropout for ucg
311
- device = self.model.visual.conv1.weight.device
312
- return torch.zeros(1, 768, device=device)
313
- return self.model.encode_image(self.preprocess(x)).float()
314
-
315
- def encode(self, im):
316
- return self(im).unsqueeze(1)
317
-
318
- class SpatialRescaler(nn.Module):
319
- def __init__(self,
320
- n_stages=1,
321
- method='bilinear',
322
- multiplier=0.5,
323
- in_channels=3,
324
- out_channels=None,
325
- bias=False):
326
- super().__init__()
327
- self.n_stages = n_stages
328
- assert self.n_stages >= 0
329
- assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
330
- self.multiplier = multiplier
331
- self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
332
- self.remap_output = out_channels is not None
333
- if self.remap_output:
334
- print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
335
- self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
336
-
337
- def forward(self,x):
338
- for stage in range(self.n_stages):
339
- x = self.interpolator(x, scale_factor=self.multiplier)
340
-
341
-
342
- if self.remap_output:
343
- x = self.channel_mapper(x)
344
- return x
345
-
346
- def encode(self, x):
347
- return self(x)
348
-
349
-
350
- from ldm.util import instantiate_from_config
351
- from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
352
-
353
-
354
- class LowScaleEncoder(nn.Module):
355
- def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64,
356
- scale_factor=1.0):
357
- super().__init__()
358
- self.max_noise_level = max_noise_level
359
- self.model = instantiate_from_config(model_config)
360
- self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start,
361
- linear_end=linear_end)
362
- self.out_size = output_size
363
- self.scale_factor = scale_factor
364
-
365
- def register_schedule(self, beta_schedule="linear", timesteps=1000,
366
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
367
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
368
- cosine_s=cosine_s)
369
- alphas = 1. - betas
370
- alphas_cumprod = np.cumprod(alphas, axis=0)
371
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
372
-
373
- timesteps, = betas.shape
374
- self.num_timesteps = int(timesteps)
375
- self.linear_start = linear_start
376
- self.linear_end = linear_end
377
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
378
-
379
- to_torch = partial(torch.tensor, dtype=torch.float32)
380
-
381
- self.register_buffer('betas', to_torch(betas))
382
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
383
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
384
-
385
- # calculations for diffusion q(x_t | x_{t-1}) and others
386
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
387
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
388
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
389
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
390
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
391
-
392
- def q_sample(self, x_start, t, noise=None):
393
- noise = default(noise, lambda: torch.randn_like(x_start))
394
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
395
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
396
-
397
- def forward(self, x):
398
- z = self.model.encode(x).sample()
399
- z = z * self.scale_factor
400
- noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
401
- z = self.q_sample(z, noise_level)
402
- if self.out_size is not None:
403
- z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode
404
- # z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
405
- return z, noise_level
406
-
407
- def decode(self, z):
408
- z = z / self.scale_factor
409
- return self.model.decode(z)
410
-
411
-
412
- if __name__ == "__main__":
413
- from ldm.util import count_params
414
- sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"]
415
- model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
416
- count_params(model, True)
417
- z = model(sentences)
418
- print(z.shape)
419
-
420
- model = FrozenCLIPEmbedder().cuda()
421
- count_params(model, True)
422
- z = model(sentences)
423
- print(z.shape)
424
-
425
- print("done.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/evaluate/adm_evaluator.py DELETED
@@ -1,676 +0,0 @@
1
- import argparse
2
- import io
3
- import os
4
- import random
5
- import warnings
6
- import zipfile
7
- from abc import ABC, abstractmethod
8
- from contextlib import contextmanager
9
- from functools import partial
10
- from multiprocessing import cpu_count
11
- from multiprocessing.pool import ThreadPool
12
- from typing import Iterable, Optional, Tuple
13
- import yaml
14
-
15
- import numpy as np
16
- import requests
17
- import tensorflow.compat.v1 as tf
18
- from scipy import linalg
19
- from tqdm.auto import tqdm
20
-
21
- INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
22
- INCEPTION_V3_PATH = "classify_image_graph_def.pb"
23
-
24
- FID_POOL_NAME = "pool_3:0"
25
- FID_SPATIAL_NAME = "mixed_6/conv:0"
26
-
27
- REQUIREMENTS = f"This script has the following requirements: \n" \
28
- 'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm"
29
-
30
-
31
- def main():
32
- parser = argparse.ArgumentParser()
33
- parser.add_argument("--ref_batch", help="path to reference batch npz file")
34
- parser.add_argument("--sample_batch", help="path to sample batch npz file")
35
- args = parser.parse_args()
36
-
37
- config = tf.ConfigProto(
38
- allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
39
- )
40
- config.gpu_options.allow_growth = True
41
- evaluator = Evaluator(tf.Session(config=config))
42
-
43
- print("warming up TensorFlow...")
44
- # This will cause TF to print a bunch of verbose stuff now rather
45
- # than after the next print(), to help prevent confusion.
46
- evaluator.warmup()
47
-
48
- print("computing reference batch activations...")
49
- ref_acts = evaluator.read_activations(args.ref_batch)
50
- print("computing/reading reference batch statistics...")
51
- ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)
52
-
53
- print("computing sample batch activations...")
54
- sample_acts = evaluator.read_activations(args.sample_batch)
55
- print("computing/reading sample batch statistics...")
56
- sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)
57
-
58
- print("Computing evaluations...")
59
- is_ = evaluator.compute_inception_score(sample_acts[0])
60
- print("Inception Score:", is_)
61
- fid = sample_stats.frechet_distance(ref_stats)
62
- print("FID:", fid)
63
- sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial)
64
- print("sFID:", sfid)
65
- prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
66
- print("Precision:", prec)
67
- print("Recall:", recall)
68
-
69
- savepath = '/'.join(args.sample_batch.split('/')[:-1])
70
- results_file = os.path.join(savepath,'evaluation_metrics.yaml')
71
- print(f'Saving evaluation results to "{results_file}"')
72
-
73
- results = {
74
- 'IS': is_,
75
- 'FID': fid,
76
- 'sFID': sfid,
77
- 'Precision:':prec,
78
- 'Recall': recall
79
- }
80
-
81
- with open(results_file, 'w') as f:
82
- yaml.dump(results, f, default_flow_style=False)
83
-
84
- class InvalidFIDException(Exception):
85
- pass
86
-
87
-
88
- class FIDStatistics:
89
- def __init__(self, mu: np.ndarray, sigma: np.ndarray):
90
- self.mu = mu
91
- self.sigma = sigma
92
-
93
- def frechet_distance(self, other, eps=1e-6):
94
- """
95
- Compute the Frechet distance between two sets of statistics.
96
- """
97
- # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
98
- mu1, sigma1 = self.mu, self.sigma
99
- mu2, sigma2 = other.mu, other.sigma
100
-
101
- mu1 = np.atleast_1d(mu1)
102
- mu2 = np.atleast_1d(mu2)
103
-
104
- sigma1 = np.atleast_2d(sigma1)
105
- sigma2 = np.atleast_2d(sigma2)
106
-
107
- assert (
108
- mu1.shape == mu2.shape
109
- ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
110
- assert (
111
- sigma1.shape == sigma2.shape
112
- ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
113
-
114
- diff = mu1 - mu2
115
-
116
- # product might be almost singular
117
- covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
118
- if not np.isfinite(covmean).all():
119
- msg = (
120
- "fid calculation produces singular product; adding %s to diagonal of cov estimates"
121
- % eps
122
- )
123
- warnings.warn(msg)
124
- offset = np.eye(sigma1.shape[0]) * eps
125
- covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
126
-
127
- # numerical error might give slight imaginary component
128
- if np.iscomplexobj(covmean):
129
- if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
130
- m = np.max(np.abs(covmean.imag))
131
- raise ValueError("Imaginary component {}".format(m))
132
- covmean = covmean.real
133
-
134
- tr_covmean = np.trace(covmean)
135
-
136
- return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
137
-
138
-
139
- class Evaluator:
140
- def __init__(
141
- self,
142
- session,
143
- batch_size=64,
144
- softmax_batch_size=512,
145
- ):
146
- self.sess = session
147
- self.batch_size = batch_size
148
- self.softmax_batch_size = softmax_batch_size
149
- self.manifold_estimator = ManifoldEstimator(session)
150
- with self.sess.graph.as_default():
151
- self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
152
- self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
153
- self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
154
- self.softmax = _create_softmax_graph(self.softmax_input)
155
-
156
- def warmup(self):
157
- self.compute_activations(np.zeros([1, 8, 64, 64, 3]))
158
-
159
- def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
160
- with open_npz_array(npz_path, "arr_0") as reader:
161
- return self.compute_activations(reader.read_batches(self.batch_size))
162
-
163
- def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]:
164
- """
165
- Compute image features for downstream evals.
166
-
167
- :param batches: a iterator over NHWC numpy arrays in [0, 255].
168
- :return: a tuple of numpy arrays of shape [N x X], where X is a feature
169
- dimension. The tuple is (pool_3, spatial).
170
- """
171
- preds = []
172
- spatial_preds = []
173
- it = batches if silent else tqdm(batches)
174
- for batch in it:
175
- batch = batch.astype(np.float32)
176
- pred, spatial_pred = self.sess.run(
177
- [self.pool_features, self.spatial_features], {self.image_input: batch}
178
- )
179
- preds.append(pred.reshape([pred.shape[0], -1]))
180
- spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
181
- return (
182
- np.concatenate(preds, axis=0),
183
- np.concatenate(spatial_preds, axis=0),
184
- )
185
-
186
- def read_statistics(
187
- self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
188
- ) -> Tuple[FIDStatistics, FIDStatistics]:
189
- obj = np.load(npz_path)
190
- if "mu" in list(obj.keys()):
191
- return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
192
- obj["mu_s"], obj["sigma_s"]
193
- )
194
- return tuple(self.compute_statistics(x) for x in activations)
195
-
196
- def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
197
- mu = np.mean(activations, axis=0)
198
- sigma = np.cov(activations, rowvar=False)
199
- return FIDStatistics(mu, sigma)
200
-
201
- def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
202
- softmax_out = []
203
- for i in range(0, len(activations), self.softmax_batch_size):
204
- acts = activations[i : i + self.softmax_batch_size]
205
- softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
206
- preds = np.concatenate(softmax_out, axis=0)
207
- # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
208
- scores = []
209
- for i in range(0, len(preds), split_size):
210
- part = preds[i : i + split_size]
211
- kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
212
- kl = np.mean(np.sum(kl, 1))
213
- scores.append(np.exp(kl))
214
- return float(np.mean(scores))
215
-
216
- def compute_prec_recall(
217
- self, activations_ref: np.ndarray, activations_sample: np.ndarray
218
- ) -> Tuple[float, float]:
219
- radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
220
- radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
221
- pr = self.manifold_estimator.evaluate_pr(
222
- activations_ref, radii_1, activations_sample, radii_2
223
- )
224
- return (float(pr[0][0]), float(pr[1][0]))
225
-
226
-
227
- class ManifoldEstimator:
228
- """
229
- A helper for comparing manifolds of feature vectors.
230
-
231
- Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
232
- """
233
-
234
- def __init__(
235
- self,
236
- session,
237
- row_batch_size=10000,
238
- col_batch_size=10000,
239
- nhood_sizes=(3,),
240
- clamp_to_percentile=None,
241
- eps=1e-5,
242
- ):
243
- """
244
- Estimate the manifold of given feature vectors.
245
-
246
- :param session: the TensorFlow session.
247
- :param row_batch_size: row batch size to compute pairwise distances
248
- (parameter to trade-off between memory usage and performance).
249
- :param col_batch_size: column batch size to compute pairwise distances.
250
- :param nhood_sizes: number of neighbors used to estimate the manifold.
251
- :param clamp_to_percentile: prune hyperspheres that have radius larger than
252
- the given percentile.
253
- :param eps: small number for numerical stability.
254
- """
255
- self.distance_block = DistanceBlock(session)
256
- self.row_batch_size = row_batch_size
257
- self.col_batch_size = col_batch_size
258
- self.nhood_sizes = nhood_sizes
259
- self.num_nhoods = len(nhood_sizes)
260
- self.clamp_to_percentile = clamp_to_percentile
261
- self.eps = eps
262
-
263
- def warmup(self):
264
- feats, radii = (
265
- np.zeros([1, 2048], dtype=np.float32),
266
- np.zeros([1, 1], dtype=np.float32),
267
- )
268
- self.evaluate_pr(feats, radii, feats, radii)
269
-
270
- def manifold_radii(self, features: np.ndarray) -> np.ndarray:
271
- num_images = len(features)
272
-
273
- # Estimate manifold of features by calculating distances to k-NN of each sample.
274
- radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
275
- distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
276
- seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)
277
-
278
- for begin1 in range(0, num_images, self.row_batch_size):
279
- end1 = min(begin1 + self.row_batch_size, num_images)
280
- row_batch = features[begin1:end1]
281
-
282
- for begin2 in range(0, num_images, self.col_batch_size):
283
- end2 = min(begin2 + self.col_batch_size, num_images)
284
- col_batch = features[begin2:end2]
285
-
286
- # Compute distances between batches.
287
- distance_batch[
288
- 0 : end1 - begin1, begin2:end2
289
- ] = self.distance_block.pairwise_distances(row_batch, col_batch)
290
-
291
- # Find the k-nearest neighbor from the current batch.
292
- radii[begin1:end1, :] = np.concatenate(
293
- [
294
- x[:, self.nhood_sizes]
295
- for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
296
- ],
297
- axis=0,
298
- )
299
-
300
- if self.clamp_to_percentile is not None:
301
- max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
302
- radii[radii > max_distances] = 0
303
- return radii
304
-
305
- def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
306
- """
307
- Evaluate if new feature vectors are at the manifold.
308
- """
309
- num_eval_images = eval_features.shape[0]
310
- num_ref_images = radii.shape[0]
311
- distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
312
- batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
313
- max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
314
- nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
315
-
316
- for begin1 in range(0, num_eval_images, self.row_batch_size):
317
- end1 = min(begin1 + self.row_batch_size, num_eval_images)
318
- feature_batch = eval_features[begin1:end1]
319
-
320
- for begin2 in range(0, num_ref_images, self.col_batch_size):
321
- end2 = min(begin2 + self.col_batch_size, num_ref_images)
322
- ref_batch = features[begin2:end2]
323
-
324
- distance_batch[
325
- 0 : end1 - begin1, begin2:end2
326
- ] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
327
-
328
- # From the minibatch of new feature vectors, determine if they are in the estimated manifold.
329
- # If a feature vector is inside a hypersphere of some reference sample, then
330
- # the new sample lies at the estimated manifold.
331
- # The radii of the hyperspheres are determined from distances of neighborhood size k.
332
- samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
333
- batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
334
-
335
- max_realism_score[begin1:end1] = np.max(
336
- radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
337
- )
338
- nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
339
-
340
- return {
341
- "fraction": float(np.mean(batch_predictions)),
342
- "batch_predictions": batch_predictions,
343
- "max_realisim_score": max_realism_score,
344
- "nearest_indices": nearest_indices,
345
- }
346
-
347
- def evaluate_pr(
348
- self,
349
- features_1: np.ndarray,
350
- radii_1: np.ndarray,
351
- features_2: np.ndarray,
352
- radii_2: np.ndarray,
353
- ) -> Tuple[np.ndarray, np.ndarray]:
354
- """
355
- Evaluate precision and recall efficiently.
356
-
357
- :param features_1: [N1 x D] feature vectors for reference batch.
358
- :param radii_1: [N1 x K1] radii for reference vectors.
359
- :param features_2: [N2 x D] feature vectors for the other batch.
360
- :param radii_2: [N x K2] radii for other vectors.
361
- :return: a tuple of arrays for (precision, recall):
362
- - precision: an np.ndarray of length K1
363
- - recall: an np.ndarray of length K2
364
- """
365
- features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
366
- features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
367
- for begin_1 in range(0, len(features_1), self.row_batch_size):
368
- end_1 = begin_1 + self.row_batch_size
369
- batch_1 = features_1[begin_1:end_1]
370
- for begin_2 in range(0, len(features_2), self.col_batch_size):
371
- end_2 = begin_2 + self.col_batch_size
372
- batch_2 = features_2[begin_2:end_2]
373
- batch_1_in, batch_2_in = self.distance_block.less_thans(
374
- batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
375
- )
376
- features_1_status[begin_1:end_1] |= batch_1_in
377
- features_2_status[begin_2:end_2] |= batch_2_in
378
- return (
379
- np.mean(features_2_status.astype(np.float64), axis=0),
380
- np.mean(features_1_status.astype(np.float64), axis=0),
381
- )
382
-
383
-
384
- class DistanceBlock:
385
- """
386
- Calculate pairwise distances between vectors.
