File size: 9,565 Bytes
5090140
28ed44f
177c5b5
28ed44f
10660a7
79f12fc
 
 
bb706d3
28ed44f
0ccfbeb
28ed44f
c8302a1
79f12fc
c8302a1
79f12fc
28ed44f
c8302a1
7f5b560
c8302a1
 
 
 
 
 
 
 
 
6bf3bf2
8da6a04
c8302a1
 
 
 
412b763
 
 
 
 
 
 
 
c8302a1
 
ddc0536
79f12fc
 
 
c8302a1
ddc0536
 
 
 
 
 
 
 
c8302a1
ddc0536
 
 
 
 
 
 
 
 
 
 
c8302a1
ddc0536
79f12fc
 
 
 
 
 
 
8da6a04
79f12fc
 
8da6a04
79f12fc
 
 
 
8da6a04
79f12fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32ce41
79f12fc
8da6a04
0ccfbeb
79f12fc
 
 
 
 
 
8b01918
79f12fc
 
 
 
10660a7
79f12fc
 
 
 
 
d23826b
79f12fc
8f325c3
4d152e0
 
 
79f12fc
b6683d4
79f12fc
 
 
8b05473
79f12fc
 
 
 
b6683d4
79f12fc
d8b3320
79f12fc
 
 
8da6a04
79f12fc
d32ce41
79f12fc
 
 
 
fe1ab08
79f12fc
 
 
 
 
 
fe1ab08
79f12fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47402cb
8b01918
28ed44f
79f12fc
8da6a04
0f075d7
8b01918
6bf3bf2
79f12fc
8b01918
 
c8302a1
8da6a04
79f12fc
 
 
c86dfe0
79f12fc
 
 
58569df
79f12fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da6a04
8b01918
79f12fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def update_vectors(files, parser):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file, parser)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."

def generate_chunked_response(prompt, max_tokens=1000, max_chunks=5, temperature=0.3, repetition_penalty=1.1):
    API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-8B-Instruct"
    headers = {"Authorization": f"Bearer {huggingface_token}"}
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": max_tokens,
            "temperature": temperature,
            "top_p": 0.4,
            "top_k": 40,
            "repetition_penalty": repetition_penalty,
            "stop": ["</s>", "[/INST]"]
        }
    }
    
    full_response = ""
    for _ in range(max_chunks):
        response = requests.post(API_URL, headers=headers, json=payload)
        if response.status_code == 200:
            result = response.json()
            if isinstance(result, list) and len(result) > 0:
                chunk = result[0].get('generated_text', '')
                
                # Remove any part of the chunk that's already in full_response
                new_content = chunk[len(full_response):].strip()
                
                if not new_content:
                    break  # No new content, so we're done
                
                full_response += new_content
                
                if chunk.endswith((".", "!", "?", "</s>", "[/INST]")):
                    break
                
                # Update the prompt for the next iteration
                payload["inputs"] = full_response
            else:
                break
        else:
            break
    
    # Clean up the response
    clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
    clean_response = clean_response.replace("Using the following context:", "").strip()
    clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
    
    return clean_response

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )

def get_response_from_pdf(query, temperature=0.7, repetition_penalty=1.1):
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        return "No documents available. Please upload PDF documents to answer questions."

    retriever = database.as_retriever()
    relevant_docs = retriever.get_relevant_documents(query)
    context_str = "\n".join([doc.page_content for doc in relevant_docs])

    prompt = f"""<s>[INST] Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'
Do not include a list of sources in your response. [/INST]"""

    generated_text = generate_chunked_response(prompt, temperature=temperature, repetition_penalty=repetition_penalty)

    # Clean the response
    clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
    clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()

    return clean_text

def get_response_with_search(query, temperature=0.7, repetition_penalty=1.1):
    search_results = duckduckgo_search(query)
    context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                        for result in search_results if 'body' in result)
    
    prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""
    
    generated_text = generate_chunked_response(prompt, temperature=temperature, repetition_penalty=repetition_penalty)
    
    # Clean the response
    clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
    clean_text = clean_text.replace("Using the following context:", "").strip()
    
    # Split the content and sources
    parts = clean_text.split("Sources:", 1)
    main_content = parts[0].strip()
    sources = parts[1].strip() if len(parts) > 1 else ""
    
    return main_content, sources

def chatbot_interface(message, history, use_web_search, temperature, repetition_penalty):
    if use_web_search:
        main_content, sources = get_response_with_search(message, temperature, repetition_penalty)
        formatted_response = f"{main_content}\n\nSources:\n{sources}"
    else:
        response = get_response_from_pdf(message, temperature, repetition_penalty)
        formatted_response = response

    history.append((message, formatted_response))
    return history

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
    
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
        update_button = gr.Button("Upload Document")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
    
    chatbot = gr.Chatbot(label="Conversation")
    msg = gr.Textbox(label="Ask a question")
    use_web_search = gr.Checkbox(label="Use Web Search", value=False)
    
    with gr.Row():
        temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
        repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty")
    
    submit = gr.Button("Submit")

    gr.Examples(
        examples=[
            ["What are the latest developments in AI?"],
            ["Tell me about recent updates on GitHub"],
            ["What are the best hotels in Galapagos, Ecuador?"],
            ["Summarize recent advancements in Python programming"],
        ],
        inputs=msg,
    )

    submit.click(chatbot_interface, 
                 inputs=[msg, chatbot, use_web_search, temperature_slider, repetition_penalty_slider], 
                 outputs=[chatbot])
    msg.submit(chatbot_interface, 
               inputs=[msg, chatbot, use_web_search, temperature_slider, repetition_penalty_slider], 
               outputs=[chatbot])

    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Ask questions in the textbox. 
    4. Toggle "Use Web Search" to switch between PDF chat and web search.
    5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
    6. Click "Submit" or press Enter to get a response.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)