Files changed (1) hide show
  1. app.py +64 -121
app.py CHANGED
@@ -1,179 +1,122 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
 
 
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
 
 
 
 
 
 
 
 
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
  else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
 
 
37
  api_url = DEFAULT_API_URL
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
 
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
104
  result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
  f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
-
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
  space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ import openai
6
 
 
7
  # --- Constants ---
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
9
 
10
+ # --- Secure API Key ---
11
+ openai.api_key = os.getenv("OPENAI_API_KEY")
12
+
13
+ # --- Smart Agent Logic ---
14
+ class SmartAgent:
15
  def __init__(self):
16
+ print("SmartAgent initialized using OpenAI.")
17
+
18
  def __call__(self, question: str) -> str:
19
+ print(f"Question received: {question[:100]}")
20
+ try:
21
+ response = openai.ChatCompletion.create(
22
+ model="gpt-3.5-turbo",
23
+ messages=[{"role": "user", "content": question}],
24
+ temperature=0.2,
25
+ max_tokens=100
26
+ )
27
+ answer = response["choices"][0]["message"]["content"].strip()
28
+ print(f"Answer: {answer}")
29
+ return self.clean_answer(answer)
30
+ except Exception as e:
31
+ print(f"Error: {e}")
32
+ return "ERROR"
33
+
34
+ def clean_answer(self, answer: str) -> str:
35
+ return answer.strip().replace("FINAL ANSWER:", "").replace("Answer:", "").strip()
36
+
37
+ # --- Evaluation and Submission Logic ---
38
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
39
+ space_id = os.getenv("SPACE_ID")
40
 
41
  if profile:
42
+ username = profile.username
43
+ print(f"Logged in as: {username}")
44
  else:
45
+ return "Please log in to Hugging Face using the button above.", None
 
46
 
47
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
48
  api_url = DEFAULT_API_URL
49
  questions_url = f"{api_url}/questions"
50
  submit_url = f"{api_url}/submit"
51
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  try:
53
  response = requests.get(questions_url, timeout=15)
54
  response.raise_for_status()
55
  questions_data = response.json()
 
 
 
56
  print(f"Fetched {len(questions_data)} questions.")
 
 
 
 
 
 
 
57
  except Exception as e:
58
+ return f"Failed to fetch questions: {e}", None
 
59
 
60
+ agent = SmartAgent()
61
  results_log = []
62
  answers_payload = []
63
+
64
  for item in questions_data:
65
  task_id = item.get("task_id")
66
+ question = item.get("question")
67
+ if not task_id or not question:
 
68
  continue
69
  try:
70
+ answer = agent(question)
71
+ answers_payload.append({"task_id": task_id, "submitted_answer": answer})
72
+ results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer})
73
  except Exception as e:
74
+ results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"ERROR: {e}"})
 
75
 
76
  if not answers_payload:
 
77
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
78
 
79
+ submission_data = {
80
+ "username": username,
81
+ "agent_code": agent_code,
82
+ "answers": answers_payload
83
+ }
84
 
 
 
85
  try:
86
  response = requests.post(submit_url, json=submission_data, timeout=60)
87
  response.raise_for_status()
88
  result_data = response.json()
89
+ summary = (
90
+ f"βœ… Submission Successful!\n"
91
  f"User: {result_data.get('username')}\n"
92
+ f"Score: {result_data.get('score')}%\n"
93
+ f"Correct: {result_data.get('correct_count')} / {result_data.get('total_attempted')}\n"
94
+ f"Message: {result_data.get('message', '')}"
95
  )
96
+ return summary, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  except Exception as e:
98
+ return f"❌ Submission failed: {e}", pd.DataFrame(results_log)
 
 
 
 
99
 
100
+ # --- UI ---
101
  with gr.Blocks() as demo:
102
+ gr.Markdown("# πŸ€– GAIA Smart Agent Evaluation")
103
  gr.Markdown(
104
  """
105
+ 1. Login to Hugging Face.
106
+ 2. Click "Run Evaluation" to evaluate your OpenAI-powered agent.
107
+ 3. View your score on the leaderboard (requires public repo).
 
 
 
 
 
 
 
108
  """
109
  )
 
110
  gr.LoginButton()
 
111
  run_button = gr.Button("Run Evaluation & Submit All Answers")
112
+ status_output = gr.Textbox(label="Status", lines=5, interactive=False)
113
+ results_table = gr.DataFrame(label="Agent Answers")
114
 
115
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
 
 
 
 
116
 
117
  if __name__ == "__main__":
118
+
119
+
120
  space_host_startup = os.getenv("SPACE_HOST")
121
  space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
122