Update app.py

#1
by hysts HF staff - opened
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -12,8 +12,11 @@ import os
12
  # Run the script to get pretrained models
13
  subprocess.run(["bash", "get_pretrained_models.sh"])
14
 
 
 
15
  # Load model and preprocessing transform
16
  model, transform = depth_pro.create_model_and_transforms()
 
17
  model.eval()
18
 
19
  def resize_image(image_path, max_size=1024):
@@ -30,7 +33,7 @@ def resize_image(image_path, max_size=1024):
30
  img.save(temp_file, format="PNG")
31
  return temp_file.name
32
 
33
- @spaces.GPU(duration=120)
34
  def predict_depth(input_image):
35
  temp_file = None
36
  try:
@@ -42,6 +45,7 @@ def predict_depth(input_image):
42
  image = result[0]
43
  f_px = result[-1] # Assuming f_px is the last item in the returned tuple
44
  image = transform(image)
 
45
 
46
  # Run inference
47
  prediction = model.infer(image, f_px=f_px)
 
12
  # Run the script to get pretrained models
13
  subprocess.run(["bash", "get_pretrained_models.sh"])
14
 
15
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
16
+
17
  # Load model and preprocessing transform
18
  model, transform = depth_pro.create_model_and_transforms()
19
+ model = model.to(device)
20
  model.eval()
21
 
22
  def resize_image(image_path, max_size=1024):
 
33
  img.save(temp_file, format="PNG")
34
  return temp_file.name
35
 
36
+ @spaces.GPU(duration=20)
37
  def predict_depth(input_image):
38
  temp_file = None
39
  try:
 
45
  image = result[0]
46
  f_px = result[-1] # Assuming f_px is the last item in the returned tuple
47
  image = transform(image)
48
+ image = image.to(device)
49
 
50
  # Run inference
51
  prediction = model.infer(image, f_px=f_px)