avichr commited on
Commit
2b8e801
1 Parent(s): 6bb7168

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -2,6 +2,7 @@ from HebEMO import HebEMO
2
  from transformers import pipeline
3
  import streamlit as st
4
  import matplotlib.pyplot as plt
 
5
 
6
 
7
  HebEMO_model = HebEMO()
@@ -16,9 +17,19 @@ st.title("Find sentiment")
16
  st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
17
  sent = st.text_area("Text", "write here", height = 20)
18
  # interact(HebEMO_model.hebemo, text='讛讞讬讬诐 讬驻讬诐 讜诪讗讜砖专讬', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
19
- res, fig = HebEMO_model.hebemo(sent, plot=True)
20
- st.write (res)
21
- st.pyplot(fig=fig)
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
 
 
2
  from transformers import pipeline
3
  import streamlit as st
4
  import matplotlib.pyplot as plt
5
+ import plotly.express as px
6
 
7
 
8
  HebEMO_model = HebEMO()
 
17
  st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
18
  sent = st.text_area("Text", "write here", height = 20)
19
  # interact(HebEMO_model.hebemo, text='讛讞讬讬诐 讬驻讬诐 讜诪讗讜砖专讬', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
20
+ hebEMO_df = HebEMO_model.hebemo(sent, plot=False)
21
+ hebEMO = pd.DataFrame()
22
+ for emo in hebEMO_df.columns[1::2]:
23
+ hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
24
+
25
+
26
+ fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
27
+ color="variable",
28
+ template="ggplot2",
29
+ )
30
+
31
+ st.plotly_chart(fig, use_container_width=True)
32
+ st.write (hebEMO)
33
 
34
 
35