387
-
388
- Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
389
- """
390
-
391
- def __init__(self, session):
392
- self.session = session
393
-
394
- # Initialize TF graph to calculate pairwise distances.
395
- with session.graph.as_default():
396
- self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
397
- self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
398
- distance_block_16 = _batch_pairwise_distances(
399
- tf.cast(self._features_batch1, tf.float16),
400
- tf.cast(self._features_batch2, tf.float16),
401
- )
402
- self.distance_block = tf.cond(
403
- tf.reduce_all(tf.math.is_finite(distance_block_16)),
404
- lambda: tf.cast(distance_block_16, tf.float32),
405
- lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
406
- )
407
-
408
- # Extra logic for less thans.
409
- self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
410
- self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
411
- dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
412
- self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
413
- self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)
414
-
415
- def pairwise_distances(self, U, V):
416
- """
417
- Evaluate pairwise distances between two batches of feature vectors.
418
- """
419
- return self.session.run(
420
- self.distance_block,
421
- feed_dict={self._features_batch1: U, self._features_batch2: V},
422
- )
423
-
424
- def less_thans(self, batch_1, radii_1, batch_2, radii_2):
425
- return self.session.run(
426
- [self._batch_1_in, self._batch_2_in],
427
- feed_dict={
428
- self._features_batch1: batch_1,
429
- self._features_batch2: batch_2,
430
- self._radii1: radii_1,
431
- self._radii2: radii_2,
432
- },
433
- )
434
-
435
-
436
- def _batch_pairwise_distances(U, V):
437
- """
438
- Compute pairwise distances between two batches of feature vectors.
439
- """
440
- with tf.variable_scope("pairwise_dist_block"):
441
- # Squared norms of each row in U and V.
442
- norm_u = tf.reduce_sum(tf.square(U), 1)
443
- norm_v = tf.reduce_sum(tf.square(V), 1)
444
-
445
- # norm_u as a column and norm_v as a row vectors.
446
- norm_u = tf.reshape(norm_u, [-1, 1])
447
- norm_v = tf.reshape(norm_v, [1, -1])
448
-
449
- # Pairwise squared Euclidean distances.
450
- D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)
451
-
452
- return D
453
-
454
-
455
- class NpzArrayReader(ABC):
456
- @abstractmethod
457
- def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
458
- pass
459
-
460
- @abstractmethod
461
- def remaining(self) -> int:
462
- pass
463
-
464
- def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
465
- def gen_fn():
466
- while True:
467
- batch = self.read_batch(batch_size)
468
- if batch is None:
469
- break
470
- yield batch
471
-
472
- rem = self.remaining()
473
- num_batches = rem // batch_size + int(rem % batch_size != 0)
474
- return BatchIterator(gen_fn, num_batches)
475
-
476
-
477
- class BatchIterator:
478
- def __init__(self, gen_fn, length):
479
- self.gen_fn = gen_fn
480
- self.length = length
481
-
482
- def __len__(self):
483
- return self.length
484
-
485
- def __iter__(self):
486
- return self.gen_fn()
487
-
488
-
489
- class StreamingNpzArrayReader(NpzArrayReader):
490
- def __init__(self, arr_f, shape, dtype):
491
- self.arr_f = arr_f
492
- self.shape = shape
493
- self.dtype = dtype
494
- self.idx = 0
495
-
496
- def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
497
- if self.idx >= self.shape[0]:
498
- return None
499
-
500
- bs = min(batch_size, self.shape[0] - self.idx)
501
- self.idx += bs
502
-
503
- if self.dtype.itemsize == 0:
504
- return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
505
-
506
- read_count = bs * np.prod(self.shape[1:])
507
- read_size = int(read_count * self.dtype.itemsize)
508
- data = _read_bytes(self.arr_f, read_size, "array data")
509
- return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
510
-
511
- def remaining(self) -> int:
512
- return max(0, self.shape[0] - self.idx)
513
-
514
-
515
- class MemoryNpzArrayReader(NpzArrayReader):
516
- def __init__(self, arr):
517
- self.arr = arr
518
- self.idx = 0
519
-
520
- @classmethod
521
- def load(cls, path: str, arr_name: str):
522
- with open(path, "rb") as f:
523
- arr = np.load(f)[arr_name]
524
- return cls(arr)
525
-
526
- def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
527
- if self.idx >= self.arr.shape[0]:
528
- return None
529
-
530
- res = self.arr[self.idx : self.idx + batch_size]
531
- self.idx += batch_size
532
- return res
533
-
534
- def remaining(self) -> int:
535
- return max(0, self.arr.shape[0] - self.idx)
536
-
537
-
538
- @contextmanager
539
- def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
540
- with _open_npy_file(path, arr_name) as arr_f:
541
- version = np.lib.format.read_magic(arr_f)
542
- if version == (1, 0):
543
- header = np.lib.format.read_array_header_1_0(arr_f)
544
- elif version == (2, 0):
545
- header = np.lib.format.read_array_header_2_0(arr_f)
546
- else:
547
- yield MemoryNpzArrayReader.load(path, arr_name)
548
- return
549
- shape, fortran, dtype = header
550
- if fortran or dtype.hasobject:
551
- yield MemoryNpzArrayReader.load(path, arr_name)
552
- else:
553
- yield StreamingNpzArrayReader(arr_f, shape, dtype)
554
-
555
-
556
- def _read_bytes(fp, size, error_template="ran out of data"):
557
- """
558
- Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
559
-
560
- Read from file-like object until size bytes are read.
561
- Raises ValueError if not EOF is encountered before size bytes are read.
562
- Non-blocking objects only supported if they derive from io objects.
563
- Required as e.g. ZipExtFile in python 2.6 can return less data than
564
- requested.
565
- """
566
- data = bytes()
567
- while True:
568
- # io files (default in python3) return None or raise on
569
- # would-block, python2 file will truncate, probably nothing can be
570
- # done about that. note that regular files can't be non-blocking
571
- try:
572
- r = fp.read(size - len(data))
573
- data += r
574
- if len(r) == 0 or len(data) == size:
575
- break
576
- except io.BlockingIOError:
577
- pass
578
- if len(data) != size:
579
- msg = "EOF: reading %s, expected %d bytes got %d"
580
- raise ValueError(msg % (error_template, size, len(data)))
581
- else:
582
- return data
583
-
584
-
585
- @contextmanager
586
- def _open_npy_file(path: str, arr_name: str):
587
- with open(path, "rb") as f:
588
- with zipfile.ZipFile(f, "r") as zip_f:
589
- if f"{arr_name}.npy" not in zip_f.namelist():
590
- raise ValueError(f"missing {arr_name} in npz file")
591
- with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
592
- yield arr_f
593
-
594
-
595
- def _download_inception_model():
596
- if os.path.exists(INCEPTION_V3_PATH):
597
- return
598
- print("downloading InceptionV3 model...")
599
- with requests.get(INCEPTION_V3_URL, stream=True) as r:
600
- r.raise_for_status()
601
- tmp_path = INCEPTION_V3_PATH + ".tmp"
602
- with open(tmp_path, "wb") as f:
603
- for chunk in tqdm(r.iter_content(chunk_size=8192)):
604
- f.write(chunk)
605
- os.rename(tmp_path, INCEPTION_V3_PATH)
606
-
607
-
608
- def _create_feature_graph(input_batch):
609
- _download_inception_model()
610
- prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
611
- with open(INCEPTION_V3_PATH, "rb") as f:
612
- graph_def = tf.GraphDef()
613
- graph_def.ParseFromString(f.read())
614
- pool3, spatial = tf.import_graph_def(
615
- graph_def,
616
- input_map={f"ExpandDims:0": input_batch},
617
- return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
618
- name=prefix,
619
- )
620
- _update_shapes(pool3)
621
- spatial = spatial[..., :7]
622
- return pool3, spatial
623
-
624
-
625
- def _create_softmax_graph(input_batch):
626
- _download_inception_model()
627
- prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
628
- with open(INCEPTION_V3_PATH, "rb") as f:
629
- graph_def = tf.GraphDef()
630
- graph_def.ParseFromString(f.read())
631
- (matmul,) = tf.import_graph_def(
632
- graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
633
- )
634
- w = matmul.inputs[1]
635
- logits = tf.matmul(input_batch, w)
636
- return tf.nn.softmax(logits)
637
-
638
-
639
- def _update_shapes(pool3):
640
- # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
641
- ops = pool3.graph.get_operations()
642
- for op in ops:
643
- for o in op.outputs:
644
- shape = o.get_shape()
645
- if shape._dims is not None: # pylint: disable=protected-access
646
- # shape = [s.value for s in shape] TF 1.x
647
- shape = [s for s in shape] # TF 2.x
648
- new_shape = []
649
- for j, s in enumerate(shape):
650
- if s == 1 and j == 0:
651
- new_shape.append(None)
652
- else:
653
- new_shape.append(s)
654
- o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
655
- return pool3
656
-
657
-
658
- def _numpy_partition(arr, kth, **kwargs):
659
- num_workers = min(cpu_count(), len(arr))
660
- chunk_size = len(arr) // num_workers
661
- extra = len(arr) % num_workers
662
-
663
- start_idx = 0
664
- batches = []
665
- for i in range(num_workers):
666
- size = chunk_size + (1 if i < extra else 0)
667
- batches.append(arr[start_idx : start_idx + size])
668
- start_idx += size
669
-
670
- with ThreadPool(num_workers) as pool:
671
- return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))
672
-
673
-
674
- if __name__ == "__main__":
675
- print(REQUIREMENTS)
676
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py DELETED
@@ -1,630 +0,0 @@
1
- import argparse
2
- import glob
3
- import os
4
- from tqdm import tqdm
5
- from collections import namedtuple
6
-
7
- import numpy as np
8
- import torch
9
- import torchvision.transforms as transforms
10
- from torchvision import models
11
- from PIL import Image
12
-
13
- from ldm.modules.evaluate.ssim import ssim
14
-
15
-
16
- transform = transforms.Compose([transforms.ToTensor()])
17
-
18
- def normalize_tensor(in_feat, eps=1e-10):
19
- norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1)).view(
20
- in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3]
21
- )
22
- return in_feat / (norm_factor.expand_as(in_feat) + eps)
23
-
24
-
25
- def cos_sim(in0, in1):
26
- in0_norm = normalize_tensor(in0)
27
- in1_norm = normalize_tensor(in1)
28
- N = in0.size()[0]
29
- X = in0.size()[2]
30
- Y = in0.size()[3]
31
-
32
- return torch.mean(
33
- torch.mean(
34
- torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2
35
- ).view(N, 1, 1, Y),
36
- dim=3,
37
- ).view(N)
38
-
39
-
40
- class squeezenet(torch.nn.Module):
41
- def __init__(self, requires_grad=False, pretrained=True):
42
- super(squeezenet, self).__init__()
43
- pretrained_features = models.squeezenet1_1(
44
- pretrained=pretrained
45
- ).features
46
- self.slice1 = torch.nn.Sequential()
47
- self.slice2 = torch.nn.Sequential()
48
- self.slice3 = torch.nn.Sequential()
49
- self.slice4 = torch.nn.Sequential()
50
- self.slice5 = torch.nn.Sequential()
51
- self.slice6 = torch.nn.Sequential()
52
- self.slice7 = torch.nn.Sequential()
53
- self.N_slices = 7
54
- for x in range(2):
55
- self.slice1.add_module(str(x), pretrained_features[x])
56
- for x in range(2, 5):
57
- self.slice2.add_module(str(x), pretrained_features[x])
58
- for x in range(5, 8):
59
- self.slice3.add_module(str(x), pretrained_features[x])
60
- for x in range(8, 10):
61
- self.slice4.add_module(str(x), pretrained_features[x])
62
- for x in range(10, 11):
63
- self.slice5.add_module(str(x), pretrained_features[x])
64
- for x in range(11, 12):
65
- self.slice6.add_module(str(x), pretrained_features[x])
66
- for x in range(12, 13):
67
- self.slice7.add_module(str(x), pretrained_features[x])
68
- if not requires_grad:
69
- for param in self.parameters():
70
- param.requires_grad = False
71
-
72
- def forward(self, X):
73
- h = self.slice1(X)
74
- h_relu1 = h
75
- h = self.slice2(h)
76
- h_relu2 = h
77
- h = self.slice3(h)
78
- h_relu3 = h
79
- h = self.slice4(h)
80
- h_relu4 = h
81
- h = self.slice5(h)
82
- h_relu5 = h
83
- h = self.slice6(h)
84
- h_relu6 = h
85
- h = self.slice7(h)
86
- h_relu7 = h
87
- vgg_outputs = namedtuple(
88
- "SqueezeOutputs",
89
- ["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"],
90
- )
91
- out = vgg_outputs(
92
- h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7
93
- )
94
-
95
- return out
96
-
97
-
98
- class alexnet(torch.nn.Module):
99
- def __init__(self, requires_grad=False, pretrained=True):
100
- super(alexnet, self).__init__()
101
- alexnet_pretrained_features = models.alexnet(
102
- pretrained=pretrained
103
- ).features
104
- self.slice1 = torch.nn.Sequential()
105
- self.slice2 = torch.nn.Sequential()
106
- self.slice3 = torch.nn.Sequential()
107
- self.slice4 = torch.nn.Sequential()
108
- self.slice5 = torch.nn.Sequential()
109
- self.N_slices = 5
110
- for x in range(2):
111
- self.slice1.add_module(str(x), alexnet_pretrained_features[x])
112
- for x in range(2, 5):
113
- self.slice2.add_module(str(x), alexnet_pretrained_features[x])
114
- for x in range(5, 8):
115
- self.slice3.add_module(str(x), alexnet_pretrained_features[x])
116
- for x in range(8, 10):
117
- self.slice4.add_module(str(x), alexnet_pretrained_features[x])
118
- for x in range(10, 12):
119
- self.slice5.add_module(str(x), alexnet_pretrained_features[x])
120
- if not requires_grad:
121
- for param in self.parameters():
122
- param.requires_grad = False
123
-
124
- def forward(self, X):
125
- h = self.slice1(X)
126
- h_relu1 = h
127
- h = self.slice2(h)
128
- h_relu2 = h
129
- h = self.slice3(h)
130
- h_relu3 = h
131
- h = self.slice4(h)
132
- h_relu4 = h
133
- h = self.slice5(h)
134
- h_relu5 = h
135
- alexnet_outputs = namedtuple(
136
- "AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"]
137
- )
138
- out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
139
-
140
- return out
141
-
142
-
143
- class vgg16(torch.nn.Module):
144
- def __init__(self, requires_grad=False, pretrained=True):
145
- super(vgg16, self).__init__()
146
- vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
147
- self.slice1 = torch.nn.Sequential()
148
- self.slice2 = torch.nn.Sequential()
149
- self.slice3 = torch.nn.Sequential()
150
- self.slice4 = torch.nn.Sequential()
151
- self.slice5 = torch.nn.Sequential()
152
- self.N_slices = 5
153
- for x in range(4):
154
- self.slice1.add_module(str(x), vgg_pretrained_features[x])
155
- for x in range(4, 9):
156
- self.slice2.add_module(str(x), vgg_pretrained_features[x])
157
- for x in range(9, 16):
158
- self.slice3.add_module(str(x), vgg_pretrained_features[x])
159
- for x in range(16, 23):
160
- self.slice4.add_module(str(x), vgg_pretrained_features[x])
161
- for x in range(23, 30):
162
- self.slice5.add_module(str(x), vgg_pretrained_features[x])
163
- if not requires_grad:
164
- for param in self.parameters():
165
- param.requires_grad = False
166
-
167
- def forward(self, X):
168
- h = self.slice1(X)
169
- h_relu1_2 = h
170
- h = self.slice2(h)
171
- h_relu2_2 = h
172
- h = self.slice3(h)
173
- h_relu3_3 = h
174
- h = self.slice4(h)
175
- h_relu4_3 = h
176
- h = self.slice5(h)
177
- h_relu5_3 = h
178
- vgg_outputs = namedtuple(
179
- "VggOutputs",
180
- ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"],
181
- )
182
- out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
183
-
184
- return out
185
-
186
-
187
- class resnet(torch.nn.Module):
188
- def __init__(self, requires_grad=False, pretrained=True, num=18):
189
- super(resnet, self).__init__()
190
- if num == 18:
191
- self.net = models.resnet18(pretrained=pretrained)
