Spaces:
Runtime error
Runtime error
This PR makes the space work again
#13
by
Fabrice-TIERCELIN
- opened
- README.md +3 -42
- app.py +246 -60
- requirements.txt +2 -1
README.md
CHANGED
|
@@ -3,46 +3,7 @@ title: 📺RTV🖼️ - Real Time Video AI
|
|
| 3 |
emoji: 🖼️📺
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: yellow
|
| 6 |
-
|
| 7 |
-
sdk_version: 4.4.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
license: other
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
1. Process Images in real time with prompts:
|
| 14 |
-
2. Example:
|
| 15 |
-
- Elves Toy Factories North Pole Christmas Magic Elf Happy Magical Toy Robots Polar Bears Creatures Winter Streets with Holiday Festivals Christmas Present Lists Toys Candy Books Christmas Fun Facts
|
| 16 |
-
Happy New Years
|
| 17 |
-
3. Add prompt here and download images: https://huggingface.co/spaces/awacke1/RealTimeImageGen
|
| 18 |
-
4. Load images to 01.png thru 09.png below
|
| 19 |
-
5. Rebuild
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
One of the greatest new generative AI models. This model is being tested to generate Christmas themed videos including:
|
| 23 |
-
1. Reindeer
|
| 24 |
-
2. Sunset and Sunrise views of Christmas Eve and Christmas Day
|
| 25 |
-
3. Saint Nicholas
|
| 26 |
-
4. Elves and Toy Factories
|
| 27 |
-
5. Polar Bears, and Other Winter Creatures
|
| 28 |
-
6. Winter Streets with Holiday Festivals
|
| 29 |
-
7. Christmas Present Lists Toys and Candy
|
| 30 |
-
8. Books of Christmas with Fun Facts
|
| 31 |
-
9. Happy New Years!
|
| 32 |
-
|
| 33 |
-
-In app.py this is implemented here and will cache the examples and process while loading creating 4 second videos for each image:
|
| 34 |
-
|
| 35 |
-
```
|
| 36 |
-
gr.Examples(
|
| 37 |
-
examples=[
|
| 38 |
-
"images/01.png",
|
| 39 |
-
"images/02.png",
|
| 40 |
-
"images/03.png",
|
| 41 |
-
"images/04.png",
|
| 42 |
-
"images/05.png",
|
| 43 |
-
"images/06.png",
|
| 44 |
-
"images/07.png",
|
| 45 |
-
"images/08.png",
|
| 46 |
-
"images/09.png"
|
| 47 |
-
],
|
| 48 |
-
```
|
|
|
|
| 3 |
emoji: 🖼️📺
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: yellow
|
| 6 |
+
short_description: Animate Your Pictures With Stable VIdeo DIffusion
|
|
|
|
|
|
|
|
|
|
| 7 |
license: other
|
| 8 |
+
sdk: gradio
|
| 9 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,114 +1,300 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
-
import uuid
|
| 5 |
import random
|
|
|
|
|
|
|
|
|
|
| 6 |
from glob import glob
|
| 7 |
from pathlib import Path
|
| 8 |
-
from typing import Optional
|
|
|
|
| 9 |
from diffusers import StableVideoDiffusionPipeline
|
| 10 |
-
from diffusers.utils import
|
| 11 |
from PIL import Image
|
| 12 |
-
from huggingface_hub import hf_hub_download
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
"stabilityai/stable-video-diffusion-img2vid
|
| 17 |
)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
-
def
|
| 24 |
image: Image,
|
| 25 |
seed: Optional[int] = 42,
|
| 26 |
randomize_seed: bool = True,
|
| 27 |
motion_bucket_id: int = 127,
|
| 28 |
-
fps_id: int =
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
os.makedirs(output_folder, exist_ok=True)
|
| 44 |
-
base_count = len(glob(os.path.join(output_folder, "*.
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
| 53 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
| 54 |
|
|
|
|
| 55 |
if image_aspect > target_aspect:
|
|
|
|
| 56 |
new_height = output_size[1]
|
| 57 |
new_width = int(new_height * image_aspect)
|
| 58 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
| 59 |
left = (new_width - output_size[0]) / 2
|
| 60 |
top = 0
|
| 61 |
right = (new_width + output_size[0]) / 2
|
| 62 |
bottom = output_size[1]
|
| 63 |
else:
|
|
|
|
| 64 |
new_width = output_size[0]
|
| 65 |
new_height = int(new_width / image_aspect)
|
| 66 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
| 67 |
left = 0
|
| 68 |
top = (new_height - output_size[1]) / 2
|
| 69 |
right = output_size[0]
|
| 70 |
bottom = (new_height + output_size[1]) / 2
|
| 71 |
|
| 72 |
-
|
| 73 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
gr.Examples(
|
| 101 |
examples=[
|
| 102 |
-
"images/01.png",
|
| 103 |
-
"images/02.png",
|
| 104 |
-
"images/03.png",
|
| 105 |
],
|
| 106 |
-
inputs=image,
|
| 107 |
-
outputs=[
|
| 108 |
-
fn=
|
| 109 |
-
|
|
|
|
| 110 |
)
|
| 111 |
|
| 112 |
if __name__ == "__main__":
|
| 113 |
-
demo.
