Files changed (5) hide show
  1. agent.py +156 -0
  2. app.py +76 -131
  3. gitattributes +35 -0
  4. logic.py +108 -0
  5. requirements.txt +9 -2
agent.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Optional
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+ from duckduckgo_search import DDGS
5
+ import re
6
+ import math
7
+
8
+ class WebSearchTool:
9
+ def __init__(self):
10
+ self.search = DDGS()
11
+
12
+ def run(self, query: str, max_results: int = 3) -> str:
13
+ """Perform a web search and return formatted results."""
14
+ try:
15
+ results = list(self.search.text(query, max_results=max_results))
16
+ formatted_results = []
17
+ for r in results:
18
+ formatted_results.append(f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['link']}\n")
19
+ return "\n".join(formatted_results)
20
+ except Exception as e:
21
+ return f"Error performing web search: {str(e)}"
22
+
23
+ class Calculator:
24
+ def run(self, expression: str) -> str:
25
+ """Evaluate mathematical expressions safely."""
26
+ try:
27
+ # Remove any characters that aren't numbers, operators, or parentheses
28
+ cleaned = re.sub(r'[^0-9+\-*/().\ ]', '', expression)
29
+ # Evaluate the expression
30
+ result = eval(cleaned, {"__builtins__": {}}, {"math": math})
31
+ return str(result)
32
+ except Exception as e:
33
+ return f"Error in calculation: {str(e)}"
34
+
35
+ class GaiaAgent:
36
+ def __init__(self):
37
+ # Initialize Qwen-7B model
38
+ self.model_name = "Qwen/Qwen-7B"
39
+ self.tokenizer = AutoTokenizer.from_pretrained(
40
+ self.model_name,
41
+ trust_remote_code=True
42
+ )
43
+ self.model = AutoModelForCausalLM.from_pretrained(
44
+ self.model_name,
45
+ device_map="auto",
46
+ trust_remote_code=True
47
+ ).eval()
48
+
49
+ # Initialize tools
50
+ self.tools = {
51
+ "web_search": WebSearchTool(),
52
+ "calculator": Calculator()
53
+ }
54
+
55
+ # System prompt template
56
+ self.system_prompt = """You are a helpful AI assistant with access to the following tools:
57
+ 1. web_search: Search the internet for current information
58
+ 2. calculator: Perform mathematical calculations
59
+
60
+ To use a tool, respond with: <tool>tool_name|input</tool>
61
+ For example: <tool>calculator|2 + 2</tool> or <tool>web_search|latest news about AI</tool>
62
+
63
+ If you don't need any tools to answer, just provide your response directly.
64
+ Always explain your reasoning before using tools or providing final answers."""
65
+
66
+ def _generate_response(self, prompt: str, max_length: int = 2048) -> str:
67
+ """Generate a response using the Qwen model."""
68
+ try:
69
+ input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.model.device)
70
+
71
+ with torch.no_grad():
72
+ outputs = self.model.generate(
73
+ input_ids,
74
+ max_length=max_length,
75
+ num_return_sequences=1,
76
+ temperature=0.7,
77
+ do_sample=True,
78
+ pad_token_id=self.tokenizer.pad_token_id
79
+ )
80
+
81
+ response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
82
+ # Extract only the assistant's response
83
+ response = response.split(prompt)[-1].strip()
84
+ return response
85
+ except Exception as e:
86
+ return f"Error generating response: {str(e)}"
87
+
88
+ def _extract_tool_calls(self, response: str) -> List[Dict[str, str]]:
89
+ """Extract tool calls from the response."""
90
+ tool_pattern = r'<tool>(.*?)\|(.*?)</tool>'
91
+ matches = re.finditer(tool_pattern, response)
92
+ tool_calls = []
93
+
94
+ for match in matches:
95
+ tool_name = match.group(1).strip()
96
+ tool_input = match.group(2).strip()
97
+ tool_calls.append({"name": tool_name, "input": tool_input})
98
+
99
+ return tool_calls
100
+
101
+ def _execute_tool_call(self, tool_call: Dict[str, str]) -> str:
102
+ """Execute a single tool call and return the result."""
103
+ tool_name = tool_call["name"]
104
+ tool_input = tool_call["input"]
105
+
106
+ if tool_name not in self.tools:
107
+ return f"Error: Tool '{tool_name}' not found"
108
+
109
+ try:
110
+ result = self.tools[tool_name].run(tool_input)
111
+ return result
112
+ except Exception as e:
113
+ return f"Error executing {tool_name}: {str(e)}"
114
+
115
+ def process_question(self, question: str) -> str:
116
+ """Process a single question and return the answer."""
117
+ # Construct the full prompt
118
+ full_prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nAnswer:"
119
+
120
+ # Get initial response
121
+ response = self._generate_response(full_prompt)
122
+
123
+ # Extract and execute any tool calls
124
+ tool_calls = self._extract_tool_calls(response)
125
+
126
+ if tool_calls:
127
+ # Execute each tool call and collect results
128
+ tool_results = []
129
+ for tool_call in tool_calls:
130
+ result = self._execute_tool_call(tool_call)
131
+ tool_results.append(f"Tool {tool_call['name']} result: {result}")
132
+
133
+ # Generate final response with tool results
134
+ tool_results_str = "\n".join(tool_results)
135
+ final_prompt = f"{full_prompt}\n{response}\n\nTool Results:\n{tool_results_str}\n\nFinal Answer:"
136
+ final_response = self._generate_response(final_prompt)
137
+
138
+ return final_response
139
+
140
+ return response
141
+
142
+ def get_answer(self, question_data: Dict[str, Any]) -> Optional[str]:
143
+ """Process a question from the GAIA benchmark and return an answer."""
144
+ try:
145
+ # Extract the actual question from the question data
146
+ question = question_data.get("question", "")
147
+ if not question:
148
+ return None
149
+
150
+ # Process the question and get the answer
151
+ answer = self.process_question(question)
152
+
153
+ return answer
154
+ except Exception as e:
155
+ print(f"Error processing question: {str(e)}")
156
+ return None
app.py CHANGED
@@ -1,160 +1,98 @@
1
  import os
 