192
- elif num == 34:
193
- self.net = models.resnet34(pretrained=pretrained)
194
- elif num == 50:
195
- self.net = models.resnet50(pretrained=pretrained)
196
- elif num == 101:
197
- self.net = models.resnet101(pretrained=pretrained)
198
- elif num == 152:
199
- self.net = models.resnet152(pretrained=pretrained)
200
- self.N_slices = 5
201
-
202
- self.conv1 = self.net.conv1
203
- self.bn1 = self.net.bn1
204
- self.relu = self.net.relu
205
- self.maxpool = self.net.maxpool
206
- self.layer1 = self.net.layer1
207
- self.layer2 = self.net.layer2
208
- self.layer3 = self.net.layer3
209
- self.layer4 = self.net.layer4
210
-
211
- def forward(self, X):
212
- h = self.conv1(X)
213
- h = self.bn1(h)
214
- h = self.relu(h)
215
- h_relu1 = h
216
- h = self.maxpool(h)
217
- h = self.layer1(h)
218
- h_conv2 = h
219
- h = self.layer2(h)
220
- h_conv3 = h
221
- h = self.layer3(h)
222
- h_conv4 = h
223
- h = self.layer4(h)
224
- h_conv5 = h
225
-
226
- outputs = namedtuple(
227
- "Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"]
228
- )
229
- out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
230
-
231
- return out
232
-
233
- # Off-the-shelf deep network
234
- class PNet(torch.nn.Module):
235
- """Pre-trained network with all channels equally weighted by default"""
236
-
237
- def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True):
238
- super(PNet, self).__init__()
239
-
240
- self.use_gpu = use_gpu
241
-
242
- self.pnet_type = pnet_type
243
- self.pnet_rand = pnet_rand
244
-
245
- self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1)
246
- self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1)
247
-
248
- if self.pnet_type in ["vgg", "vgg16"]:
249
- self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False)
250
- elif self.pnet_type == "alex":
251
- self.net = alexnet(
252
- pretrained=not self.pnet_rand, requires_grad=False
253
- )
254
- elif self.pnet_type[:-2] == "resnet":
255
- self.net = resnet(
256
- pretrained=not self.pnet_rand,
257
- requires_grad=False,
258
- num=int(self.pnet_type[-2:]),
259
- )
260
- elif self.pnet_type == "squeeze":
261
- self.net = squeezenet(
262
- pretrained=not self.pnet_rand, requires_grad=False
263
- )
264
-
265
- self.L = self.net.N_slices
266
-
267
- if use_gpu:
268
- self.net.cuda()
269
- self.shift = self.shift.cuda()
270
- self.scale = self.scale.cuda()
271
-
272
- def forward(self, in0, in1, retPerLayer=False):
273
- in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
274
- in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
275
-
276
- outs0 = self.net.forward(in0_sc)
277
- outs1 = self.net.forward(in1_sc)
278
-
279
- if retPerLayer:
280
- all_scores = []
281
- for (kk, out0) in enumerate(outs0):
282
- cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk])
283
- if kk == 0:
284
- val = 1.0 * cur_score
285
- else:
286
- val = val + cur_score
287
- if retPerLayer:
288
- all_scores += [cur_score]
289
-
290
- if retPerLayer:
291
- return (val, all_scores)
292
- else:
293
- return val
294
-
295
-
296
-
297
-
298
- # The SSIM metric
299
- def ssim_metric(img1, img2, mask=None):
300
- return ssim(img1, img2, mask=mask, size_average=False)
301
-
302
-
303
- # The PSNR metric
304
- def psnr(img1, img2, mask=None,reshape=False):
305
- b = img1.size(0)
306
- if not (mask is None):
307
- b = img1.size(0)
308
- mse_err = (img1 - img2).pow(2) * mask
309
- if reshape:
310
- mse_err = mse_err.reshape(b, -1).sum(dim=1) / (
311
- 3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1)
312
- )
313
- else:
314
- mse_err = mse_err.view(b, -1).sum(dim=1) / (
315
- 3 * mask.view(b, -1).sum(dim=1).clamp(min=1)
316
- )
317
- else:
318
- if reshape:
319
- mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1)
320
- else:
321
- mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1)
322
-
323
- psnr = 10 * (1 / mse_err).log10()
324
- return psnr
325
-
326
-
327
- # The perceptual similarity metric
328
- def perceptual_sim(img1, img2, vgg16):
329
- # First extract features
330
- dist = vgg16(img1 * 2 - 1, img2 * 2 - 1)
331
-
332
- return dist
333
-
334
- def load_img(img_name, size=None):
335
- try:
336
- img = Image.open(img_name)
337
-
338
- if type(size) == int:
339
- img = img.resize((size, size))
340
- elif size is not None:
341
- img = img.resize((size[1], size[0]))
342
-
343
- img = transform(img).cuda()
344
- img = img.unsqueeze(0)
345
- except Exception as e:
346
- print("Failed at loading %s " % img_name)
347
- print(e)
348
- img = torch.zeros(1, 3, 256, 256).cuda()
349
- raise
350
- return img
351
-
352
-
353
- def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other):
354
-
355
- # Load VGG16 for feature similarity
356
- vgg16 = PNet().to("cuda")
357
- vgg16.eval()
358
- vgg16.cuda()
359
-
360
- values_percsim = []
361
- values_ssim = []
362
- values_psnr = []
363
- folders = os.listdir(folder)
364
- for i, f in tqdm(enumerate(sorted(folders))):
365
- pred_imgs = glob.glob(folder + f + "/" + pred_img)
366
- tgt_imgs = glob.glob(folder + f + "/" + tgt_img)
367
- assert len(tgt_imgs) == 1
368
-
369
- perc_sim = 10000
370
- ssim_sim = -10
371
- psnr_sim = -10
372
- for p_img in pred_imgs:
373
- t_img = load_img(tgt_imgs[0])
374
- p_img = load_img(p_img, size=t_img.shape[2:])
375
- t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
376
- perc_sim = min(perc_sim, t_perc_sim)
377
-
378
- ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
379
- psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
380
-
381
- values_percsim += [perc_sim]
382
- values_ssim += [ssim_sim]
383
- values_psnr += [psnr_sim]
384
-
385
- if take_every_other:
386
- n_valuespercsim = []
387
- n_valuesssim = []
388
- n_valuespsnr = []
389
- for i in range(0, len(values_percsim) // 2):
390
- n_valuespercsim += [
391
- min(values_percsim[2 * i], values_percsim[2 * i + 1])
392
- ]
393
- n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
394
- n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
395
-
396
- values_percsim = n_valuespercsim
397
- values_ssim = n_valuesssim
398
- values_psnr = n_valuespsnr
399
-
400
- avg_percsim = np.mean(np.array(values_percsim))
401
- std_percsim = np.std(np.array(values_percsim))
402
-
403
- avg_psnr = np.mean(np.array(values_psnr))
404
- std_psnr = np.std(np.array(values_psnr))
405
-
406
- avg_ssim = np.mean(np.array(values_ssim))
407
- std_ssim = np.std(np.array(values_ssim))
408
-
409
- return {
410
- "Perceptual similarity": (avg_percsim, std_percsim),
411
- "PSNR": (avg_psnr, std_psnr),
412
- "SSIM": (avg_ssim, std_ssim),
413
- }
414
-
415
-
416
- def compute_perceptual_similarity_from_list(pred_imgs_list, tgt_imgs_list,
417
- take_every_other,
418
- simple_format=True):
419
-
420
- # Load VGG16 for feature similarity
421
- vgg16 = PNet().to("cuda")
422
- vgg16.eval()
423
- vgg16.cuda()
424
-
425
- values_percsim = []
426
- values_ssim = []
427
- values_psnr = []
428
- equal_count = 0
429
- ambig_count = 0
430
- for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
431
- pred_imgs = pred_imgs_list[i]
432
- tgt_imgs = [tgt_img]
433
- assert len(tgt_imgs) == 1
434
-
435
- if type(pred_imgs) != list:
436
- pred_imgs = [pred_imgs]
437
-
438
- perc_sim = 10000
439
- ssim_sim = -10
440
- psnr_sim = -10
441
- assert len(pred_imgs)>0
442
- for p_img in pred_imgs:
443
- t_img = load_img(tgt_imgs[0])
444
- p_img = load_img(p_img, size=t_img.shape[2:])
445
- t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
446
- perc_sim = min(perc_sim, t_perc_sim)
447
-
448
- ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
449
- psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
450
-
451
- values_percsim += [perc_sim]
452
- values_ssim += [ssim_sim]
453
- if psnr_sim != np.float("inf"):
454
- values_psnr += [psnr_sim]
455
- else:
456
- if torch.allclose(p_img, t_img):
457
- equal_count += 1
458
- print("{} equal src and wrp images.".format(equal_count))
459
- else:
460
- ambig_count += 1
461
- print("{} ambiguous src and wrp images.".format(ambig_count))
462
-
463
- if take_every_other:
464
- n_valuespercsim = []
465
- n_valuesssim = []
466
- n_valuespsnr = []
467
- for i in range(0, len(values_percsim) // 2):
468
- n_valuespercsim += [
469
- min(values_percsim[2 * i], values_percsim[2 * i + 1])
470
- ]
471
- n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
472
- n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
473
-
474
- values_percsim = n_valuespercsim
475
- values_ssim = n_valuesssim
476
- values_psnr = n_valuespsnr
477
-
478
- avg_percsim = np.mean(np.array(values_percsim))
479
- std_percsim = np.std(np.array(values_percsim))
480
-
481
- avg_psnr = np.mean(np.array(values_psnr))
482
- std_psnr = np.std(np.array(values_psnr))
483
-
484
- avg_ssim = np.mean(np.array(values_ssim))
485
- std_ssim = np.std(np.array(values_ssim))
486
-
487
- if simple_format:
488
- # just to make yaml formatting readable
489
- return {
490
- "Perceptual similarity": [float(avg_percsim), float(std_percsim)],
491
- "PSNR": [float(avg_psnr), float(std_psnr)],
492
- "SSIM": [float(avg_ssim), float(std_ssim)],
493
- }
494
- else:
495
- return {
496
- "Perceptual similarity": (avg_percsim, std_percsim),
497
- "PSNR": (avg_psnr, std_psnr),
498
- "SSIM": (avg_ssim, std_ssim),
499
- }
500
-
501
-
502
- def compute_perceptual_similarity_from_list_topk(pred_imgs_list, tgt_imgs_list,
503
- take_every_other, resize=False):
504
-
505
- # Load VGG16 for feature similarity
506
- vgg16 = PNet().to("cuda")
507
- vgg16.eval()
508
- vgg16.cuda()
509
-
510
- values_percsim = []
511
- values_ssim = []
512
- values_psnr = []
513
- individual_percsim = []
514
- individual_ssim = []
515
- individual_psnr = []
516
- for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
517
- pred_imgs = pred_imgs_list[i]
518
- tgt_imgs = [tgt_img]
519
- assert len(tgt_imgs) == 1
520
-
521
- if type(pred_imgs) != list:
522
- assert False
523
- pred_imgs = [pred_imgs]
524
-
525
- perc_sim = 10000
526
- ssim_sim = -10
527
- psnr_sim = -10
528
- sample_percsim = list()
529
- sample_ssim = list()
530
- sample_psnr = list()
531
- for p_img in pred_imgs:
532
- if resize:
533
- t_img = load_img(tgt_imgs[0], size=(256,256))
534
- else:
535
- t_img = load_img(tgt_imgs[0])
536
- p_img = load_img(p_img, size=t_img.shape[2:])
537
-
538
- t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
539
- sample_percsim.append(t_perc_sim)
540
- perc_sim = min(perc_sim, t_perc_sim)
541
-
542
- t_ssim = ssim_metric(p_img, t_img).item()
543
- sample_ssim.append(t_ssim)
544
- ssim_sim = max(ssim_sim, t_ssim)
545
-
546
- t_psnr = psnr(p_img, t_img).item()
547
- sample_psnr.append(t_psnr)
548
- psnr_sim = max(psnr_sim, t_psnr)
549
-
550
- values_percsim += [perc_sim]
551
- values_ssim += [ssim_sim]
552
- values_psnr += [psnr_sim]
553
- individual_percsim.append(sample_percsim)
554
- individual_ssim.append(sample_ssim)
555
- individual_psnr.append(sample_psnr)
556
-
557
- if take_every_other:
558
- assert False, "Do this later, after specifying topk to get proper results"
559
- n_valuespercsim = []
560
- n_valuesssim = []
561
- n_valuespsnr = []
562
- for i in range(0, len(values_percsim) // 2):
563
- n_valuespercsim += [
564
- min(values_percsim[2 * i], values_percsim[2 * i + 1])
565
- ]
566
- n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
567
- n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
568
-
569
- values_percsim = n_valuespercsim
570
- values_ssim = n_valuesssim
571
- values_psnr = n_valuespsnr
572
-
573
- avg_percsim = np.mean(np.array(values_percsim))
574
- std_percsim = np.std(np.array(values_percsim))
575
-
576
- avg_psnr = np.mean(np.array(values_psnr))
577
- std_psnr = np.std(np.array(values_psnr))
578
-
579
- avg_ssim = np.mean(np.array(values_ssim))
580
- std_ssim = np.std(np.array(values_ssim))
581
-
582
- individual_percsim = np.array(individual_percsim)
583
- individual_psnr = np.array(individual_psnr)
584
- individual_ssim = np.array(individual_ssim)
585
-
586
- return {
587
- "avg_of_best": {
588
- "Perceptual similarity": [float(avg_percsim), float(std_percsim)],
589
- "PSNR": [float(avg_psnr), float(std_psnr)],
590
- "SSIM": [float(avg_ssim), float(std_ssim)],
591
- },
592
- "individual": {
593
- "PSIM": individual_percsim,
594
- "PSNR": individual_psnr,
595
- "SSIM": individual_ssim,
596
- }
597
- }
598
-
599
-
600
- if __name__ == "__main__":
601
- args = argparse.ArgumentParser()
602
- args.add_argument("--folder", type=str, default="")
603
- args.add_argument("--pred_image", type=str, default="")
604
- args.add_argument("--target_image", type=str, default="")
605
- args.add_argument("--take_every_other", action="store_true", default=False)
606
- args.add_argument("--output_file", type=str, default="")
607
-
608
- opts = args.parse_args()
609
-
610
- folder = opts.folder
611
- pred_img = opts.pred_image
612
- tgt_img = opts.target_image
613
-
614
- results = compute_perceptual_similarity(
615
- folder, pred_img, tgt_img, opts.take_every_other
616
- )
617
-
618
- f = open(opts.output_file, 'w')
619
- for key in results:
620
- print("%s for %s: \n" % (key, opts.folder))
621
- print(
622
- "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
623
- )
624
-
625
- f.write("%s for %s: \n" % (key, opts.folder))
626
- f.write(
627
- "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
628
- )
629
-
630
- f.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/evaluate/frechet_video_distance.py DELETED
@@ -1,147 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The Google Research Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python2, python3
17
- """Minimal Reference implementation for the Frechet Video Distance (FVD).
18
-
19
- FVD is a metric for the quality of video generation models. It is inspired by
20
- the FID (Frechet Inception Distance) used for images, but uses a different
21
- embedding to be better suitable for videos.
22
- """
23
-
24
- from __future__ import absolute_import
25
- from __future__ import division
26
- from __future__ import print_function
27
-
28
-
29
- import six
30
- import tensorflow.compat.v1 as tf
31
- import tensorflow_gan as tfgan
32
- import tensorflow_hub as hub
33
-
34
-
35
- def preprocess(videos, target_resolution):
36
- """Runs some preprocessing on the videos for I3D model.
37
-
38
- Args:
39
- videos: <T>[batch_size, num_frames, height, width, depth] The videos to be
40
- preprocessed. We don't care about the specific dtype of the videos, it can
41
- be anything that tf.image.resize_bilinear accepts. Values are expected to
42
- be in the range 0-255.
43
- target_resolution: (width, height): target video resolution
44
-
45
- Returns:
46
- videos: <float32>[batch_size, num_frames, height, width, depth]
47
- """
48
- videos_shape = list(videos.shape)
49
- all_frames = tf.reshape(videos, [-1] + videos_shape[-3:])
50
- resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution)
51
- target_shape = [videos_shape[0], -1] + list(target_resolution) + [3]
52
- output_videos = tf.reshape(resized_videos, target_shape)
53
- scaled_videos = 2. * tf.cast(output_videos, tf.float32) / 255. - 1
54
- return scaled_videos
55
-
56
-
57
- def _is_in_graph(tensor_name):
58
- """Checks whether a given tensor does exists in the graph."""
59
- try:
60
- tf.get_default_graph().get_tensor_by_name(tensor_name)
61
- except KeyError:
62
- return False
63
- return True
64
-
65
-
66
- def create_id3_embedding(videos,warmup=False,batch_size=16):
67
- """Embeds the given videos using the Inflated 3D Convolution ne twork.