|
| 114 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import os
|
|
|
|
| 4 |
import random
|
| 5 |
+
import time
|
| 6 |
+
import math
|
| 7 |
+
import spaces
|
| 8 |
from glob import glob
|
| 9 |
from pathlib import Path
|
| 10 |
+
from typing import Optional, List, Union
|
| 11 |
+
|
| 12 |
from diffusers import StableVideoDiffusionPipeline
|
| 13 |
+
from diffusers.utils import export_to_video, export_to_gif
|
| 14 |
from PIL import Image
|
|
|
|
| 15 |
|
| 16 |
+
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 17 |
+
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
| 18 |
+
)
|
| 19 |
+
fps25Pipe.to("cuda")
|
| 20 |
|
| 21 |
+
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 22 |
+
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
|
| 23 |
)
|
| 24 |
+
fps14Pipe.to("cuda")
|
| 25 |
+
|
| 26 |
+
dragnuwaPipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 27 |
+
"a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None
|
| 28 |
+
)
|
| 29 |
+
dragnuwaPipe.to("cuda")
|
| 30 |
|
| 31 |
+
max_64_bit_int = 2**63 - 1
|
| 32 |
|
| 33 |
+
def animate(
|
| 34 |
image: Image,
|
| 35 |
seed: Optional[int] = 42,
|
| 36 |
randomize_seed: bool = True,
|
| 37 |
motion_bucket_id: int = 127,
|
| 38 |
+
fps_id: int = 25,
|
| 39 |
+
noise_aug_strength: float = 0.1,
|
| 40 |
+
decoding_t: int = 3,
|
| 41 |
+
video_format: str = "mp4",
|
| 42 |
+
frame_format: str = "webp",
|
| 43 |
+
version: str = "auto",
|
| 44 |
+
width: int = 1024,
|
| 45 |
+
height: int = 576,
|
| 46 |
+
motion_control: bool = False,
|
| 47 |
+
num_inference_steps: int = 25
|
| 48 |
):
|
| 49 |
+
start = time.time()
|
| 50 |
+
|
| 51 |
+
if image is None:
|
| 52 |
+
raise gr.Error("Please provide an image to animate.")
|
| 53 |
+
|
| 54 |
+
output_folder = "outputs"
|
| 55 |
+
image_data = resize_image(image, output_size=(width, height))
|
| 56 |
+
if image_data.mode == "RGBA":
|
| 57 |
+
image_data = image_data.convert("RGB")
|
| 58 |
+
|
| 59 |
+
if motion_control:
|
| 60 |
+
image_data = [image_data] * 2
|
| 61 |
|
| 62 |
+
if randomize_seed:
|
| 63 |
+
seed = random.randint(0, max_64_bit_int)
|
| 64 |
+
|
| 65 |
+
if version == "auto":
|
| 66 |
+
if 14 < fps_id:
|
| 67 |
+
version = "svdxt"
|
| 68 |
+
else:
|
| 69 |
+
version = "svd"
|
| 70 |
|
| 71 |
+
frames = animate_on_gpu(
|
| 72 |
+
image_data,
|
| 73 |
+
seed,
|
| 74 |
+
motion_bucket_id,
|
| 75 |
+
fps_id,
|
| 76 |
+
noise_aug_strength,
|
| 77 |
+
decoding_t,
|
| 78 |
+
version,
|
| 79 |
+
width,
|
| 80 |
+
height,
|
| 81 |
+
num_inference_steps
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
os.makedirs(output_folder, exist_ok=True)
|
| 85 |
+
base_count = len(glob(os.path.join(output_folder, "*." + video_format)))
|
| 86 |
+
result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format)
|
| 87 |
+
|
| 88 |
+
if video_format == "gif":
|
| 89 |
+
video_path = None
|
| 90 |
+
gif_path = result_path
|
| 91 |
+
export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id)
|
| 92 |
+
else:
|
| 93 |
+
video_path = result_path
|
| 94 |
+
gif_path = None
|
| 95 |
+
export_to_video(frames, video_path, fps=fps_id)
|
| 96 |
+
|
| 97 |
+
end = time.time()
|
| 98 |
+
secondes = int(end - start)
|
| 99 |
+
minutes = math.floor(secondes / 60)
|
| 100 |
+
secondes = secondes - (minutes * 60)
|
| 101 |
+
hours = math.floor(minutes / 60)
|
| 102 |
+
minutes = minutes - (hours * 60)
|
| 103 |
+
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
| 104 |
+
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \
|
| 105 |
+
"The video has been generated in " + \
|
| 106 |
+
((str(hours) + " h, ") if hours != 0 else "") + \
|
| 107 |
+
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
| 108 |
+
str(secondes) + " sec."
