File size: 20,664 Bytes
1f3311a
b331812
 
 
 
 
 
 
 
 
6ccc896
 
b331812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ccc896
b331812
 
6ccc896
 
 
 
 
b331812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ccc896
 
 
 
 
 
 
 
 
b331812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ccc896
b331812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ccc896
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Modify the program below to add a few picture buttons which will use emojis and a witty title to describe a prompt.  the first prompt I want is "Write ten random adult limerick based on quotes that are tweet length and make you laugh.  Show as numbered bold faced and large font markdown outline with emojis for each."  Modify this code to add the prompt emoji labeled buttons above the text box.  when you click them pass the varible they contain to a function which runs the chat through the Llama web service call in the code below.  refactor it so it is function based.  Put variables that set description for button and label for button right before the st.button() function calls and use st.expander() function to create a expanded description container with a witty label so user could collapse st.expander to hide buttons of a particular type.  This first type will be Wit and Humor.  Make sure each label contains appropriate emojis.  Code:  # Imports
import base64
import glob
import json
import math
import mistune
import openai
import os
import pytz
import re
import requests
import streamlit as st
import textract
import time
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET

# Constants
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'  # Dr Llama
API_KEY = os.getenv('API_KEY')
headers = {
    "Authorization": f"Bearer {API_KEY}",
    "Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")

# UI Controls
should_save = st.sidebar.checkbox("๐Ÿ’พ Save", value=True)

# Functions
def StreamLLMChatResponse(prompt):
    endpoint_url = API_URL
    hf_token = API_KEY
    client = InferenceClient(endpoint_url, token=hf_token)
    gen_kwargs = dict(
        max_new_tokens=512,
        top_k=30,
        top_p=0.9,
        temperature=0.2,
        repetition_penalty=1.02,
        stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
    )
    stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
    report=[]
    res_box = st.empty()
    collected_chunks=[]
    collected_messages=[]
    for r in stream:
        if r.token.special:
            continue
        if r.token.text in gen_kwargs["stop_sequences"]:
            break
        collected_chunks.append(r.token.text)
        chunk_message = r.token.text
        collected_messages.append(chunk_message)
        try:
            report.append(r.token.text)
            if len(r.token.text) > 0:
                result="".join(report).strip()
                res_box.markdown(f'*{result}*')
        except:
            st.write(' ')

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    st.markdown(response.json())
    return response.json()

def get_output(prompt):
    return query({"inputs": prompt})

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def transcribe_audio(openai_key, file_path, model):
    openai.api_key = openai_key
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        filename = generate_filename(transcript, 'txt')
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    base_filename, ext = os.path.splitext(filename)
    has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
    if ext in ['.txt', '.htm', '.md']:
        with open(f"{base_filename}-Prompt.txt", 'w') as file:
            file.write(prompt)
        with open(f"{base_filename}-Response.md", 'w') as file:
            file.write(response)
        if has_python_code:
            python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
            with open(f"{base_filename}-Code.py", 'w') as file:
                file.write(python_code)
            
def truncate_document(document, length):
    return document[:length]

def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        try:
            data = file.read()
        except:
            st.write('')
            return file_path    
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
        collected_chunks.append(chunk)  
        chunk_message = chunk['choices'][0]['delta']  
        collected_messages.append(chunk_message) 
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']

def extract_mime_type(file):
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")

def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        st.write(f"File type extension: {file_extension}")
        try:
            if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
                text += file.getvalue().decode('utf-8')
            elif file_extension.lower() == 'pdf':
                from PyPDF2 import PdfReader
                pdf = PdfReader(BytesIO(file.getvalue()))
                for page in range(len(pdf.pages)):
                    text += pdf.pages[page].extract_text() # new PyPDF2 syntax
        except Exception as e:
            st.write(f"Error processing file {file.name}: {e}")
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

def vector_store(text_chunks):
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def process_user_input(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        filename = generate_filename(user_question, 'txt')
        response = message.content
        user_prompt = user_question
        create_file(filename, user_prompt, response, should_save)       

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1 
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))
    return chunks

def create_zip_of_files(files):
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name

def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href

def main():
    st.title(" DrLlama7B")
    prompt = f"Write ten funny jokes that are tweet length stories that make you laugh.  Show as markdown outline with emojis for each."
    example_input = st.text_input("Enter your example text:", value=prompt)
    if st.button("Run Prompt With Dr Llama"):
        try:
            StreamLLMChatResponse(example_input)
        except:
            st.write('Dr. Llama is asleep.  Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
    openai.api_key = os.getenv('OPENAI_KEY')
    menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
    choice = st.sidebar.selectbox("Output File Type:", menu)
    model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcription = transcribe_audio(key, filename, "whisper-1")
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
        filename = None
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
    document_sections = deque()
    document_responses = {}
    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))
    if len(document_sections) > 0:
        if st.button("๐Ÿ‘๏ธ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section, model_choice)
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response, should_save)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
    if st.button('๐Ÿ’ฌ Chat'):
        st.write('Reasoning with your inputs...')
        user_prompt_sections = divide_prompt(user_prompt, max_length)
        full_response = ''
        for prompt_section in user_prompt_sections:
            response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
            full_response += response + '\n'  # Combine the responses
        response = full_response
        st.write('Response:')
        st.write(response)
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response, should_save)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    if st.sidebar.button("๐Ÿ—‘ Delete All"):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()
    if st.sidebar.button("โฌ‡๏ธ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("๐ŸŒ", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("๐Ÿ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("๐Ÿ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("๐Ÿ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')
            response = chat_with_model(user_prompt, file_contents, model_choice)
            filename = generate_filename(file_contents, choice)
            create_file(filename, user_prompt, response, should_save)
            st.experimental_rerun()


    # Feedback
    # Step: Give User a Way to Upvote or Downvote
    feedback = st.radio("Step 8: Give your feedback", ("๐Ÿ‘ Upvote", "๐Ÿ‘Ž Downvote"))

    if feedback == "๐Ÿ‘ Upvote":
        st.write("You upvoted ๐Ÿ‘. Thank you for your feedback!")
    else:
        st.write("You downvoted ๐Ÿ‘Ž. Thank you for your feedback!")

load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
    process_user_input(user_question)
with st.sidebar:
    st.subheader("Your documents")
    docs = st.file_uploader("import documents", accept_multiple_files=True)
    with st.spinner("Processing"):
        raw = pdf2txt(docs)
        if len(raw) > 0:
            length = str(len(raw))
            text_chunks = txt2chunks(raw)
            vectorstore = vector_store(text_chunks)
            st.session_state.conversation = get_chain(vectorstore)
            st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
            filename = generate_filename(raw, 'txt')
            create_file(filename, raw, '', should_save)

if __name__ == "__main__":
    main()