 
2
  import gradio as gr
3
- import requests
4
- import inspect
5
  import pandas as pd
 
6
 
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
35
  return "Please Login to Hugging Face with the button.", None
36
 
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
  # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
 
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
  # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
  gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
 
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
153
 
154
  ---
155
  **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
 
 
 
 
158
  """
159
  )
160
 
@@ -162,20 +100,21 @@ with gr.Blocks() as demo:
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
 
166
  # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
@@ -183,14 +122,20 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"βœ… SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
+
3
+ import agent
4
  import gradio as gr
5
+ import logic
 
6
  import pandas as pd
7
+ from dotenv import load_dotenv
8
 
9
+ load_dotenv()
10
+
11
+
12
+ def run_and_submit_all(
13
+ profile: gr.OAuthProfile | None,
14
+ ) -> tuple[str, pd.DataFrame | None]:
15
+ """Fetches all questions, runs the BasicAgent on them, submits all answers,
 
 
 
 
 
 
 
 
 
 
 
16
  and displays the results.
 
 
 
17
 
18
+ Args:
19
+ profile: An optional gr.OAuthProfile object containing user information
20
+ if the user is logged in. If None, the user is not logged in.
21
+
22
+ Returns:
23
+ tuple[str, pd.DataFrame | None]: A tuple containing:
24
+ - A string representing the status of the run and submission process.
25
+ This could be a success message, an error message, or a message
26
+ indicating that no answers were produced.
27
+ - A pandas DataFrame containing the results log. This DataFrame will
28
+ be displayed in the Gradio interface. It can be None if an error
29
+ occurred before the agent was run.
30
+ """
31
+ # 0. Get user details
32
+ space_id = os.getenv("SPACE_ID")
33
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
34
+ print(agent_code)
35
  if profile:
36
+ username = f"{profile.username}"
37
  print(f"User logged in: {username}")
38
  else:
39
  print("User not logged in.")
40
  return "Please Login to Hugging Face with the button.", None
41
 