|
| 109 |
+
|
| 110 |
+
return [
|
| 111 |
+
# Display for video
|
| 112 |
+
gr.update(value = video_path, visible = video_format != "gif"),
|
| 113 |
+
# Display for gif
|
| 114 |
+
gr.update(value = gif_path, visible = video_format == "gif"),
|
| 115 |
+
# Download button
|
| 116 |
+
gr.update(label = "💾 Download animation in *." + video_format + " format", value=result_path, visible=True),
|
| 117 |
+
# Frames
|
| 118 |
+
gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True),
|
| 119 |
+
# Used seed
|
| 120 |
+
seed,
|
| 121 |
+
# Information
|
| 122 |
+
gr.update(value = information, visible = True),
|
| 123 |
+
# Reset button
|
| 124 |
+
gr.update(visible = True)
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
@torch.no_grad()
|
| 128 |
+
@spaces.GPU(duration=180)
|
| 129 |
+
def animate_on_gpu(
|
| 130 |
+
image_data: Union[Image.Image, List[Image.Image]],
|
| 131 |
+
seed: Optional[int] = 42,
|
| 132 |
+
motion_bucket_id: int = 127,
|
| 133 |
+
fps_id: int = 6,
|
| 134 |
+
noise_aug_strength: float = 0.1,
|
| 135 |
+
decoding_t: int = 3,
|
| 136 |
+
version: str = "svdxt",
|
| 137 |
+
width: int = 1024,
|
| 138 |
+
height: int = 576,
|
| 139 |
+
num_inference_steps: int = 25
|
| 140 |
+
):
|
| 141 |
+
generator = torch.manual_seed(seed)
|
| 142 |
+
|
| 143 |
+
if version == "dragnuwa":
|
| 144 |
+
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
| 145 |
+
elif version == "svdxt":
|
| 146 |
+
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
| 147 |
+
else:
|
| 148 |
+
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
| 149 |
+
|
| 150 |
|
| 151 |
def resize_image(image, output_size=(1024, 576)):
|
| 152 |
+
# Do not touch the image if the size is good
|
| 153 |
+
if image.width == output_size[0] and image.height == output_size[1]:
|
| 154 |
+
return image
|
| 155 |
+
|
| 156 |
+
# Calculate aspect ratios
|
| 157 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
| 158 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
| 159 |
|
| 160 |
+
# Resize if the original image is larger
|
| 161 |
if image_aspect > target_aspect:
|
| 162 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
| 163 |
new_height = output_size[1]
|
| 164 |
new_width = int(new_height * image_aspect)
|
| 165 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 166 |
+
# Calculate coordinates for cropping
|
| 167 |
left = (new_width - output_size[0]) / 2
|
| 168 |
top = 0
|
| 169 |
right = (new_width + output_size[0]) / 2
|
| 170 |
bottom = output_size[1]
|
| 171 |
else:
|
| 172 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
| 173 |
new_width = output_size[0]
|
| 174 |
new_height = int(new_width / image_aspect)
|
| 175 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 176 |
+
# Calculate coordinates for cropping
|
| 177 |
left = 0
|
| 178 |
top = (new_height - output_size[1]) / 2
|
| 179 |
right = output_size[0]
|
| 180 |
bottom = (new_height + output_size[1]) / 2
|
| 181 |
|
| 182 |
+
# Crop the image
|
| 183 |
+
return resized_image.crop((left, top, right, bottom))
|
| 184 |
+
|
| 185 |
+
def reset():
|
| 186 |
+
return [
|
| 187 |
+
None,
|
| 188 |
+
random.randint(0, max_64_bit_int),
|
| 189 |
+
True,
|
| 190 |
+
127,
|
| 191 |
+
6,
|
| 192 |
+
0.1,
|
| 193 |
+
3,
|
| 194 |
+
"mp4",
|
| 195 |
+
"webp",
|
| 196 |
+
"auto",
|
| 197 |
+
1024,
|
| 198 |
+
576,
|
| 199 |
+
False,
|
| 200 |
+
25
|
| 201 |
+
]
|
| 202 |
|
| 203 |
with gr.Blocks() as demo:
|
| 204 |
+
gr.HTML("""
|
| 205 |
+
<h1><center>Image-to-Video</center></h1>
|
| 206 |
+
<big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big>
|
| 207 |
+
<br/>
|
| 208 |
|
| 209 |
+
<p>
|
| 210 |
+
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence.