68
-
69
- Downloads the graph of the I3D from tf.hub and adds it to the graph on the
70
- first call.
71
-
72
- Args:
73
- videos: <float32>[batch_size, num_frames, height=224, width=224, depth=3].
74
- Expected range is [-1, 1].
75
-
76
- Returns:
77
- embedding: <float32>[batch_size, embedding_size]. embedding_size depends
78
- on the model used.
79
-
80
- Raises:
81
- ValueError: when a provided embedding_layer is not supported.
82
- """
83
-
84
- # batch_size = 16
85
- module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1"
86
-
87
-
88
- # Making sure that we import the graph separately for
89
- # each different input video tensor.
90
- module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str(
91
- videos.name).replace(":", "_")
92
-
93
-
94
-
95
- assert_ops = [
96
- tf.Assert(
97
- tf.reduce_max(videos) <= 1.001,
98
- ["max value in frame is > 1", videos]),
99
- tf.Assert(
100
- tf.reduce_min(videos) >= -1.001,
101
- ["min value in frame is < -1", videos]),
102
- tf.assert_equal(
103
- tf.shape(videos)[0],
104
- batch_size, ["invalid frame batch size: ",
105
- tf.shape(videos)],
106
- summarize=6),
107
- ]
108
- with tf.control_dependencies(assert_ops):
109
- videos = tf.identity(videos)
110
-
111
- module_scope = "%s_apply_default/" % module_name
112
-
113
- # To check whether the module has already been loaded into the graph, we look
114
- # for a given tensor name. If this tensor name exists, we assume the function
115
- # has been called before and the graph was imported. Otherwise we import it.
116
- # Note: in theory, the tensor could exist, but have wrong shapes.
117
- # This will happen if create_id3_embedding is called with a frames_placehoder
118
- # of wrong size/batch size, because even though that will throw a tf.Assert
119
- # on graph-execution time, it will insert the tensor (with wrong shape) into
120
- # the graph. This is why we need the following assert.
121
- if warmup:
122
- video_batch_size = int(videos.shape[0])
123
- assert video_batch_size in [batch_size, -1, None], f"Invalid batch size {video_batch_size}"
124
- tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
125
- if not _is_in_graph(tensor_name):
126
- i3d_model = hub.Module(module_spec, name=module_name)
127
- i3d_model(videos)
128
-
129
- # gets the kinetics-i3d-400-logits layer
130
- tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
131
- tensor = tf.get_default_graph().get_tensor_by_name(tensor_name)
132
- return tensor
133
-
134
-
135
- def calculate_fvd(real_activations,
136
- generated_activations):
137
- """Returns a list of ops that compute metrics as funcs of activations.
138
-
139
- Args:
140
- real_activations: <float32>[num_samples, embedding_size]
141
- generated_activations: <float32>[num_samples, embedding_size]
142
-
143
- Returns:
144
- A scalar that contains the requested FVD.
145
- """
146
- return tfgan.eval.frechet_classifier_distance_from_activations(
147
- real_activations, generated_activations)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/evaluate/ssim.py DELETED
@@ -1,124 +0,0 @@
1
- # MIT Licence
2
-
3
- # Methods to predict the SSIM, taken from
4
- # https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
5
-
6
- from math import exp
7
-
8
- import torch
9
- import torch.nn.functional as F
10
- from torch.autograd import Variable
11
-
12
- def gaussian(window_size, sigma):
13
- gauss = torch.Tensor(
14
- [
15
- exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2))
16
- for x in range(window_size)
17
- ]
18
- )
19
- return gauss / gauss.sum()
20
-
21
-
22
- def create_window(window_size, channel):
23
- _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
24
- _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
25
- window = Variable(
26
- _2D_window.expand(channel, 1, window_size, window_size).contiguous()
27
- )
28
- return window
29
-
30
-
31
- def _ssim(
32
- img1, img2, window, window_size, channel, mask=None, size_average=True
33
- ):
34
- mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
35
- mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
36
-
37
- mu1_sq = mu1.pow(2)
38
- mu2_sq = mu2.pow(2)
39
- mu1_mu2 = mu1 * mu2
40
-
41
- sigma1_sq = (
42
- F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel)
43
- - mu1_sq
44
- )
45
- sigma2_sq = (
46
- F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel)
47
- - mu2_sq
48
- )
49
- sigma12 = (
50
- F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel)
51
- - mu1_mu2
52
- )
53
-
54
- C1 = (0.01) ** 2
55
- C2 = (0.03) ** 2
56
-
57
- ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
58
- (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
59
- )
60
-
61
- if not (mask is None):
62
- b = mask.size(0)
63
- ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask
64
- ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum(
65
- dim=1
66
- ).clamp(min=1)
67
- return ssim_map
68
-
69
- import pdb
70
-
71
- pdb.set_trace
72
-
73
- if size_average:
74
- return ssim_map.mean()
75
- else:
76
- return ssim_map.mean(1).mean(1).mean(1)
77
-
78
-
79
- class SSIM(torch.nn.Module):
80
- def __init__(self, window_size=11, size_average=True):
81
- super(SSIM, self).__init__()
82
- self.window_size = window_size
83
- self.size_average = size_average
84
- self.channel = 1
85
- self.window = create_window(window_size, self.channel)
86
-
87
- def forward(self, img1, img2, mask=None):
88
- (_, channel, _, _) = img1.size()
89
-
90
- if (
91
- channel == self.channel
92
- and self.window.data.type() == img1.data.type()
93
- ):
94
- window = self.window
95
- else:
96
- window = create_window(self.window_size, channel)
97
-
98
- if img1.is_cuda:
99
- window = window.cuda(img1.get_device())
100
- window = window.type_as(img1)
101
-
102
- self.window = window
103
- self.channel = channel
104
-
105
- return _ssim(
106
- img1,
107
- img2,
108
- window,
109
- self.window_size,
110
- channel,
111
- mask,
112
- self.size_average,
113
- )
114
-
115
-
116
- def ssim(img1, img2, window_size=11, mask=None, size_average=True):
117
- (_, channel, _, _) = img1.size()
118
- window = create_window(window_size, channel)
119
-
120
- if img1.is_cuda:
121
- window = window.cuda(img1.get_device())
122
- window = window.type_as(img1)
123
-
124
- return _ssim(img1, img2, window, window_size, channel, mask, size_average)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py DELETED
@@ -1,294 +0,0 @@
1
- # based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks!
2
- import os
3
- import numpy as np
4
- import io
5
- import re
6
- import requests
7
- import html
8
- import hashlib
9
- import urllib
10
- import urllib.request
11
- import scipy.linalg
12
- import multiprocessing as mp
13
- import glob
14
-
15
-
16
- from tqdm import tqdm
17
- from typing import Any, List, Tuple, Union, Dict, Callable
18
-
19
- from torchvision.io import read_video
20
- import torch; torch.set_grad_enabled(False)
21
- from einops import rearrange
22
-
23
- from nitro.util import isvideo
24
-
25
- def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float:
26
- print('Calculate frechet distance...')
27
- m = np.square(mu_sample - mu_ref).sum()
28
- s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member
29
- fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2))
30
-
31
- return float(fid)
32
-
33
-
34
- def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
35
- mu = feats.mean(axis=0) # [d]
36
- sigma = np.cov(feats, rowvar=False) # [d, d]
37
-
38
- return mu, sigma
39
-
40
-
41
- def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any:
42
- """Download the given URL and return a binary-mode file object to access the data."""
43
- assert num_attempts >= 1
44
-
45
- # Doesn't look like an URL scheme so interpret it as a local filename.
46
- if not re.match('^[a-z]+://', url):
47
- return url if return_filename else open(url, "rb")
48
-
49
- # Handle file URLs. This code handles unusual file:// patterns that
50
- # arise on Windows:
51
- #
52
- # file:///c:/foo.txt
53
- #
54
- # which would translate to a local '/c:/foo.txt' filename that's
55
- # invalid. Drop the forward slash for such pathnames.
56
- #
57
- # If you touch this code path, you should test it on both Linux and
58
- # Windows.
59
- #
60
- # Some internet resources suggest using urllib.request.url2pathname() but
61
- # but that converts forward slashes to backslashes and this causes
62
- # its own set of problems.
63
- if url.startswith('file://'):
64
- filename = urllib.parse.urlparse(url).path
65
- if re.match(r'^/[a-zA-Z]:', filename):
66
- filename = filename[1:]
67
- return filename if return_filename else open(filename, "rb")
68
-
69
- url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
70
-
71
- # Download.
72
- url_name = None
73
- url_data = None
74
- with requests.Session() as session:
75
- if verbose:
76
- print("Downloading %s ..." % url, end="", flush=True)
77
- for attempts_left in reversed(range(num_attempts)):
78
- try:
79
- with session.get(url) as res:
80
- res.raise_for_status()
81
- if len(res.content) == 0:
82
- raise IOError("No data received")
83
-
84
- if len(res.content) < 8192:
85
- content_str = res.content.decode("utf-8")
86
- if "download_warning" in res.headers.get("Set-Cookie", ""):
87
- links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
88
- if len(links) == 1:
89
- url = requests.compat.urljoin(url, links[0])
90
- raise IOError("Google Drive virus checker nag")
91
- if "Google Drive - Quota exceeded" in content_str:
92
- raise IOError("Google Drive download quota exceeded -- please try again later")
93
-
94
- match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
95
- url_name = match[1] if match else url
96
- url_data = res.content
97
- if verbose:
98
- print(" done")
99
- break
100
- except KeyboardInterrupt:
101
- raise
102
- except:
103
- if not attempts_left:
104
- if verbose:
105
- print(" failed")
106
- raise
107
- if verbose:
108
- print(".", end="", flush=True)
109
-
110
- # Return data as file object.
111
- assert not return_filename
112
- return io.BytesIO(url_data)
113
-
114
- def load_video(ip):
115
- vid, *_ = read_video(ip)
116
- vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8)
117
- return vid
118
-
119
- def get_data_from_str(input_str,nprc = None):
120
- assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory'
121
- vid_filelist = glob.glob(os.path.join(input_str,'*.mp4'))
122
- print(f'Found {len(vid_filelist)} videos in dir {input_str}')
123
-
124
- if nprc is None:
125
- try:
126
- nprc = mp.cpu_count()
127
- except NotImplementedError:
128
- print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading')
129
- nprc = 1
130
-
131
- pool = mp.Pool(processes=nprc)
132
-
133
- vids = []
134
- for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'):
135
- vids.append(v)
136
-
137
-
138
- vids = torch.stack(vids,dim=0).float()
139
-
140
- return vids
141
-
142
- def get_stats(stats):
143
- assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}'
144
-
145
- print(f'Using precomputed statistics under {stats}')
146
- stats = np.load(stats)
147
- stats = {key: stats[key] for key in stats.files}
148
-
149
- return stats
150
-
151
-
152
-
153
-
154
- @torch.no_grad()
155
- def compute_fvd(ref_input, sample_input, bs=32,
156
- ref_stats=None,
157
- sample_stats=None,
158
- nprc_load=None):
159
-
160
-
161
-
162
- calc_stats = ref_stats is None or sample_stats is None
163
-
164
- if calc_stats:
165
-
166
- only_ref = sample_stats is not None
167
- only_sample = ref_stats is not None
168
-
169
-
170
- if isinstance(ref_input,str) and not only_sample:
171
- ref_input = get_data_from_str(ref_input,nprc_load)
172
-
173
- if isinstance(sample_input, str) and not only_ref:
174
- sample_input = get_data_from_str(sample_input, nprc_load)
175
-
176
- stats = compute_statistics(sample_input,ref_input,
177
- device='cuda' if torch.cuda.is_available() else 'cpu',
178
- bs=bs,
179
- only_ref=only_ref,
180
- only_sample=only_sample)
181
-
182
- if only_ref:
183
- stats.update(get_stats(sample_stats))
184
- elif only_sample:
185
- stats.update(get_stats(ref_stats))
186
-
187
-
188
-
189
- else:
190
- stats = get_stats(sample_stats)
191
- stats.update(get_stats(ref_stats))
192
-
193
- fvd = compute_frechet_distance(**stats)
194
-
195
- return {'FVD' : fvd,}
196
-
197
-
198
- @torch.no_grad()
199
- def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict:
200
- detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1'
201
- detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer.
202
-
203
- with open_url(detector_url, verbose=False) as f:
204
- detector = torch.jit.load(f).eval().to(device)
205
-
206
-
207
-
208
- assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive'
209
-
210
- ref_embed, sample_embed = [], []
211
-
212
- info = f'Computing I3D activations for FVD score with batch size {bs}'
213
-
214
- if only_ref:
215
-
216
- if not isvideo(videos_real):
217
- # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
218
- videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
219
- print(videos_real.shape)
220
-
221
- if videos_real.shape[0] % bs == 0:
222
- n_secs = videos_real.shape[0] // bs
223
- else:
224
- n_secs = videos_real.shape[0] // bs + 1
225
-
226
- videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
227
-
228
- for ref_v in tqdm(videos_real, total=len(videos_real),desc=info):
229
-
230
- feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
231
- ref_embed.append(feats_ref)
232
-
233
- elif only_sample:
234
-
235
- if not isvideo(videos_fake):
236
- # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
237
- videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
238
- print(videos_fake.shape)
239
-
240
- if videos_fake.shape[0] % bs == 0:
241
- n_secs = videos_fake.shape[0] // bs
242
- else:
243
- n_secs = videos_fake.shape[0] // bs + 1
244
-
245
- videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
246
-
247
- for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info):
248
- feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
249
- sample_embed.append(feats_sample)
250
-
251
-
252
- else:
253
-
254
- if not isvideo(videos_real):
255
- # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
256
- videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
257
-
258
- if not isvideo(videos_fake):
259
- videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
260
-
261
- if videos_fake.shape[0] % bs == 0:
262
- n_secs = videos_fake.shape[0] // bs
263
- else:
264
- n_secs = videos_fake.shape[0] // bs + 1
265
-
266
- videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
267
- videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0)
268
-
269
- for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info):
270
- # print(ref_v.shape)
271
- # ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
272
- # sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
273
-
274
-
275
- feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
276
- feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
277
- sample_embed.append(feats_sample)
278
- ref_embed.append(feats_ref)
279
-
280
- out = dict()
281
- if len(sample_embed) > 0:
282
- sample_embed = np.concatenate(sample_embed,axis=0)
283
- mu_sample, sigma_sample = compute_stats(sample_embed)
284
- out.update({'mu_sample': mu_sample,
285
- 'sigma_sample': sigma_sample})
286
-
287
- if len(ref_embed) > 0:
288
- ref_embed = np.concatenate(ref_embed,axis=0)
289
- mu_ref, sigma_ref = compute_stats(ref_embed)
290
- out.update({'mu_ref': mu_ref,
291
- 'sigma_ref': sigma_ref})
292
-
293
-
294
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/image_degradation/__init__.py DELETED
@@ -1,2 +0,0 @@
1
- from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
2
- from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
 
 
 
stable_diffusion/ldm/modules/image_degradation/bsrgan.py DELETED
@@ -1,730 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- # --------------------------------------------
4
- # Super-Resolution
5
- # --------------------------------------------
6
- #
7
- # Kai Zhang (cskaizhang@gmail.com)
8
- # https://github.com/cszn
9
- # From 2019/03--2021/08
10
- # --------------------------------------------
11
- """
12
-
13
- import numpy as np
14
- import cv2
15
- import torch
16
-
17
- from functools import partial
18
- import random
19
- from scipy import ndimage
20
- import scipy
21
- import scipy.stats as ss
22
- from scipy.interpolate import interp2d
23
- from scipy.linalg import orth
24
- import albumentations
25
-
26
- import ldm.modules.image_degradation.utils_image as util
27
-
28
-
29
- def modcrop_np(img, sf):
30
- '''
31
- Args:
32
- img: numpy image, WxH or WxHxC
33
- sf: scale factor
34
- Return:
35
- cropped image
36
- '''
37
- w, h = img.shape[:2]
38
- im = np.copy(img)
39
- return im[:w - w % sf, :h - h % sf, ...]
