Files changed (1) hide show
  1. app.py +65 -105
app.py CHANGED
@@ -4,31 +4,58 @@ import requests
4
  import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,66 +65,52 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
  # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
@@ -109,61 +122,28 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
  f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
  results_df = pd.DataFrame(results_log)
114
  return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
  results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
  gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -172,25 +152,5 @@ with gr.Blocks() as demo:
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
4
  import inspect
5
  import pandas as pd
6
 
7
+ # --- Hugging Face Agents & Tools imports ---
8
+ from transformers import load_tool, ReactAgent
9
+
10
  # --- Constants ---
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
+ # --- Load Tools ---
14
+ # Document QA tool
15
+ qa_tool = load_tool(
16
+ task_or_repo_id="document_question_answering",
17
+ model_repo_id="deepset/roberta-base-squad2"
18
+ )
19
+ # Web search tool
20
+ web_tool = load_tool(
21
+ task_or_repo_id="search"
22
+ )
23
+ # Python REPL tool
24
+ python_tool = load_tool(
25
+ task_or_repo_id="python_repl"
26
+ )
27
+
28
+ # --- Agent Definition ---
29
  class BasicAgent:
30
  def __init__(self):
31
+ print("BasicAgent initialized with real tools.")
32
+ # Initialize a ReAct agent with the loaded tools
33
+ self.agent = ReactAgent(
34
+ tools=[qa_tool, web_tool, python_tool],
35
+ llm_engine="openai/chat:gpt-3.5-turbo",
36
+ verbose=True
37
+ )
38
+
39
  def __call__(self, question: str) -> str:
40
  print(f"Agent received question (first 50 chars): {question[:50]}...")
41
+ try:
42
+ answer = self.agent.run(question)
43
+ print(f"Agent returning answer: {answer}")
44
+ return answer
45
+ except Exception as e:
46
+ print(f"Error in agent execution: {e}")
47
+ return f"AGENT ERROR: {e}"
48
 
49
+ # --- Evaluation & Submission Logic ---
50
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
51
  """
52
  Fetches all questions, runs the BasicAgent on them, submits all answers,
53
  and displays the results.
54
  """
55
+ space_id = os.getenv("SPACE_ID")
 
56
 
57
  if profile:
58
+ username = profile.username
59
  print(f"User logged in: {username}")
60
  else:
61
  print("User not logged in.")
 
65
  questions_url = f"{api_url}/questions"
66
  submit_url = f"{api_url}/submit"
67
 
68
+ # 1. Instantiate Agent
69
  try:
70
  agent = BasicAgent()
71
  except Exception as e:
72
  print(f"Error instantiating agent: {e}")
73
  return f"Error initializing agent: {e}", None
74
+
75
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
76
+ print(f"Agent code at: {agent_code}")
77
 
78
  # 2. Fetch Questions
 
79
  try:
80
  response = requests.get(questions_url, timeout=15)
81
  response.raise_for_status()
82
  questions_data = response.json()
83
  if not questions_data:
84
+ return "Fetched questions list is empty or invalid format.", None
85
+ except Exception as e:
 
 
86
  print(f"Error fetching questions: {e}")
87
  return f"Error fetching questions: {e}", None
 
 
 
 
 
 
 
88
 
89
+ # 3. Run Agent on each question
90
  results_log = []
91
  answers_payload = []
 
92
  for item in questions_data:
93
  task_id = item.get("task_id")
94
  question_text = item.get("question")
95
  if not task_id or question_text is None:
 
96
  continue
97
+ submitted_answer = agent(question_text)
98
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
99
+ results_log.append({
100
+ "Task ID": task_id,
101
+ "Question": question_text,
102
+ "Submitted Answer": submitted_answer
103
+ })
104
 
105
  if not answers_payload:
 
106
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
107
 
108
+ # 4. Submit Answers
109
+ submission_data = {
110
+ "username": username.strip(),
111
+ "agent_code": agent_code,
112
+ "answers": answers_payload
113
+ }
 
114
  try:
115
  response = requests.post(submit_url, json=submission_data, timeout=60)
116
  response.raise_for_status()
 
122
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
  f"Message: {result_data.get('message', 'No message received.')}"
124
  )
 
125
  results_df = pd.DataFrame(results_log)
126
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  except Exception as e:
128
+ print(f"Submission error: {e}")
 
129
  results_df = pd.DataFrame(results_log)
130
+ return f"Submission Failed: {e}", results_df
 
131
 
132
+ # --- Gradio Interface ---
133
  with gr.Blocks() as demo:
134
  gr.Markdown("# Basic Agent Evaluation Runner")
135
  gr.Markdown(
136
  """
137
  **Instructions:**
138
+ 1. Clone this space and modify the code to define your agent's logic and tools.
139
+ 2. Log in with Hugging Face to submit under your username.
140
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit.
 
 
 
 
 
 
141
  """
142
  )
143
 
144
  gr.LoginButton()
 
145
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
146
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
147
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
148
 
149
  run_button.click(
 
152
  )
153
 
154
  if __name__ == "__main__":
155
+ print("Launching Gradio App...")
156
+ demo.launch(debug=True, share=False)