File size: 6,797 Bytes
ff0340e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e5fa8
ff0340e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import json
import tqdm
import cv2
import numpy as np
import torch, lrm
import torch.nn.functional as F
from lrm.utils.config import load_config
from datetime import datetime
import gradio as gr
from pygltflib import GLTF2
from PIL import Image
from huggingface_hub import hf_hub_download

from refine import refine

device = "cuda"

import trimesh
import pymeshlab
import numpy as np

from huggingface_hub import hf_hub_download, list_repo_files

repo_id = "zjpshadow/CharacterGen"
all_files = list_repo_files(repo_id, revision="main")

for file in all_files:
    if os.path.exists("../" + file):
        continue
    if file.startswith("3D_Stage"):
        hf_hub_download(repo_id, file, local_dir="../")

def traverse(path, back_proj):
    mesh = trimesh.load(f"{path}/model-00.obj")
    mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(90.0), [-1, 0, 0]))
    mesh.apply_transform(trimesh.transformations.rotation_matrix(np.radians(180.0), [0, 1, 0]))

    cmesh = pymeshlab.Mesh(mesh.vertices, mesh.faces)
    ms = pymeshlab.MeshSet()
    ms.add_mesh(cmesh)
    ms.apply_coord_laplacian_smoothing(stepsmoothnum=4)
    mesh.vertices = ms.current_mesh().vertex_matrix()

    mesh.export(f'{path}/output.glb', file_type='glb')

    image = Image.open(f"{path}/{'refined_texture_kd.jpg' if back_proj else 'texture_kd.jpg'}")
    texture = np.array(image)
    vertex_colors = np.zeros((mesh.vertices.shape[0], 4), dtype=np.uint8)

    for vertex_index in range(len(mesh.visual.uv)):
        uv = mesh.visual.uv[vertex_index]
        x = int(uv[0] * (texture.shape[1] - 1))
        y = int((1 - uv[1]) * (texture.shape[0] - 1))

        color = texture[y, x, :3]
        vertex_colors[vertex_index] = [color[0], color[1], color[2], 255]
    return trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, vertex_colors=vertex_colors)

class Inference_API:

    def __init__(self):
        # Load config
        self.cfg = load_config("configs/infer.yaml", makedirs=False)
        # Load system
        print("Loading system")
        self.system = lrm.find(self.cfg.system_cls)(self.cfg.system).to(device)
        self.system.eval()

    def process_images(self, img_input0, img_input1, img_input2, img_input3, back_proj):
        meta = json.load(open("material/meta.json"))
        c2w_cond = [np.array(loc["transform_matrix"]) for loc in meta["locations"]]
        c2w_cond = torch.from_numpy(np.stack(c2w_cond, axis=0)).float()[None].to(device)
        
        # Prepare input data
        rgb_cond = []
        files = [img_input0, img_input1, img_input2, img_input3]
        new_image = []
        for file in files:
            image = np.array(file)
            image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
            new_image.append(Image.fromarray(image.astype(np.uint8)).convert("RGB"))
            rgb = cv2.resize(image, (self.cfg.data.cond_width, 
                                     self.cfg.data.cond_height)).astype(np.float32) / 255.0
            rgb_cond.append(rgb)
        assert len(rgb_cond) == 4, "Please provide 4 images"

        rgb_cond = torch.from_numpy(np.stack(rgb_cond, axis=0)).float()[None].to(device)

        # Run inference
        with torch.no_grad():
            scene_codes = self.system({"rgb_cond": rgb_cond, "c2w_cond": c2w_cond})
            exporter_output = self.system.exporter([f"{i:02d}" for i in range(rgb_cond.shape[0])], scene_codes)

        # Save output
        save_dir = os.path.join("./outputs", datetime.now().strftime("@%Y%m%d-%H%M%S"))
        os.makedirs(save_dir, exist_ok=True)
        self.system.set_save_dir(save_dir)

        for out in exporter_output:
            save_func_name = f"save_{out.save_type}"
            save_func = getattr(self.system, save_func_name)
            save_func(f"{out.save_name}", **out.params)

        if back_proj:
            refine(save_dir, new_image[1], new_image[0], new_image[3], new_image[2])

        new_obj = traverse(save_dir, back_proj)
        new_obj.export(f'{save_dir}/output.obj', file_type='obj')

        gltf = GLTF2().load(f'{save_dir}/output.glb')
        for material in gltf.materials:
            if material.pbrMetallicRoughness:
                material.pbrMetallicRoughness.baseColorFactor = [1.0, 1.0, 1.0, 100.0]
                material.pbrMetallicRoughness.metallicFactor = 0.0
                material.pbrMetallicRoughness.roughnessFactor = 1.0
        gltf.save(f'{save_dir}/output.glb')

        return save_dir, f"{save_dir}/output.obj", f"{save_dir}/output.glb"

inferapi = Inference_API()

# Define the interface
with gr.Blocks() as demo:
    gr.Markdown("# [SIGGRAPH'24] CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Calibration")
    gr.Markdown("# 3D Stage: Four View Images to 3D Mesh")
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                img_input0 = gr.Image(type="pil", label="Back Image", image_mode="RGBA", width=256, height=384)
                img_input1 = gr.Image(type="pil", label="Front Image", image_mode="RGBA", width=256, height=384)
            with gr.Row():
                img_input2 = gr.Image(type="pil", label="Right Image", image_mode="RGBA", width=256, height=384)
                img_input3 = gr.Image(type="pil", label="Left Image", image_mode="RGBA", width=256, height=384)
            with gr.Row():
                gr.Examples(
                    examples=
                    [["material/examples/1/1.png",
                    "material/examples/1/2.png",
                    "material/examples/1/3.png",
                    "material/examples/1/4.png"]],
                    label="Example Images",
                    inputs=[img_input0, img_input1, img_input2, img_input3]
                )
        with gr.Column():
            with gr.Row():
                back_proj = gr.Checkbox(label="Back Projection")
                submit_button = gr.Button("Process")
            output_dir = gr.Textbox(label="Output Directory")
            with gr.Column():
                with gr.Tab("GLB"):
                    output_model_glb = gr.Model3D( label="Output Model (GLB Format)", height = 768)
                    gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
                with gr.Tab("OBJ"):
                    output_model_obj = gr.Model3D( label="Output Model (OBJ Format)", height = 768)
                    gr.Markdown("Note: The model shown here is flipped. Download to get correct results.")

    submit_button.click(inferapi.process_images, inputs=[img_input0, img_input1, img_input2, img_input3, back_proj],
                        outputs=[output_dir, output_model_obj, output_model_glb])

# Run the interface
demo.launch()