40
-
41
-
42
- """
43
- # --------------------------------------------
44
- # anisotropic Gaussian kernels
45
- # --------------------------------------------
46
- """
47
-
48
-
49
- def analytic_kernel(k):
50
- """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
- k_size = k.shape[0]
52
- # Calculate the big kernels size
53
- big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
- # Loop over the small kernel to fill the big one
55
- for r in range(k_size):
56
- for c in range(k_size):
57
- big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
- # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
- crop = k_size // 2
60
- cropped_big_k = big_k[crop:-crop, crop:-crop]
61
- # Normalize to 1
62
- return cropped_big_k / cropped_big_k.sum()
63
-
64
-
65
- def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
- """ generate an anisotropic Gaussian kernel
67
- Args:
68
- ksize : e.g., 15, kernel size
69
- theta : [0, pi], rotation angle range
70
- l1 : [0.1,50], scaling of eigenvalues
71
- l2 : [0.1,l1], scaling of eigenvalues
72
- If l1 = l2, will get an isotropic Gaussian kernel.
73
- Returns:
74
- k : kernel
75
- """
76
-
77
- v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
- V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
- D = np.array([[l1, 0], [0, l2]])
80
- Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
- k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
-
83
- return k
84
-
85
-
86
- def gm_blur_kernel(mean, cov, size=15):
87
- center = size / 2.0 + 0.5
88
- k = np.zeros([size, size])
89
- for y in range(size):
90
- for x in range(size):
91
- cy = y - center + 1
92
- cx = x - center + 1
93
- k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
-
95
- k = k / np.sum(k)
96
- return k
97
-
98
-
99
- def shift_pixel(x, sf, upper_left=True):
100
- """shift pixel for super-resolution with different scale factors
101
- Args:
102
- x: WxHxC or WxH
103
- sf: scale factor
104
- upper_left: shift direction
105
- """
106
- h, w = x.shape[:2]
107
- shift = (sf - 1) * 0.5
108
- xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
- if upper_left:
110
- x1 = xv + shift
111
- y1 = yv + shift
112
- else:
113
- x1 = xv - shift
114
- y1 = yv - shift
115
-
116
- x1 = np.clip(x1, 0, w - 1)
117
- y1 = np.clip(y1, 0, h - 1)
118
-
119
- if x.ndim == 2:
120
- x = interp2d(xv, yv, x)(x1, y1)
121
- if x.ndim == 3:
122
- for i in range(x.shape[-1]):
123
- x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
-
125
- return x
126
-
127
-
128
- def blur(x, k):
129
- '''
130
- x: image, NxcxHxW
131
- k: kernel, Nx1xhxw
132
- '''
133
- n, c = x.shape[:2]
134
- p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
- x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
- k = k.repeat(1, c, 1, 1)
137
- k = k.view(-1, 1, k.shape[2], k.shape[3])
138
- x = x.view(1, -1, x.shape[2], x.shape[3])
139
- x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
- x = x.view(n, c, x.shape[2], x.shape[3])
141
-
142
- return x
143
-
144
-
145
- def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
- """"
147
- # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
- # Kai Zhang
149
- # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
- # max_var = 2.5 * sf
151
- """
152
- # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
- lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
- lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
- theta = np.random.rand() * np.pi # random theta
156
- noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
-
158
- # Set COV matrix using Lambdas and Theta
159
- LAMBDA = np.diag([lambda_1, lambda_2])
160
- Q = np.array([[np.cos(theta), -np.sin(theta)],
161
- [np.sin(theta), np.cos(theta)]])
162
- SIGMA = Q @ LAMBDA @ Q.T
163
- INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
-
165
- # Set expectation position (shifting kernel for aligned image)
166
- MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
- MU = MU[None, None, :, None]
168
-
169
- # Create meshgrid for Gaussian
170
- [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
- Z = np.stack([X, Y], 2)[:, :, :, None]
172
-
173
- # Calcualte Gaussian for every pixel of the kernel
174
- ZZ = Z - MU
175
- ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
- raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
-
178
- # shift the kernel so it will be centered
179
- # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
-
181
- # Normalize the kernel and return
182
- # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
- kernel = raw_kernel / np.sum(raw_kernel)
184
- return kernel
185
-
186
-
187
- def fspecial_gaussian(hsize, sigma):
188
- hsize = [hsize, hsize]
189
- siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
- std = sigma
191
- [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
- arg = -(x * x + y * y) / (2 * std * std)
193
- h = np.exp(arg)
194
- h[h < scipy.finfo(float).eps * h.max()] = 0
195
- sumh = h.sum()
196
- if sumh != 0:
197
- h = h / sumh
198
- return h
199
-
200
-
201
- def fspecial_laplacian(alpha):
202
- alpha = max([0, min([alpha, 1])])
203
- h1 = alpha / (alpha + 1)
204
- h2 = (1 - alpha) / (alpha + 1)
205
- h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
- h = np.array(h)
207
- return h
208
-
209
-
210
- def fspecial(filter_type, *args, **kwargs):
211
- '''
212
- python code from:
213
- https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
- '''
215
- if filter_type == 'gaussian':
216
- return fspecial_gaussian(*args, **kwargs)
217
- if filter_type == 'laplacian':
218
- return fspecial_laplacian(*args, **kwargs)
219
-
220
-
221
- """
222
- # --------------------------------------------
223
- # degradation models
224
- # --------------------------------------------
225
- """
226
-
227
-
228
- def bicubic_degradation(x, sf=3):
229
- '''
230
- Args:
231
- x: HxWxC image, [0, 1]
232
- sf: down-scale factor
233
- Return:
234
- bicubicly downsampled LR image
235
- '''
236
- x = util.imresize_np(x, scale=1 / sf)
237
- return x
238
-
239
-
240
- def srmd_degradation(x, k, sf=3):
241
- ''' blur + bicubic downsampling
242
- Args:
243
- x: HxWxC image, [0, 1]
244
- k: hxw, double
245
- sf: down-scale factor
246
- Return:
247
- downsampled LR image
248
- Reference:
249
- @inproceedings{zhang2018learning,
250
- title={Learning a single convolutional super-resolution network for multiple degradations},
251
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
- pages={3262--3271},
254
- year={2018}
255
- }
256
- '''
257
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
- x = bicubic_degradation(x, sf=sf)
259
- return x
260
-
261
-
262
- def dpsr_degradation(x, k, sf=3):
263
- ''' bicubic downsampling + blur
264
- Args:
265
- x: HxWxC image, [0, 1]
266
- k: hxw, double
267
- sf: down-scale factor
268
- Return:
269
- downsampled LR image
270
- Reference:
271
- @inproceedings{zhang2019deep,
272
- title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
- pages={1671--1681},
276
- year={2019}
277
- }
278
- '''
279
- x = bicubic_degradation(x, sf=sf)
280
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
- return x
282
-
283
-
284
- def classical_degradation(x, k, sf=3):
285
- ''' blur + downsampling
286
- Args:
287
- x: HxWxC image, [0, 1]/[0, 255]
288
- k: hxw, double
289
- sf: down-scale factor
290
- Return:
291
- downsampled LR image
292
- '''
293
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
- # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
- st = 0
296
- return x[st::sf, st::sf, ...]
297
-
298
-
299
- def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
- """USM sharpening. borrowed from real-ESRGAN
301
- Input image: I; Blurry image: B.
302
- 1. K = I + weight * (I - B)
303
- 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
- 3. Blur mask:
305
- 4. Out = Mask * K + (1 - Mask) * I
306
- Args:
307
- img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
- weight (float): Sharp weight. Default: 1.
309
- radius (float): Kernel size of Gaussian blur. Default: 50.
310
- threshold (int):
311
- """
312
- if radius % 2 == 0:
313
- radius += 1
314
- blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
- residual = img - blur
316
- mask = np.abs(residual) * 255 > threshold
317
- mask = mask.astype('float32')
318
- soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
-
320
- K = img + weight * residual
321
- K = np.clip(K, 0, 1)
322
- return soft_mask * K + (1 - soft_mask) * img
323
-
324
-
325
- def add_blur(img, sf=4):
326
- wd2 = 4.0 + sf
327
- wd = 2.0 + 0.2 * sf
328
- if random.random() < 0.5:
329
- l1 = wd2 * random.random()
330
- l2 = wd2 * random.random()
331
- k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
332
- else:
333
- k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
334
- img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
335
-
336
- return img
337
-
338
-
339
- def add_resize(img, sf=4):
340
- rnum = np.random.rand()
341
- if rnum > 0.8: # up
342
- sf1 = random.uniform(1, 2)
343
- elif rnum < 0.7: # down
344
- sf1 = random.uniform(0.5 / sf, 1)
345
- else:
346
- sf1 = 1.0
347
- img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
348
- img = np.clip(img, 0.0, 1.0)
349
-
350
- return img
351
-
352
-
353
- # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
354
- # noise_level = random.randint(noise_level1, noise_level2)
355
- # rnum = np.random.rand()
356
- # if rnum > 0.6: # add color Gaussian noise
357
- # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
358
- # elif rnum < 0.4: # add grayscale Gaussian noise
359
- # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
360
- # else: # add noise
361
- # L = noise_level2 / 255.
362
- # D = np.diag(np.random.rand(3))
363
- # U = orth(np.random.rand(3, 3))
364
- # conv = np.dot(np.dot(np.transpose(U), D), U)
365
- # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
366
- # img = np.clip(img, 0.0, 1.0)
367
- # return img
368
-
369
- def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
370
- noise_level = random.randint(noise_level1, noise_level2)
371
- rnum = np.random.rand()
372
- if rnum > 0.6: # add color Gaussian noise
373
- img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
374
- elif rnum < 0.4: # add grayscale Gaussian noise
375
- img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
376
- else: # add noise
377
- L = noise_level2 / 255.
378
- D = np.diag(np.random.rand(3))
379
- U = orth(np.random.rand(3, 3))
380
- conv = np.dot(np.dot(np.transpose(U), D), U)
381
- img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
382
- img = np.clip(img, 0.0, 1.0)
383
- return img
384
-
385
-
386
- def add_speckle_noise(img, noise_level1=2, noise_level2=25):
387
- noise_level = random.randint(noise_level1, noise_level2)
388
- img = np.clip(img, 0.0, 1.0)
389
- rnum = random.random()
390
- if rnum > 0.6:
391
- img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
392
- elif rnum < 0.4:
393
- img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
394
- else:
395
- L = noise_level2 / 255.
396
- D = np.diag(np.random.rand(3))
397
- U = orth(np.random.rand(3, 3))
398
- conv = np.dot(np.dot(np.transpose(U), D), U)
399
- img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
400
- img = np.clip(img, 0.0, 1.0)
401
- return img
402
-
403
-
404
- def add_Poisson_noise(img):
405
- img = np.clip((img * 255.0).round(), 0, 255) / 255.
406
- vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
407
- if random.random() < 0.5:
408
- img = np.random.poisson(img * vals).astype(np.float32) / vals
409
- else:
410
- img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
411
- img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
412
- noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
413
- img += noise_gray[:, :, np.newaxis]
414
- img = np.clip(img, 0.0, 1.0)
415
- return img
416
-
417
-
418
- def add_JPEG_noise(img):
419
- quality_factor = random.randint(30, 95)
420
- img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
421
- result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
422
- img = cv2.imdecode(encimg, 1)
423
- img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
424
- return img
425
-
426
-
427
- def random_crop(lq, hq, sf=4, lq_patchsize=64):
428
- h, w = lq.shape[:2]
429
- rnd_h = random.randint(0, h - lq_patchsize)
430
- rnd_w = random.randint(0, w - lq_patchsize)
431
- lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
432
-
433
- rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
434
- hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
435
- return lq, hq
436
-
437
-
438
- def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
439
- """
440
- This is the degradation model of BSRGAN from the paper
441
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
442
- ----------
443
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
444
- sf: scale factor
445
- isp_model: camera ISP model
446
- Returns
447
- -------
448
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
449
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
450
- """
451
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
452
- sf_ori = sf
453
-
454
- h1, w1 = img.shape[:2]
455
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
456
- h, w = img.shape[:2]
457
-
458
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
459
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
460
-
461
- hq = img.copy()
462
-
463
- if sf == 4 and random.random() < scale2_prob: # downsample1
464
- if np.random.rand() < 0.5:
465
- img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
466
- interpolation=random.choice([1, 2, 3]))
467
- else:
468
- img = util.imresize_np(img, 1 / 2, True)
469
- img = np.clip(img, 0.0, 1.0)
470
- sf = 2
471
-
472
- shuffle_order = random.sample(range(7), 7)
473
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
474
- if idx1 > idx2: # keep downsample3 last
475
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
476
-
477
- for i in shuffle_order:
478
-
479
- if i == 0:
480
- img = add_blur(img, sf=sf)
481
-
482
- elif i == 1:
483
- img = add_blur(img, sf=sf)
484
-
485
- elif i == 2:
486
- a, b = img.shape[1], img.shape[0]
487
- # downsample2
488
- if random.random() < 0.75:
489
- sf1 = random.uniform(1, 2 * sf)
490
- img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
491
- interpolation=random.choice([1, 2, 3]))
492
- else:
493
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
494
- k_shifted = shift_pixel(k, sf)
495
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
496
- img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
497
- img = img[0::sf, 0::sf, ...] # nearest downsampling
498
- img = np.clip(img, 0.0, 1.0)
499
-
500
- elif i == 3:
501
- # downsample3
502
- img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
503
- img = np.clip(img, 0.0, 1.0)
504
-
505
- elif i == 4:
506
- # add Gaussian noise
507
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
508
-
509
- elif i == 5:
510
- # add JPEG noise
511
- if random.random() < jpeg_prob:
512
- img = add_JPEG_noise(img)
513
-
514
- elif i == 6:
515
- # add processed camera sensor noise
516
- if random.random() < isp_prob and isp_model is not None:
517
- with torch.no_grad():
518
- img, hq = isp_model.forward(img.copy(), hq)
519
-
520
- # add final JPEG compression noise
521
- img = add_JPEG_noise(img)
522
-
523
- # random crop
524
- img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
525
-
526
- return img, hq
527
-
528
-
529
- # todo no isp_model?
530
- def degradation_bsrgan_variant(image, sf=4, isp_model=None):
531
- """
532
- This is the degradation model of BSRGAN from the paper
533
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
534
- ----------
535
- sf: scale factor
536
- isp_model: camera ISP model
537
- Returns
538
- -------
539
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
540
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
541
- """
542
- image = util.uint2single(image)
543
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
544
- sf_ori = sf
545
-
546
- h1, w1 = image.shape[:2]
547
- image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
548
- h, w = image.shape[:2]
549
-
550
- hq = image.copy()
551
-
552
- if sf == 4 and random.random() < scale2_prob: # downsample1
553
- if np.random.rand() < 0.5:
554
- image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
555
- interpolation=random.choice([1, 2, 3]))
556
- else:
557
- image = util.imresize_np(image, 1 / 2, True)
558
- image = np.clip(image, 0.0, 1.0)
559
- sf = 2
560
-
561
- shuffle_order = random.sample(range(7), 7)
562
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
563
- if idx1 > idx2: # keep downsample3 last
564
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
565
-
566
- for i in shuffle_order:
567
-
568
- if i == 0:
569
- image = add_blur(image, sf=sf)
570
-
571
- elif i == 1:
572
- image = add_blur(image, sf=sf)
573
-
574
- elif i == 2:
575
- a, b = image.shape[1], image.shape[0]
576
- # downsample2
577
- if random.random() < 0.75:
578
- sf1 = random.uniform(1, 2 * sf)
579
- image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
580
- interpolation=random.choice([1, 2, 3]))
581
- else:
582
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
583
- k_shifted = shift_pixel(k, sf)
584
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
585
- image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
586
- image = image[0::sf, 0::sf, ...] # nearest downsampling
587
- image = np.clip(image, 0.0, 1.0)
588
-
589
- elif i == 3:
590
- # downsample3
591
- image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
592
- image = np.clip(image, 0.0, 1.0)
593
-
594
- elif i == 4:
595
- # add Gaussian noise
596
- image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
597
-
598
- elif i == 5:
599
- # add JPEG noise
600
- if random.random() < jpeg_prob:
601
- image = add_JPEG_noise(image)
602
-
603
- # elif i == 6:
604
- # # add processed camera sensor noise
605
- # if random.random() < isp_prob and isp_model is not None:
606
- # with torch.no_grad():
607
- # img, hq = isp_model.forward(img.copy(), hq)
608
-
609
- # add final JPEG compression noise
610
- image = add_JPEG_noise(image)
611
- image = util.single2uint(image)
612
- example = {"image":image}
613
- return example
614
-
615
-
616
- # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
617
- def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
618
- """
619
- This is an extended degradation model by combining
620
- the degradation models of BSRGAN and Real-ESRGAN
621
- ----------
622
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
623
- sf: scale factor
624
- use_shuffle: the degradation shuffle
625
- use_sharp: sharpening the img
626
- Returns
627
- -------
628
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
629
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
630
- """
631
-
632
- h1, w1 = img.shape[:2]
633
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
634
- h, w = img.shape[:2]
635
-
636
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
637
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
638
-
639
- if use_sharp:
640
- img = add_sharpening(img)
641
- hq = img.copy()
642
-
643
- if random.random() < shuffle_prob:
644
- shuffle_order = random.sample(range(13), 13)
645
- else:
646
- shuffle_order = list(range(13))
647
- # local shuffle for noise, JPEG is always the last one
648
- shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
649
- shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
650
-
651
- poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
652
-
653
- for i in shuffle_order:
654
- if i == 0:
655
- img = add_blur(img, sf=sf)
656
- elif i == 1:
657
- img = add_resize(img, sf=sf)
658
- elif i == 2:
659
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
660
- elif i == 3:
661
- if random.random() < poisson_prob:
662
- img = add_Poisson_noise(img)
663
- elif i == 4:
664
- if random.random() < speckle_prob:
665
- img = add_speckle_noise(img)
666
- elif i == 5:
667
- if random.random() < isp_prob and isp_model is not None:
668
- with torch.no_grad():
669
- img, hq = isp_model.forward(img.copy(), hq)
670
- elif i == 6:
671
- img = add_JPEG_noise(img)
672
- elif i == 7:
673
- img = add_blur(img, sf=sf)
674
- elif i == 8:
675
- img = add_resize(img, sf=sf)
676
- elif i == 9:
677
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
678
- elif i == 10:
679
- if random.random() < poisson_prob:
680
- img = add_Poisson_noise(img)
681
- elif i == 11:
682
- if random.random() < speckle_prob:
683
- img = add_speckle_noise(img)
684
- elif i == 12:
685
- if random.random() < isp_prob and isp_model is not None:
686
- with torch.no_grad():
687
- img, hq = isp_model.forward(img.copy(), hq)
688
- else:
689
- print('check the shuffle!')