42
+ # 1. Instantiate Agent
 
 
 
 
43
  try:
44
+ gaia_agent = agent.GaiaAgent()
45
  except Exception as e:
46
  print(f"Error instantiating agent: {e}")
47
  return f"Error initializing agent: {e}", None
 
 
 
48
 
49
  # 2. Fetch Questions
 
50
  try:
51
+ questions_data = logic.fetch_all_questions()
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  except Exception as e:
53
+ return str(e), None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ # 3. Run the Agent
56
+ results_log, answers_payload = logic.run_agent(gaia_agent, questions_data)
57
  if not answers_payload:
58
  print("Agent did not produce any answers to submit.")
59
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
60
 
61
+ # 4. Prepare & Submit Answers
62
+ submission_data = {
63
+ "username": username.strip(),
64
+ "agent_code": agent_code,
65
+ "answers": answers_payload,
66
+ }
67
+ print(
68
+ f"Agent finished. Submitting {len(answers_payload)} answers for user '"
69
+ f"{username}'..."
70
+ )
71
+ return logic.submit_answers(submission_data, results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  # --- Build Gradio Interface using Blocks ---
75
+ with gr.Blocks() as gaia_ui:
76
  gr.Markdown("# Basic Agent Evaluation Runner")
77
  gr.Markdown(
78
  """
79
  **Instructions:**
80
 
81
+ 1. Please clone this space, then modify the code to define your agent's
82
+ logic, the tools, the necessary packages, etc ...
83
+ 2. Log in to your Hugging Face account using the button below. This uses
84
+ your HF username for submission.
85
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your
86
+ agent, submit answers, and see the score.
87
 
88
  ---
89
  **Disclaimers:**
90
+ Once clicking on the "submit button, it can take quite some time ( this is
91
+ the time for the agent to go through all the questions).
92
+ This space provides a basic setup and is intentionally sub-optimal to
93
+ encourage you to develop your own, more robust solution. For instance for the
94
+ delay process of the submit button, a solution could be to cache the answers
95
+ and submit in a separate action or even to answer the questions in async.
96
  """
97
  )
98
 
 
100
 
101
  run_button = gr.Button("Run Evaluation & Submit All Answers")
102
 
103
+ status_output = gr.Textbox(
104
+ label="Run Status / Submission Result", lines=5, interactive=False
105
+ )
106
  # Removed max_rows=10 from DataFrame constructor
107
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
108
 
109
  run_button.click(
110
+ fn=run_and_submit_all, inputs=None, outputs=[status_output, results_table]
 
111
  )
112
 
113
  if __name__ == "__main__":
114
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
115
  # Check for SPACE_HOST and SPACE_ID at startup for information
116
  space_host_startup = os.getenv("SPACE_HOST")
117
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
118
 
119
  if space_host_startup:
120
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
 
122
  else:
123
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
124
 
125
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
126
  print(f"βœ… SPACE_ID found: {space_id_startup}")
127
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
128
+ print(
129
+ f" Repo Tree URL: https://huggingface.co/spaces/"
130
+ f"{space_id_startup}/tree/main"
131
+ )
132
  else:
133
+ print(
134
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL "
135
+ "cannot be determined."
136
+ )
137
 
