avichr commited on
Commit
4429686
·
1 Parent(s): 2b8e801

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -2,16 +2,17 @@ from HebEMO import HebEMO
2
  from transformers import pipeline
3
  import streamlit as st
4
  import matplotlib.pyplot as plt
5
- import plotly.express as px
6
 
7
 
 
8
  HebEMO_model = HebEMO()
9
 
10
 
11
  x = st.slider("Select a value")
12
  st.write(x, "squared is", x * x)
13
 
14
- #@st.cache
15
 
16
  st.title("Find sentiment")
17
  st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
@@ -23,12 +24,12 @@ for emo in hebEMO_df.columns[1::2]:
23
  hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
24
 
25
 
26
- fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
27
- color="variable",
28
- template="ggplot2",
29
- )
30
 
31
- st.plotly_chart(fig, use_container_width=True)
32
  st.write (hebEMO)
33
 
34
 
 
2
  from transformers import pipeline
3
  import streamlit as st
4
  import matplotlib.pyplot as plt
5
+ # import plotly.express as px
6
 
7
 
8
+ @st.cache
9
  HebEMO_model = HebEMO()
10
 
11
 
12
  x = st.slider("Select a value")
13
  st.write(x, "squared is", x * x)
14
 
15
+
16
 
17
  st.title("Find sentiment")
18
  st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
 
24
  hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
25
 
26
 
27
+ # fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
28
+ # color="variable",
29
+ # template="ggplot2",
30
+ # )
31
 
32
+ # st.plotly_chart(fig, use_container_width=True)
33
  st.write (hebEMO)
34
 
35