690
-
691
- # resize to desired size
692
- img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
693
- interpolation=random.choice([1, 2, 3]))
694
-
695
- # add final JPEG compression noise
696
- img = add_JPEG_noise(img)
697
-
698
- # random crop
699
- img, hq = random_crop(img, hq, sf, lq_patchsize)
700
-
701
- return img, hq
702
-
703
-
704
- if __name__ == '__main__':
705
- print("hey")
706
- img = util.imread_uint('utils/test.png', 3)
707
- print(img)
708
- img = util.uint2single(img)
709
- print(img)
710
- img = img[:448, :448]
711
- h = img.shape[0] // 4
712
- print("resizing to", h)
713
- sf = 4
714
- deg_fn = partial(degradation_bsrgan_variant, sf=sf)
715
- for i in range(20):
716
- print(i)
717
- img_lq = deg_fn(img)
718
- print(img_lq)
719
- img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
720
- print(img_lq.shape)
721
- print("bicubic", img_lq_bicubic.shape)
722
- print(img_hq.shape)
723
- lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
724
- interpolation=0)
725
- lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
726
- interpolation=0)
727
- img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
728
- util.imsave(img_concat, str(i) + '.png')
729
-
730
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py DELETED
@@ -1,650 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- import numpy as np
3
- import cv2
4
- import torch
5
-
6
- from functools import partial
7
- import random
8
- from scipy import ndimage
9
- import scipy
10
- import scipy.stats as ss
11
- from scipy.interpolate import interp2d
12
- from scipy.linalg import orth
13
- import albumentations
14
-
15
- import ldm.modules.image_degradation.utils_image as util
16
-
17
- """
18
- # --------------------------------------------
19
- # Super-Resolution
20
- # --------------------------------------------
21
- #
22
- # Kai Zhang (cskaizhang@gmail.com)
23
- # https://github.com/cszn
24
- # From 2019/03--2021/08
25
- # --------------------------------------------
26
- """
27
-
28
-
29
- def modcrop_np(img, sf):
30
- '''
31
- Args:
32
- img: numpy image, WxH or WxHxC
33
- sf: scale factor
34
- Return:
35
- cropped image
36
- '''
37
- w, h = img.shape[:2]
38
- im = np.copy(img)
39
- return im[:w - w % sf, :h - h % sf, ...]
40
-
41
-
42
- """
43
- # --------------------------------------------
44
- # anisotropic Gaussian kernels
45
- # --------------------------------------------
46
- """
47
-
48
-
49
- def analytic_kernel(k):
50
- """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
- k_size = k.shape[0]
52
- # Calculate the big kernels size
53
- big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
- # Loop over the small kernel to fill the big one
55
- for r in range(k_size):
56
- for c in range(k_size):
57
- big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
- # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
- crop = k_size // 2
60
- cropped_big_k = big_k[crop:-crop, crop:-crop]
61
- # Normalize to 1
62
- return cropped_big_k / cropped_big_k.sum()
63
-
64
-
65
- def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
- """ generate an anisotropic Gaussian kernel
67
- Args:
68
- ksize : e.g., 15, kernel size
69
- theta : [0, pi], rotation angle range
70
- l1 : [0.1,50], scaling of eigenvalues
71
- l2 : [0.1,l1], scaling of eigenvalues
72
- If l1 = l2, will get an isotropic Gaussian kernel.
73
- Returns:
74
- k : kernel
75
- """
76
-
77
- v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
- V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
- D = np.array([[l1, 0], [0, l2]])
80
- Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
- k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
-
83
- return k
84
-
85
-
86
- def gm_blur_kernel(mean, cov, size=15):
87
- center = size / 2.0 + 0.5
88
- k = np.zeros([size, size])
89
- for y in range(size):
90
- for x in range(size):
91
- cy = y - center + 1
92
- cx = x - center + 1
93
- k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
-
95
- k = k / np.sum(k)
96
- return k
97
-
98
-
99
- def shift_pixel(x, sf, upper_left=True):
100
- """shift pixel for super-resolution with different scale factors
101
- Args:
102
- x: WxHxC or WxH
103
- sf: scale factor
104
- upper_left: shift direction
105
- """
106
- h, w = x.shape[:2]
107
- shift = (sf - 1) * 0.5
108
- xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
- if upper_left:
110
- x1 = xv + shift
111
- y1 = yv + shift
112
- else:
113
- x1 = xv - shift
114
- y1 = yv - shift
115
-
116
- x1 = np.clip(x1, 0, w - 1)
117
- y1 = np.clip(y1, 0, h - 1)
118
-
119
- if x.ndim == 2:
120
- x = interp2d(xv, yv, x)(x1, y1)
121
- if x.ndim == 3:
122
- for i in range(x.shape[-1]):
123
- x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
-
125
- return x
126
-
127
-
128
- def blur(x, k):
129
- '''
130
- x: image, NxcxHxW
131
- k: kernel, Nx1xhxw
132
- '''
133
- n, c = x.shape[:2]
134
- p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
- x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
- k = k.repeat(1, c, 1, 1)
137
- k = k.view(-1, 1, k.shape[2], k.shape[3])
138
- x = x.view(1, -1, x.shape[2], x.shape[3])
139
- x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
- x = x.view(n, c, x.shape[2], x.shape[3])
141
-
142
- return x
143
-
144
-
145
- def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
- """"
147
- # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
- # Kai Zhang
149
- # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
- # max_var = 2.5 * sf
151
- """
152
- # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
- lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
- lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
- theta = np.random.rand() * np.pi # random theta
156
- noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
-
158
- # Set COV matrix using Lambdas and Theta
159
- LAMBDA = np.diag([lambda_1, lambda_2])
160
- Q = np.array([[np.cos(theta), -np.sin(theta)],
161
- [np.sin(theta), np.cos(theta)]])
162
- SIGMA = Q @ LAMBDA @ Q.T
163
- INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
-
165
- # Set expectation position (shifting kernel for aligned image)
166
- MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
- MU = MU[None, None, :, None]
168
-
169
- # Create meshgrid for Gaussian
170
- [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
- Z = np.stack([X, Y], 2)[:, :, :, None]
172
-
173
- # Calcualte Gaussian for every pixel of the kernel
174
- ZZ = Z - MU
175
- ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
- raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
-
178
- # shift the kernel so it will be centered
179
- # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
-
181
- # Normalize the kernel and return
182
- # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
- kernel = raw_kernel / np.sum(raw_kernel)
184
- return kernel
185
-
186
-
187
- def fspecial_gaussian(hsize, sigma):
188
- hsize = [hsize, hsize]
189
- siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
- std = sigma
191
- [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
- arg = -(x * x + y * y) / (2 * std * std)
193
- h = np.exp(arg)
194
- h[h < scipy.finfo(float).eps * h.max()] = 0
195
- sumh = h.sum()
196
- if sumh != 0:
197
- h = h / sumh
198
- return h
199
-
200
-
201
- def fspecial_laplacian(alpha):
202
- alpha = max([0, min([alpha, 1])])
203
- h1 = alpha / (alpha + 1)
204
- h2 = (1 - alpha) / (alpha + 1)
205
- h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
- h = np.array(h)
207
- return h
208
-
209
-
210
- def fspecial(filter_type, *args, **kwargs):
211
- '''
212
- python code from:
213
- https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
- '''
215
- if filter_type == 'gaussian':
216
- return fspecial_gaussian(*args, **kwargs)
217
- if filter_type == 'laplacian':
218
- return fspecial_laplacian(*args, **kwargs)
219
-
220
-
221
- """
222
- # --------------------------------------------
223
- # degradation models
224
- # --------------------------------------------
225
- """
226
-
227
-
228
- def bicubic_degradation(x, sf=3):
229
- '''
230
- Args:
231
- x: HxWxC image, [0, 1]
232
- sf: down-scale factor
233
- Return:
234
- bicubicly downsampled LR image
235
- '''
236
- x = util.imresize_np(x, scale=1 / sf)
237
- return x
238
-
239
-
240
- def srmd_degradation(x, k, sf=3):
241
- ''' blur + bicubic downsampling
242
- Args:
243
- x: HxWxC image, [0, 1]
244
- k: hxw, double
245
- sf: down-scale factor
246
- Return:
247
- downsampled LR image
248
- Reference:
249
- @inproceedings{zhang2018learning,
250
- title={Learning a single convolutional super-resolution network for multiple degradations},
251
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
- pages={3262--3271},
254
- year={2018}
255
- }
256
- '''
257
- x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
- x = bicubic_degradation(x, sf=sf)
259
- return x
260
-
261
-
262
- def dpsr_degradation(x, k, sf=3):
263
- ''' bicubic downsampling + blur
264
- Args:
265
- x: HxWxC image, [0, 1]
266
- k: hxw, double
267
- sf: down-scale factor
268
- Return:
269
- downsampled LR image
270
- Reference:
271
- @inproceedings{zhang2019deep,
272
- title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
- pages={1671--1681},
276
- year={2019}
277
- }
278
- '''
279
- x = bicubic_degradation(x, sf=sf)
280
- x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
- return x
282
-
283
-
284
- def classical_degradation(x, k, sf=3):
285
- ''' blur + downsampling
286
- Args:
287
- x: HxWxC image, [0, 1]/[0, 255]
288
- k: hxw, double
289
- sf: down-scale factor
290
- Return:
291
- downsampled LR image
292
- '''
293
- x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
- # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
- st = 0
296
- return x[st::sf, st::sf, ...]
297
-
298
-
299
- def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
- """USM sharpening. borrowed from real-ESRGAN
301
- Input image: I; Blurry image: B.
302
- 1. K = I + weight * (I - B)
303
- 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
- 3. Blur mask:
305
- 4. Out = Mask * K + (1 - Mask) * I
306
- Args:
307
- img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
- weight (float): Sharp weight. Default: 1.
309
- radius (float): Kernel size of Gaussian blur. Default: 50.
310
- threshold (int):
311
- """
312
- if radius % 2 == 0:
313
- radius += 1
314
- blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
- residual = img - blur
316
- mask = np.abs(residual) * 255 > threshold
317
- mask = mask.astype('float32')
318
- soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
-
320
- K = img + weight * residual
321
- K = np.clip(K, 0, 1)
322
- return soft_mask * K + (1 - soft_mask) * img
323
-
324
-
325
- def add_blur(img, sf=4):
326
- wd2 = 4.0 + sf
327
- wd = 2.0 + 0.2 * sf
328
-
329
- wd2 = wd2/4
330
- wd = wd/4
331
-
332
- if random.random() < 0.5:
333
- l1 = wd2 * random.random()
334
- l2 = wd2 * random.random()
335
- k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
336
- else:
337
- k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
338
- img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
339
-
340
- return img
341
-
342
-
343
- def add_resize(img, sf=4):
344
- rnum = np.random.rand()
345
- if rnum > 0.8: # up
346
- sf1 = random.uniform(1, 2)
347
- elif rnum < 0.7: # down
348
- sf1 = random.uniform(0.5 / sf, 1)
349
- else:
350
- sf1 = 1.0
351
- img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
352
- img = np.clip(img, 0.0, 1.0)
353
-
354
- return img
355
-
356
-
357
- # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
358
- # noise_level = random.randint(noise_level1, noise_level2)
359
- # rnum = np.random.rand()
360
- # if rnum > 0.6: # add color Gaussian noise
361
- # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
362
- # elif rnum < 0.4: # add grayscale Gaussian noise
363
- # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
364
- # else: # add noise
365
- # L = noise_level2 / 255.
366
- # D = np.diag(np.random.rand(3))
367
- # U = orth(np.random.rand(3, 3))
368
- # conv = np.dot(np.dot(np.transpose(U), D), U)
369
- # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
370
- # img = np.clip(img, 0.0, 1.0)
371
- # return img
372
-
373
- def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
374
- noise_level = random.randint(noise_level1, noise_level2)
375
- rnum = np.random.rand()
376
- if rnum > 0.6: # add color Gaussian noise
377
- img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
378
- elif rnum < 0.4: # add grayscale Gaussian noise
379
- img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
380
- else: # add noise
381
- L = noise_level2 / 255.
382
- D = np.diag(np.random.rand(3))
383
- U = orth(np.random.rand(3, 3))
384
- conv = np.dot(np.dot(np.transpose(U), D), U)
385
- img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
386
- img = np.clip(img, 0.0, 1.0)
387
- return img
388
-
389
-
390
- def add_speckle_noise(img, noise_level1=2, noise_level2=25):
391
- noise_level = random.randint(noise_level1, noise_level2)
392
- img = np.clip(img, 0.0, 1.0)
393
- rnum = random.random()
394
- if rnum > 0.6:
395
- img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
396
- elif rnum < 0.4:
397
- img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
398
- else:
399
- L = noise_level2 / 255.
400
- D = np.diag(np.random.rand(3))
401
- U = orth(np.random.rand(3, 3))
402
- conv = np.dot(np.dot(np.transpose(U), D), U)
403
- img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
404
- img = np.clip(img, 0.0, 1.0)
405
- return img
406
-
407
-
408
- def add_Poisson_noise(img):
409
- img = np.clip((img * 255.0).round(), 0, 255) / 255.
410
- vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
411
- if random.random() < 0.5:
412
- img = np.random.poisson(img * vals).astype(np.float32) / vals
413
- else:
414
- img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
415
- img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
416
- noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
417
- img += noise_gray[:, :, np.newaxis]
418
- img = np.clip(img, 0.0, 1.0)
419
- return img
420
-
421
-
422
- def add_JPEG_noise(img):
423
- quality_factor = random.randint(80, 95)
424
- img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
425
- result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
426
- img = cv2.imdecode(encimg, 1)
427
- img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
428
- return img
429
-
430
-
431
- def random_crop(lq, hq, sf=4, lq_patchsize=64):
432
- h, w = lq.shape[:2]
433
- rnd_h = random.randint(0, h - lq_patchsize)
434
- rnd_w = random.randint(0, w - lq_patchsize)
435
- lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
436
-
437
- rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
438
- hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
439
- return lq, hq
440
-
441
-
442
- def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
443
- """
444
- This is the degradation model of BSRGAN from the paper
445
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
446
- ----------
447
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
448
- sf: scale factor
449
- isp_model: camera ISP model
450
- Returns
451
- -------
452
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
453
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
454
- """
455
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
456
- sf_ori = sf
457
-
458
- h1, w1 = img.shape[:2]
459
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
460
- h, w = img.shape[:2]
461
-
462
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
463
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
464
-
465
- hq = img.copy()
466
-
467
- if sf == 4 and random.random() < scale2_prob: # downsample1
468
- if np.random.rand() < 0.5:
469
- img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
470
- interpolation=random.choice([1, 2, 3]))
471
- else:
472
- img = util.imresize_np(img, 1 / 2, True)
473
- img = np.clip(img, 0.0, 1.0)
474
- sf = 2
475
-
476
- shuffle_order = random.sample(range(7), 7)
477
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
478
- if idx1 > idx2: # keep downsample3 last
479
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
480
-
481
- for i in shuffle_order:
482
-
483
- if i == 0:
484
- img = add_blur(img, sf=sf)
485
-
486
- elif i == 1:
487
- img = add_blur(img, sf=sf)
488
-
489
- elif i == 2:
490
- a, b = img.shape[1], img.shape[0]
491
- # downsample2
492
- if random.random() < 0.75:
493
- sf1 = random.uniform(1, 2 * sf)
494
- img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
495
- interpolation=random.choice([1, 2, 3]))
496
- else:
497
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
498
- k_shifted = shift_pixel(k, sf)
499
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
500
- img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
501
- img = img[0::sf, 0::sf, ...] # nearest downsampling
502
- img = np.clip(img, 0.0, 1.0)
503
-
504
- elif i == 3:
505
- # downsample3
506
- img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
507
- img = np.clip(img, 0.0, 1.0)
508
-
509
- elif i == 4:
510
- # add Gaussian noise
511
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
512
-
513
- elif i == 5:
514
- # add JPEG noise
515
- if random.random() < jpeg_prob:
516
- img = add_JPEG_noise(img)
517
-
518
- elif i == 6:
519
- # add processed camera sensor noise
520
- if random.random() < isp_prob and isp_model is not None:
521
- with torch.no_grad():
522
- img, hq = isp_model.forward(img.copy(), hq)
523
-
524
- # add final JPEG compression noise
525
- img = add_JPEG_noise(img)
526
-
527
- # random crop
528
- img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
529
-
530
- return img, hq
531
-
532
-
533
- # todo no isp_model?
