Spaces:
Runtime error
Runtime error
File size: 1,574 Bytes
53f1934 9073835 6bb7168 24c0e03 dd1a5fd 6bb7168 9073835 4b236a5 53f0238 53f1934 e551ca5 4429686 53f1934 9073835 771e9d0 0ef2ca5 dd1a5fd 2b8e801 dd1a5fd 2b8e801 dd1a5fd 4429686 2b8e801 4429686 2522810 53f1934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from HebEMO import HebEMO
from transformers import pipeline
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
from spider_plot import spider_plot
# @st.cache
HebEMO_model = HebEMO()
x = st.slider("Select a value")
st.write(x, "squared is", x * x)
st.title("Find sentiment")
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
sent = st.text_area("Text", "write here", height = 20)
# interact(HebEMO_model.hebemo, text='ืืืืื ืืคืื ืืืืืฉืจื', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
hebEMO_df = HebEMO_model.hebemo(sent, read_lines=True plot=False)
hebEMO = pd.DataFrame()
for emo in hebEMO_df.columns[1::2]:
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
st.write (hebEMO)
plot= st.checkbox('Plot?')
if plot:
ax = spider_plot(hebEMO)
st.pyplot(ax)
# fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
# color="variable",
# template="ggplot2",
# )
# st.plotly_chart(fig, use_container_width=True)
|