|
| 211 |
+
No prompt or camera control is handled here.
|
| 212 |
+
To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>.
|
| 213 |
+
If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>.
|
| 214 |
+
</p>
|
| 215 |
+
""")
|
| 216 |
with gr.Row():
|
| 217 |
+
with gr.Column():
|
| 218 |
+
image = gr.Image(label="Upload your image", type="pil")
|
| 219 |
+
with gr.Accordion("Advanced options", open=False):
|
| 220 |
+
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
|
| 221 |
+
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
|
| 222 |
+
motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False)
|
| 223 |
+
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
|
| 224 |
+
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
|
| 225 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
|
| 226 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
| 227 |
+
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
|
| 228 |
+
num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1)
|
| 229 |
+
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
|
| 230 |
+
version = gr.Radio([["Auto", "auto"], ["🏃🏻♀️ SVD (trained on 14 f/s)", "svd"], ["🏃🏻♀️💨 SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True)
|
| 231 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 232 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 233 |
+
|
| 234 |
+
generate_btn = gr.Button(value="🚀 Animate", variant="primary")
|
| 235 |
+
reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)
|
| 236 |
+
|
| 237 |
+
with gr.Column():
|
| 238 |
+
video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False)
|
| 239 |
+
gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False)
|
| 240 |
+
download_button = gr.DownloadButton(label="💾 Download video", visible=False)
|
| 241 |
+
information_msg = gr.HTML(visible=False)
|
| 242 |
+
gallery = gr.Gallery(label="Generated frames", visible=False)
|
| 243 |
|
| 244 |
+
generate_btn.click(fn=animate, inputs=[
|
| 245 |
+
image,
|
| 246 |
+
seed,
|
| 247 |
+
randomize_seed,
|
| 248 |
+
motion_bucket_id,
|
| 249 |
+
fps_id,
|
| 250 |
+
noise_aug_strength,
|
| 251 |
+
decoding_t,
|
| 252 |
+
video_format,
|
| 253 |
+
frame_format,
|
| 254 |
+
version,
|
| 255 |
+
width,
|
| 256 |
+
height,
|
| 257 |
+
motion_control,
|
| 258 |
+
num_inference_steps
|
| 259 |
+
], outputs=[
|
| 260 |
+
video_output,
|
| 261 |
+
gif_output,
|
| 262 |
+
download_button,
|
| 263 |
+
gallery,
|
| 264 |
+
seed,
|
| 265 |
+
information_msg,
|
| 266 |
+
reset_btn
|
| 267 |
+
], api_name="video")
|
| 268 |
+
|
| 269 |
+
reset_btn.click(fn = reset, inputs = [], outputs = [
|
| 270 |
+
image,
|
| 271 |
+
seed,
|
| 272 |
+
randomize_seed,
|
| 273 |
+
motion_bucket_id,
|
| 274 |
+
fps_id,
|
| 275 |
+
noise_aug_strength,
|
| 276 |
+
decoding_t,
|
| 277 |
+
video_format,
|
| 278 |
+
frame_format,
|
| 279 |
+
version,
|
| 280 |
+
width,
|
| 281 |
+
height,
|
| 282 |
+
motion_control,
|
| 283 |
+
num_inference_steps
|
| 284 |
+
], queue = False, show_progress = False)
|
| 285 |
+
|
| 286 |
gr.Examples(
|
| 287 |
examples=[
|
| 288 |
+
["images/01.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
| 289 |
+
["images/02.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
| 290 |
+
["images/03.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25]
|
| 291 |
],
|
| 292 |
+
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps],
|
| 293 |
+
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
|
| 294 |
+
fn=animate,
|
| 295 |
+
run_on_click=True,
|
| 296 |
+
cache_examples=False,
|
| 297 |
)
|
| 298 |
|
| 299 |
if __name__ == "__main__":
|
| 300 |
+
demo.launch(share=True, show_api=False)
|
|
|
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ transformers
|
|
| 4 |
accelerate
|
| 5 |
safetensors
|
| 6 |
opencv-python
|
| 7 |
-
uuid
|
|
|
|
|
|
| 4 |
accelerate
|
| 5 |
safetensors
|
| 6 |
opencv-python
|
| 7 |
+
uuid
|
| 8 |
+
torch
|