534
- def degradation_bsrgan_variant(image, sf=4, isp_model=None):
535
- """
536
- This is the degradation model of BSRGAN from the paper
537
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
538
- ----------
539
- sf: scale factor
540
- isp_model: camera ISP model
541
- Returns
542
- -------
543
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
544
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
545
- """
546
- image = util.uint2single(image)
547
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
548
- sf_ori = sf
549
-
550
- h1, w1 = image.shape[:2]
551
- image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
552
- h, w = image.shape[:2]
553
-
554
- hq = image.copy()
555
-
556
- if sf == 4 and random.random() < scale2_prob: # downsample1
557
- if np.random.rand() < 0.5:
558
- image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
559
- interpolation=random.choice([1, 2, 3]))
560
- else:
561
- image = util.imresize_np(image, 1 / 2, True)
562
- image = np.clip(image, 0.0, 1.0)
563
- sf = 2
564
-
565
- shuffle_order = random.sample(range(7), 7)
566
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
567
- if idx1 > idx2: # keep downsample3 last
568
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
569
-
570
- for i in shuffle_order:
571
-
572
- if i == 0:
573
- image = add_blur(image, sf=sf)
574
-
575
- # elif i == 1:
576
- # image = add_blur(image, sf=sf)
577
-
578
- if i == 0:
579
- pass
580
-
581
- elif i == 2:
582
- a, b = image.shape[1], image.shape[0]
583
- # downsample2
584
- if random.random() < 0.8:
585
- sf1 = random.uniform(1, 2 * sf)
586
- image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
587
- interpolation=random.choice([1, 2, 3]))
588
- else:
589
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
590
- k_shifted = shift_pixel(k, sf)
591
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
592
- image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
593
- image = image[0::sf, 0::sf, ...] # nearest downsampling
594
-
595
- image = np.clip(image, 0.0, 1.0)
596
-
597
- elif i == 3:
598
- # downsample3
599
- image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
600
- image = np.clip(image, 0.0, 1.0)
601
-
602
- elif i == 4:
603
- # add Gaussian noise
604
- image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
605
-
606
- elif i == 5:
607
- # add JPEG noise
608
- if random.random() < jpeg_prob:
609
- image = add_JPEG_noise(image)
610
- #
611
- # elif i == 6:
612
- # # add processed camera sensor noise
613
- # if random.random() < isp_prob and isp_model is not None:
614
- # with torch.no_grad():
615
- # img, hq = isp_model.forward(img.copy(), hq)
616
-
617
- # add final JPEG compression noise
618
- image = add_JPEG_noise(image)
619
- image = util.single2uint(image)
620
- example = {"image": image}
621
- return example
622
-
623
-
624
-
625
-
626
- if __name__ == '__main__':
627
- print("hey")
628
- img = util.imread_uint('utils/test.png', 3)
629
- img = img[:448, :448]
630
- h = img.shape[0] // 4
631
- print("resizing to", h)
632
- sf = 4
633
- deg_fn = partial(degradation_bsrgan_variant, sf=sf)
634
- for i in range(20):
635
- print(i)
636
- img_hq = img
637
- img_lq = deg_fn(img)["image"]
638
- img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
639
- print(img_lq)
640
- img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
641
- print(img_lq.shape)
642
- print("bicubic", img_lq_bicubic.shape)
643
- print(img_hq.shape)
644
- lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
645
- interpolation=0)
646
- lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
647
- (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
648
- interpolation=0)
649
- img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
650
- util.imsave(img_concat, str(i) + '.png')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stable_diffusion/ldm/modules/image_degradation/utils/test.png DELETED
Binary file (441 kB)
 
stable_diffusion/ldm/modules/image_degradation/utils_image.py DELETED
@@ -1,916 +0,0 @@
1
- import os
2
- import math
3
- import random
4
- import numpy as np
5
- import torch
6
- import cv2
7
- from torchvision.utils import make_grid
8
- from datetime import datetime
9
- #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
10
-
11
-
12
- os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
13
-
14
-
15
- '''
16
- # --------------------------------------------
17
- # Kai Zhang (github: https://github.com/cszn)
18
- # 03/Mar/2019
19
- # --------------------------------------------
20
- # https://github.com/twhui/SRGAN-pyTorch
21
- # https://github.com/xinntao/BasicSR
22
- # --------------------------------------------
23
- '''
24
-
25
-
26
- IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
27
-
28
-
29
- def is_image_file(filename):
30
- return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
31
-
32
-
33
- def get_timestamp():
34
- return datetime.now().strftime('%y%m%d-%H%M%S')
35
-
36
-
37
- def imshow(x, title=None, cbar=False, figsize=None):
38
- plt.figure(figsize=figsize)
39
- plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
40
- if title:
41
- plt.title(title)
42
- if cbar:
43
- plt.colorbar()
44
- plt.show()
45
-
46
-
47
- def surf(Z, cmap='rainbow', figsize=None):
48
- plt.figure(figsize=figsize)
49
- ax3 = plt.axes(projection='3d')
50
-
51
- w, h = Z.shape[:2]
52
- xx = np.arange(0,w,1)
53
- yy = np.arange(0,h,1)
54
- X, Y = np.meshgrid(xx, yy)
55
- ax3.plot_surface(X,Y,Z,cmap=cmap)
56
- #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
57
- plt.show()
58
-
59
-
60
- '''
61
- # --------------------------------------------
62
- # get image pathes
63
- # --------------------------------------------
64
- '''
65
-
66
-
67
- def get_image_paths(dataroot):
68
- paths = None # return None if dataroot is None
69
- if dataroot is not None:
70
- paths = sorted(_get_paths_from_images(dataroot))
71
- return paths
72
-
73
-
74
- def _get_paths_from_images(path):
75
- assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
76
- images = []
77
- for dirpath, _, fnames in sorted(os.walk(path)):
78
- for fname in sorted(fnames):
79
- if is_image_file(fname):
80
- img_path = os.path.join(dirpath, fname)
81
- images.append(img_path)
82
- assert images, '{:s} has no valid image file'.format(path)
83
- return images
84
-
85
-
86
- '''
87
- # --------------------------------------------
88
- # split large images into small images
89
- # --------------------------------------------
90
- '''
91
-
92
-
93
- def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
94
- w, h = img.shape[:2]
95
- patches = []
96
- if w > p_max and h > p_max:
97
- w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
98
- h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
99
- w1.append(w-p_size)
100
- h1.append(h-p_size)
101
- # print(w1)
102
- # print(h1)
103
- for i in w1:
104
- for j in h1:
105
- patches.append(img[i:i+p_size, j:j+p_size,:])
106
- else:
107
- patches.append(img)
108
-
109
- return patches
110
-
111
-
112
- def imssave(imgs, img_path):
113
- """
114
- imgs: list, N images of size WxHxC
115
- """
116
- img_name, ext = os.path.splitext(os.path.basename(img_path))
117
-
118
- for i, img in enumerate(imgs):
119
- if img.ndim == 3:
120
- img = img[:, :, [2, 1, 0]]
121
- new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
122
- cv2.imwrite(new_path, img)
123
-
124
-
125
- def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
126
- """
127
- split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
128
- and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
129
- will be splitted.
130
- Args:
131
- original_dataroot:
132
- taget_dataroot:
133
- p_size: size of small images
134
- p_overlap: patch size in training is a good choice
135
- p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
136
- """
137
- paths = get_image_paths(original_dataroot)
138
- for img_path in paths:
139
- # img_name, ext = os.path.splitext(os.path.basename(img_path))
140
- img = imread_uint(img_path, n_channels=n_channels)
141
- patches = patches_from_image(img, p_size, p_overlap, p_max)
142
- imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
143
- #if original_dataroot == taget_dataroot:
144
- #del img_path
145
-
146
- '''
147
- # --------------------------------------------
148
- # makedir
149
- # --------------------------------------------
150
- '''
151
-
152
-
153
- def mkdir(path):
154
- if not os.path.exists(path):
155
- os.makedirs(path)
156
-
157
-
158
- def mkdirs(paths):
159
- if isinstance(paths, str):
160
- mkdir(paths)
161
- else:
162
- for path in paths:
163
- mkdir(path)
164
-
165
-
166
- def mkdir_and_rename(path):
167
- if os.path.exists(path):
168
- new_name = path + '_archived_' + get_timestamp()
169
- print('Path already exists. Rename it to [{:s}]'.format(new_name))
170
- os.rename(path, new_name)
171
- os.makedirs(path)
172
-
173
-
174
- '''
175
- # --------------------------------------------
176
- # read image from path
177
- # opencv is fast, but read BGR numpy image
178
- # --------------------------------------------
179
- '''
180
-
181
-
182
- # --------------------------------------------
183
- # get uint8 image of size HxWxn_channles (RGB)
184
- # --------------------------------------------
185
- def imread_uint(path, n_channels=3):
186
- # input: path
187
- # output: HxWx3(RGB or GGG), or HxWx1 (G)
188
- if n_channels == 1:
189
- img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
190
- img = np.expand_dims(img, axis=2) # HxWx1
191
- elif n_channels == 3:
192
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
193
- if img.ndim == 2:
194
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
195
- else:
196
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
197
- return img
198
-
199
-
200
- # --------------------------------------------
201
- # matlab's imwrite
202
- # --------------------------------------------
203
- def imsave(img, img_path):
204
- img = np.squeeze(img)
205
- if img.ndim == 3:
206
- img = img[:, :, [2, 1, 0]]
207
- cv2.imwrite(img_path, img)
208
-
209
- def imwrite(img, img_path):
210
- img = np.squeeze(img)
211
- if img.ndim == 3:
212
- img = img[:, :, [2, 1, 0]]
213
- cv2.imwrite(img_path, img)
214
-
215
-
216
-
217
- # --------------------------------------------
218
- # get single image of size HxWxn_channles (BGR)
219
- # --------------------------------------------
220
- def read_img(path):
221
- # read image by cv2
222
- # return: Numpy float32, HWC, BGR, [0,1]
223
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
224
- img = img.astype(np.float32) / 255.
225
- if img.ndim == 2:
226
- img = np.expand_dims(img, axis=2)
227
- # some images have 4 channels
228
- if img.shape[2] > 3:
229
- img = img[:, :, :3]
230
- return img
231
-
232
-
233
- '''
234
- # --------------------------------------------
235
- # image format conversion
236
- # --------------------------------------------
237
- # numpy(single) <---> numpy(unit)
238
- # numpy(single) <---> tensor
239
- # numpy(unit) <---> tensor
240
- # --------------------------------------------
241
- '''
242
-
243
-
244
- # --------------------------------------------
245
- # numpy(single) [0, 1] <---> numpy(unit)
246
- # --------------------------------------------
247
-
248
-
249
- def uint2single(img):
250
-
251
- return np.float32(img/255.)
252
-
253
-
254
- def single2uint(img):
255
-
256
- return np.uint8((img.clip(0, 1)*255.).round())
257
-
258
-
259
- def uint162single(img):
260
-
261
- return np.float32(img/65535.)
262
-
263
-
264
- def single2uint16(img):
265
-
266
- return np.uint16((img.clip(0, 1)*65535.).round())
267
-
268
-
269
- # --------------------------------------------
270
- # numpy(unit) (HxWxC or HxW) <---> tensor
271
- # --------------------------------------------
272
-
273
-
274
- # convert uint to 4-dimensional torch tensor
275
- def uint2tensor4(img):
276
- if img.ndim == 2:
277
- img = np.expand_dims(img, axis=2)
278
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
279
-
280
-
281
- # convert uint to 3-dimensional torch tensor
282
- def uint2tensor3(img):
283
- if img.ndim == 2:
284
- img = np.expand_dims(img, axis=2)
285
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
286
-
287
-
288
- # convert 2/3/4-dimensional torch tensor to uint
289
- def tensor2uint(img):
290
- img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
291
- if img.ndim == 3:
292
- img = np.transpose(img, (1, 2, 0))
293
- return np.uint8((img*255.0).round())
294
-
295
-
296
- # --------------------------------------------
297
- # numpy(single) (HxWxC) <---> tensor
298
- # --------------------------------------------
299
-
300
-
301
- # convert single (HxWxC) to 3-dimensional torch tensor
302
- def single2tensor3(img):
303
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
304
-
305
-
306
- # convert single (HxWxC) to 4-dimensional torch tensor
307
- def single2tensor4(img):
308
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
309
-
310
-
311
- # convert torch tensor to single
312
- def tensor2single(img):
313
- img = img.data.squeeze().float().cpu().numpy()
314
- if img.ndim == 3:
315
- img = np.transpose(img, (1, 2, 0))
316
-
317
- return img
318
-
319
- # convert torch tensor to single
320
- def tensor2single3(img):
321
- img = img.data.squeeze().float().cpu().numpy()
322
- if img.ndim == 3:
323
- img = np.transpose(img, (1, 2, 0))
324
- elif img.ndim == 2:
325
- img = np.expand_dims(img, axis=2)
326
- return img
327
-
328
-
329
- def single2tensor5(img):
330
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
331
-
332
-
333
- def single32tensor5(img):
334
- return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
335
-
336
-
337
- def single42tensor4(img):
338
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
339
-
340
-
341
- # from skimage.io import imread, imsave
342
- def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
343
- '''
344
- Converts a torch Tensor into an image Numpy array of BGR channel order
345
- Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
346
- Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
347
- '''
348
- tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
349
- tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
350
- n_dim = tensor.dim()
351
- if n_dim == 4:
352
- n_img = len(tensor)
353
- img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
354
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
355
- elif n_dim == 3:
356
- img_np = tensor.numpy()
357
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
358
- elif n_dim == 2:
359
- img_np = tensor.numpy()
360
- else:
361
- raise TypeError(
362
- 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
363
- if out_type == np.uint8:
364
- img_np = (img_np * 255.0).round()
365
- # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
366
- return img_np.astype(out_type)
367
-
368
-
369
- '''
370
- # --------------------------------------------
371
- # Augmentation, flipe and/or rotate
372
- # --------------------------------------------
373
- # The following two are enough.