138
+ print("-" * (60 + len(" App Starting ")) + "\n")
139
 
140
  print("Launching Gradio Interface for Basic Agent Evaluation...")
141
+ gaia_ui.launch(debug=True, share=True)
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
logic.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Any, Dict, List, Tuple
3
+ import pandas as pd
4
+ import requests
5
+
6
+ def fetch_all_questions() -> List[Dict[str, Any]]:
7
+ """Fetch all questions from the GAIA benchmark API."""
8
+ try:
9
+ # The actual endpoint will be provided by the GAIA benchmark
10
+ api_url = os.getenv("GAIA_API_URL", "")
11
+ if not api_url:
12
+ raise ValueError("GAIA_API_URL environment variable not set")
13
+
14
+ response = requests.get(f"{api_url}/questions")
15
+ response.raise_for_status()
16
+
17
+ questions = response.json()
18
+ return questions
19
+ except Exception as e:
20
+ raise Exception(f"Failed to fetch questions: {str(e)}")
21
+
22
+ def run_agent(agent: Any, questions: List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
23
+ """Run the agent on all questions and collect results.
24
+
25
+ Args:
26
+ agent: The GaiaAgent instance
27
+ questions: List of question data from the API
28
+
29
+ Returns:
30
+ Tuple containing:
31
+ - List of result logs for display
32
+ - List of answer payloads for submission
33
+ """
34
+ results_log = []
35
+ answers_payload = []
36
+
37
+ for question in questions:
38
+ question_id = question.get("id", "unknown")
39
+ question_text = question.get("question", "")
40
+
41
+ try:
42
+ # Get answer from agent
43
+ answer = agent.get_answer(question)
44
+
45
+ # Log result
46
+ result_entry = {
47
+ "Question ID": question_id,
48
+ "Question": question_text,
49
+ "Answer": answer if answer else "No answer provided",
50
+ "Status": "Success" if answer else "Failed"
51
+ }
52
+ results_log.append(result_entry)
53
+
54
+ # Prepare submission payload if answer was generated
55
+ if answer:
56
+ answer_entry = {
57
+ "question_id": question_id,
58
+ "answer": answer
59
+ }
60
+ answers_payload.append(answer_entry)
61
+
62
+ except Exception as e:
63
+ # Log error
64
+ result_entry = {
65
+ "Question ID": question_id,
66
+ "Question": question_text,
67
+ "Answer": f"Error: {str(e)}",
68
+ "Status": "Failed"
69
+ }
70
+ results_log.append(result_entry)
71
+
72
+ return results_log, answers_payload
73
+
74
+ def submit_answers(submission_data: Dict[str, Any], results_log: List[Dict[str, Any]]) -> Tuple[str, pd.DataFrame]:
75
+ """Submit answers to the GAIA benchmark API.
76
+
77
+ Args:
78
+ submission_data: Dictionary containing submission details
79
+ results_log: List of result logs for display
80
+
81
+ Returns:
82
+ Tuple containing:
83
+ - Status message string
84
+ - DataFrame of results for display
85
+ """
86
+ try:
87
+ # The actual endpoint will be provided by the GAIA benchmark
88
+ api_url = os.getenv("GAIA_API_URL", "")
89
+ if not api_url:
90
+ raise ValueError("GAIA_API_URL environment variable not set")
91
+
92
+ # Submit answers
93
+ response = requests.post(
94
+ f"{api_url}/submit",
95
+ json=submission_data
96
+ )
97
+ response.raise_for_status()
98
+
99
+ # Create DataFrame for display
100
+ results_df = pd.DataFrame(results_log)
101
+
102
+ # Return success message and results
103
+ return "Answers submitted successfully!", results_df
104
+
105
+ except Exception as e:
106
+ # If submission fails, still show results but with error message
107
+ results_df = pd.DataFrame(results_log)
108
+ return f"Error submitting answers: {str(e)}", results_df
requirements.txt CHANGED
@@ -1,2 +1,9 @@
1
- gradio
2
- requests
 
 
 
 
 
 
 
 
1
+ gradio==5.25.2
2
+ transformers
3
+ torch
4
+ accelerate
5
+ duckduckgo-search
6
+ python-dotenv
7
+ pandas
8
+ requests
9
+ numpy