374
- # (1) augmet_img: numpy image of WxHxC or WxH
375
- # (2) augment_img_tensor4: tensor image 1xCxWxH
376
- # --------------------------------------------
377
- '''
378
-
379
-
380
- def augment_img(img, mode=0):
381
- '''Kai Zhang (github: https://github.com/cszn)
382
- '''
383
- if mode == 0:
384
- return img
385
- elif mode == 1:
386
- return np.flipud(np.rot90(img))
387
- elif mode == 2:
388
- return np.flipud(img)
389
- elif mode == 3:
390
- return np.rot90(img, k=3)
391
- elif mode == 4:
392
- return np.flipud(np.rot90(img, k=2))
393
- elif mode == 5:
394
- return np.rot90(img)
395
- elif mode == 6:
396
- return np.rot90(img, k=2)
397
- elif mode == 7:
398
- return np.flipud(np.rot90(img, k=3))
399
-
400
-
401
- def augment_img_tensor4(img, mode=0):
402
- '''Kai Zhang (github: https://github.com/cszn)
403
- '''
404
- if mode == 0:
405
- return img
406
- elif mode == 1:
407
- return img.rot90(1, [2, 3]).flip([2])
408
- elif mode == 2:
409
- return img.flip([2])
410
- elif mode == 3:
411
- return img.rot90(3, [2, 3])
412
- elif mode == 4:
413
- return img.rot90(2, [2, 3]).flip([2])
414
- elif mode == 5:
415
- return img.rot90(1, [2, 3])
416
- elif mode == 6:
417
- return img.rot90(2, [2, 3])
418
- elif mode == 7:
419
- return img.rot90(3, [2, 3]).flip([2])
420
-
421
-
422
- def augment_img_tensor(img, mode=0):
423
- '''Kai Zhang (github: https://github.com/cszn)
424
- '''
425
- img_size = img.size()
426
- img_np = img.data.cpu().numpy()
427
- if len(img_size) == 3:
428
- img_np = np.transpose(img_np, (1, 2, 0))
429
- elif len(img_size) == 4:
430
- img_np = np.transpose(img_np, (2, 3, 1, 0))
431
- img_np = augment_img(img_np, mode=mode)
432
- img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
433
- if len(img_size) == 3:
434
- img_tensor = img_tensor.permute(2, 0, 1)
435
- elif len(img_size) == 4:
436
- img_tensor = img_tensor.permute(3, 2, 0, 1)
437
-
438
- return img_tensor.type_as(img)
439
-
440
-
441
- def augment_img_np3(img, mode=0):
442
- if mode == 0:
443
- return img
444
- elif mode == 1:
445
- return img.transpose(1, 0, 2)
446
- elif mode == 2:
447
- return img[::-1, :, :]
448
- elif mode == 3:
449
- img = img[::-1, :, :]
450
- img = img.transpose(1, 0, 2)
451
- return img
452
- elif mode == 4:
453
- return img[:, ::-1, :]
454
- elif mode == 5:
455
- img = img[:, ::-1, :]
456
- img = img.transpose(1, 0, 2)
457
- return img
458
- elif mode == 6:
459
- img = img[:, ::-1, :]
460
- img = img[::-1, :, :]
461
- return img
462
- elif mode == 7:
463
- img = img[:, ::-1, :]
464
- img = img[::-1, :, :]
465
- img = img.transpose(1, 0, 2)
466
- return img
467
-
468
-
469
- def augment_imgs(img_list, hflip=True, rot=True):
470
- # horizontal flip OR rotate
471
- hflip = hflip and random.random() < 0.5
472
- vflip = rot and random.random() < 0.5
473
- rot90 = rot and random.random() < 0.5
474
-
475
- def _augment(img):
476
- if hflip:
477
- img = img[:, ::-1, :]
478
- if vflip:
479
- img = img[::-1, :, :]
480
- if rot90:
481
- img = img.transpose(1, 0, 2)
482
- return img
483
-
484
- return [_augment(img) for img in img_list]
485
-
486
-
487
- '''
488
- # --------------------------------------------
489
- # modcrop and shave
490
- # --------------------------------------------
491
- '''
492
-
493
-
494
- def modcrop(img_in, scale):
495
- # img_in: Numpy, HWC or HW
496
- img = np.copy(img_in)
497
- if img.ndim == 2:
498
- H, W = img.shape
499
- H_r, W_r = H % scale, W % scale
500
- img = img[:H - H_r, :W - W_r]
501
- elif img.ndim == 3:
502
- H, W, C = img.shape
503
- H_r, W_r = H % scale, W % scale
504
- img = img[:H - H_r, :W - W_r, :]
505
- else:
506
- raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
507
- return img
508
-
509
-
510
- def shave(img_in, border=0):
511
- # img_in: Numpy, HWC or HW
512
- img = np.copy(img_in)
513
- h, w = img.shape[:2]
514
- img = img[border:h-border, border:w-border]
515
- return img
516
-
517
-
518
- '''
519
- # --------------------------------------------
520
- # image processing process on numpy image
521
- # channel_convert(in_c, tar_type, img_list):
522
- # rgb2ycbcr(img, only_y=True):
523
- # bgr2ycbcr(img, only_y=True):
524
- # ycbcr2rgb(img):
525
- # --------------------------------------------
526
- '''
527
-
528
-
529
- def rgb2ycbcr(img, only_y=True):
530
- '''same as matlab rgb2ycbcr
531
- only_y: only return Y channel
532
- Input:
533
- uint8, [0, 255]
534
- float, [0, 1]
535
- '''
536
- in_img_type = img.dtype
537
- img.astype(np.float32)
538
- if in_img_type != np.uint8:
539
- img *= 255.
540
- # convert
541
- if only_y:
542
- rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
543
- else:
544
- rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
545
- [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
546
- if in_img_type == np.uint8:
547
- rlt = rlt.round()
548
- else:
549
- rlt /= 255.
550
- return rlt.astype(in_img_type)
551
-
552
-
553
- def ycbcr2rgb(img):
554
- '''same as matlab ycbcr2rgb
555
- Input:
556
- uint8, [0, 255]
557
- float, [0, 1]
558
- '''
559
- in_img_type = img.dtype
560
- img.astype(np.float32)
561
- if in_img_type != np.uint8:
562
- img *= 255.
563
- # convert
564
- rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
565
- [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
566
- if in_img_type == np.uint8:
567
- rlt = rlt.round()
568
- else:
569
- rlt /= 255.
570
- return rlt.astype(in_img_type)
571
-
572
-
573
- def bgr2ycbcr(img, only_y=True):
574
- '''bgr version of rgb2ycbcr
575
- only_y: only return Y channel
576
- Input:
577
- uint8, [0, 255]
578
- float, [0, 1]
579
- '''
580
- in_img_type = img.dtype
581
- img.astype(np.float32)
582
- if in_img_type != np.uint8:
583
- img *= 255.
584
- # convert
585
- if only_y:
586
- rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
587
- else:
588
- rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
589
- [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
590
- if in_img_type == np.uint8:
591
- rlt = rlt.round()
592
- else:
593
- rlt /= 255.
594
- return rlt.astype(in_img_type)
595
-
596
-
597
- def channel_convert(in_c, tar_type, img_list):
598
- # conversion among BGR, gray and y
599
- if in_c == 3 and tar_type == 'gray': # BGR to gray
600
- gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
601
- return [np.expand_dims(img, axis=2) for img in gray_list]
602
- elif in_c == 3 and tar_type == 'y': # BGR to y
603
- y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
604
- return [np.expand_dims(img, axis=2) for img in y_list]
605
- elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
606
- return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
607
- else:
608
- return img_list
609
-
610
-
611
- '''
612
- # --------------------------------------------
613
- # metric, PSNR and SSIM
614
- # --------------------------------------------
615
- '''
616
-
617
-
618
- # --------------------------------------------
619
- # PSNR
620
- # --------------------------------------------
621
- def calculate_psnr(img1, img2, border=0):
622
- # img1 and img2 have range [0, 255]
623
- #img1 = img1.squeeze()
624
- #img2 = img2.squeeze()
625
- if not img1.shape == img2.shape:
626
- raise ValueError('Input images must have the same dimensions.')
627
- h, w = img1.shape[:2]
628
- img1 = img1[border:h-border, border:w-border]
629
- img2 = img2[border:h-border, border:w-border]
630
-
631
- img1 = img1.astype(np.float64)
632
- img2 = img2.astype(np.float64)
633
- mse = np.mean((img1 - img2)**2)
634
- if mse == 0:
635
- return float('inf')
636
- return 20 * math.log10(255.0 / math.sqrt(mse))
637
-
638
-
639
- # --------------------------------------------
640
- # SSIM
641
- # --------------------------------------------
642
- def calculate_ssim(img1, img2, border=0):
643
- '''calculate SSIM
644
- the same outputs as MATLAB's
645
- img1, img2: [0, 255]
646
- '''
647
- #img1 = img1.squeeze()
648
- #img2 = img2.squeeze()
649
- if not img1.shape == img2.shape:
650
- raise ValueError('Input images must have the same dimensions.')
651
- h, w = img1.shape[:2]
652
- img1 = img1[border:h-border, border:w-border]
653
- img2 = img2[border:h-border, border:w-border]
654
-
655
- if img1.ndim == 2:
656
- return ssim(img1, img2)
657
- elif img1.ndim == 3:
658
- if img1.shape[2] == 3:
659
- ssims = []
660
- for i in range(3):
661
- ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
662
- return np.array(ssims).mean()
663
- elif img1.shape[2] == 1:
664
- return ssim(np.squeeze(img1), np.squeeze(img2))
665
- else:
666
- raise ValueError('Wrong input image dimensions.')
667
-
668
-
669
- def ssim(img1, img2):
670
- C1 = (0.01 * 255)**2
671
- C2 = (0.03 * 255)**2
672
-
673
- img1 = img1.astype(np.float64)
674
- img2 = img2.astype(np.float64)
675
- kernel = cv2.getGaussianKernel(11, 1.5)
676
- window = np.outer(kernel, kernel.transpose())
677
-
678
- mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
679
- mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
680
- mu1_sq = mu1**2
681
- mu2_sq = mu2**2
682
- mu1_mu2 = mu1 * mu2
683
- sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
684
- sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
685
- sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
686
-
687
- ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
688
- (sigma1_sq + sigma2_sq + C2))
689
- return ssim_map.mean()
690
-
691
-
692
- '''
693
- # --------------------------------------------
694
- # matlab's bicubic imresize (numpy and torch) [0, 1]
695
- # --------------------------------------------
696
- '''
697
-
698
-
699
- # matlab 'imresize' function, now only support 'bicubic'
700
- def cubic(x):
701
- absx = torch.abs(x)
702
- absx2 = absx**2
703
- absx3 = absx**3
704
- return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
705
- (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
706
-
707
-
708
- def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
709
- if (scale < 1) and (antialiasing):
710
- # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
711
- kernel_width = kernel_width / scale
712
-
713
- # Output-space coordinates
714
- x = torch.linspace(1, out_length, out_length)
715
-
716
- # Input-space coordinates. Calculate the inverse mapping such that 0.5
717
- # in output space maps to 0.5 in input space, and 0.5+scale in output
718
- # space maps to 1.5 in input space.
719
- u = x / scale + 0.5 * (1 - 1 / scale)
720
-
721
- # What is the left-most pixel that can be involved in the computation?
722
- left = torch.floor(u - kernel_width / 2)
723
-
724
- # What is the maximum number of pixels that can be involved in the
725
- # computation? Note: it's OK to use an extra pixel here; if the
726
- # corresponding weights are all zero, it will be eliminated at the end
727
- # of this function.
728
- P = math.ceil(kernel_width) + 2
729
-
730
- # The indices of the input pixels involved in computing the k-th output
731
- # pixel are in row k of the indices matrix.
732
- indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
733
- 1, P).expand(out_length, P)
734
-
735
- # The weights used to compute the k-th output pixel are in row k of the
736
- # weights matrix.
737
- distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
738
- # apply cubic kernel
739
- if (scale < 1) and (antialiasing):
740
- weights = scale * cubic(distance_to_center * scale)
741
- else:
742
- weights = cubic(distance_to_center)
743
- # Normalize the weights matrix so that each row sums to 1.
744
- weights_sum = torch.sum(weights, 1).view(out_length, 1)
745
- weights = weights / weights_sum.expand(out_length, P)
746
-
747
- # If a column in weights is all zero, get rid of it. only consider the first and last column.
748
- weights_zero_tmp = torch.sum((weights == 0), 0)
749
- if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
750
- indices = indices.narrow(1, 1, P - 2)
751
- weights = weights.narrow(1, 1, P - 2)
752
- if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
753
- indices = indices.narrow(1, 0, P - 2)
754
- weights = weights.narrow(1, 0, P - 2)
755
- weights = weights.contiguous()
756
- indices = indices.contiguous()
757
- sym_len_s = -indices.min() + 1
758
- sym_len_e = indices.max() - in_length
759
- indices = indices + sym_len_s - 1
760
- return weights, indices, int(sym_len_s), int(sym_len_e)
761
-
762
-
763
- # --------------------------------------------
764
- # imresize for tensor image [0, 1]
765
- # --------------------------------------------
766
- def imresize(img, scale, antialiasing=True):
767
- # Now the scale should be the same for H and W
768
- # input: img: pytorch tensor, CHW or HW [0,1]
769
- # output: CHW or HW [0,1] w/o round
770
- need_squeeze = True if img.dim() == 2 else False
771
- if need_squeeze:
772
- img.unsqueeze_(0)
773
- in_C, in_H, in_W = img.size()
774
- out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
775
- kernel_width = 4
776
- kernel = 'cubic'
777
-
778
- # Return the desired dimension order for performing the resize. The
779
- # strategy is to perform the resize first along the dimension with the
780
- # smallest scale factor.
781
- # Now we do not support this.
782
-
783
- # get weights and indices
784
- weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
785
- in_H, out_H, scale, kernel, kernel_width, antialiasing)
786
- weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
787
- in_W, out_W, scale, kernel, kernel_width, antialiasing)
788
- # process H dimension
789
- # symmetric copying
790
- img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
791
- img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
792
-
793
- sym_patch = img[:, :sym_len_Hs, :]
794
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
795
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
796
- img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
797
-
798
- sym_patch = img[:, -sym_len_He:, :]
799
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
800
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
801
- img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
802
-
803
- out_1 = torch.FloatTensor(in_C, out_H, in_W)
804
- kernel_width = weights_H.size(1)
805
- for i in range(out_H):
806
- idx = int(indices_H[i][0])
807
- for j in range(out_C):
808
- out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
809
-
810
- # process W dimension
811
- # symmetric copying
812
- out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
813
- out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
814
-
815
- sym_patch = out_1[:, :, :sym_len_Ws]
816
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
817
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
818
- out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
819
-
820
- sym_patch = out_1[:, :, -sym_len_We:]
821
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
822
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
823
- out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
824
-
825
- out_2 = torch.FloatTensor(in_C, out_H, out_W)
826
- kernel_width = weights_W.size(1)
827
- for i in range(out_W):
828
- idx = int(indices_W[i][0])
829
- for j in range(out_C):
830
- out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
831
- if need_squeeze:
832
- out_2.squeeze_()
833
- return out_2
834
-
835
-
836
- # --------------------------------------------
837
- # imresize for numpy image [0, 1]
838
- # --------------------------------------------
839
- def imresize_np(img, scale, antialiasing=True):
840
- # Now the scale should be the same for H and W
841
- # input: img: Numpy, HWC or HW [0,1]
842
- # output: HWC or HW [0,1] w/o round
843
- img = torch.from_numpy(img)
844
- need_squeeze = True if img.dim() == 2 else False
845
- if need_squeeze:
846
- img.unsqueeze_(2)
847
-
848
- in_H, in_W, in_C = img.size()
849
- out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
850
- kernel_width = 4
851
- kernel = 'cubic'
852
-
853
- # Return the desired dimension order for performing the resize. The
854
- # strategy is to perform the resize first along the dimension with the
855
- # smallest scale factor.
856
- # Now we do not support this.
857
-
858
- # get weights and indices
859
- weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
860
- in_H, out_H, scale, kernel, kernel_width, antialiasing)
861
- weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
862
- in_W, out_W, scale, kernel, kernel_width, antialiasing)
863
- # process H dimension
864
- # symmetric copying
865
- img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
866
- img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
867
-
868
- sym_patch = img[:sym_len_Hs, :, :]
869
- inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
870
- sym_patch_inv = sym_patch.index_select(0, inv_idx)
871
- img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
872
-
873
- sym_patch = img[-sym_len_He:, :, :]
874
- inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
875
- sym_patch_inv = sym_patch.index_select(0, inv_idx)
876
- img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
877
-
878
- out_1 = torch.FloatTensor(out_H, in_W, in_C)
879
- kernel_width = weights_H.size(1)
880
- for i in range(out_H):
881
- idx = int(indices_H[i][0])
882
- for j in range(out_C):
883
- out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
884
-
885
- # process W dimension
886
- # symmetric copying
887
- out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
888
- out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
889
-
890
- sym_patch = out_1[:, :sym_len_Ws, :]
891
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
892
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
893
- out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
894
-
895
- sym_patch = out_1[:, -sym_len_We:, :]
896
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
897
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
898
- out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
899
-
900
- out_2 = torch.FloatTensor(out_H, out_W, in_C)
901
- kernel_width = weights_W.size(1)
902
- for i in range(out_W):
903
- idx = int(indices_W[i][0])
904
- for j in range(out_C):
905
- out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
906
- if need_squeeze:
907
- out_2.squeeze_()
908
-
909
- return out_2.numpy()
910
-
911
-
912
- if __name__ == '__main__':
913
- print('---')
914
- # img = imread_uint('test.bmp', 3)
915
- # img = uint2single(img)
916
- # img_bicubic = imresize_np(img, 1/4)