Spaces:
Paused
Paused
File size: 9,565 Bytes
5090140 28ed44f 177c5b5 28ed44f 10660a7 79f12fc bb706d3 28ed44f 0ccfbeb 28ed44f c8302a1 79f12fc c8302a1 79f12fc 28ed44f c8302a1 7f5b560 c8302a1 6bf3bf2 8da6a04 c8302a1 412b763 c8302a1 ddc0536 79f12fc c8302a1 ddc0536 c8302a1 ddc0536 c8302a1 ddc0536 79f12fc 8da6a04 79f12fc 8da6a04 79f12fc 8da6a04 79f12fc d32ce41 79f12fc 8da6a04 0ccfbeb 79f12fc 8b01918 79f12fc 10660a7 79f12fc d23826b 79f12fc 8f325c3 4d152e0 79f12fc b6683d4 79f12fc 8b05473 79f12fc b6683d4 79f12fc d8b3320 79f12fc 8da6a04 79f12fc d32ce41 79f12fc fe1ab08 79f12fc fe1ab08 79f12fc 47402cb 8b01918 28ed44f 79f12fc 8da6a04 0f075d7 8b01918 6bf3bf2 79f12fc 8b01918 c8302a1 8da6a04 79f12fc c86dfe0 79f12fc 58569df 79f12fc 8da6a04 8b01918 79f12fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def update_vectors(files, parser):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
data = load_document(file, parser)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
def generate_chunked_response(prompt, max_tokens=1000, max_chunks=5, temperature=0.3, repetition_penalty=1.1):
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-8B-Instruct"
headers = {"Authorization": f"Bearer {huggingface_token}"}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": 0.4,
"top_k": 40,
"repetition_penalty": repetition_penalty,
"stop": ["</s>", "[/INST]"]
}
}
full_response = ""
for _ in range(max_chunks):
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
chunk = result[0].get('generated_text', '')
# Remove any part of the chunk that's already in full_response
new_content = chunk[len(full_response):].strip()
if not new_content:
break # No new content, so we're done
full_response += new_content
if chunk.endswith((".", "!", "?", "</s>", "[/INST]")):
break
# Update the prompt for the next iteration
payload["inputs"] = full_response
else:
break
else:
break
# Clean up the response
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
clean_response = clean_response.replace("Using the following context:", "").strip()
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
return clean_response
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def get_response_from_pdf(query, temperature=0.7, repetition_penalty=1.1):
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
return "No documents available. Please upload PDF documents to answer questions."
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(query)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
prompt = f"""<s>[INST] Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'
Do not include a list of sources in your response. [/INST]"""
generated_text = generate_chunked_response(prompt, temperature=temperature, repetition_penalty=repetition_penalty)
# Clean the response
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()
return clean_text
def get_response_with_search(query, temperature=0.7, repetition_penalty=1.1):
search_results = duckduckgo_search(query)
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""
generated_text = generate_chunked_response(prompt, temperature=temperature, repetition_penalty=repetition_penalty)
# Clean the response
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
clean_text = clean_text.replace("Using the following context:", "").strip()
# Split the content and sources
parts = clean_text.split("Sources:", 1)
main_content = parts[0].strip()
sources = parts[1].strip() if len(parts) > 1 else ""
return main_content, sources
def chatbot_interface(message, history, use_web_search, temperature, repetition_penalty):
if use_web_search:
main_content, sources = get_response_with_search(message, temperature, repetition_penalty)
formatted_response = f"{main_content}\n\nSources:\n{sources}"
else:
response = get_response_from_pdf(message, temperature, repetition_penalty)
formatted_response = response
history.append((message, formatted_response))
return history
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
update_button = gr.Button("Upload Document")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
chatbot = gr.Chatbot(label="Conversation")
msg = gr.Textbox(label="Ask a question")
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
with gr.Row():
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty")
submit = gr.Button("Submit")
gr.Examples(
examples=[
["What are the latest developments in AI?"],
["Tell me about recent updates on GitHub"],
["What are the best hotels in Galapagos, Ecuador?"],
["Summarize recent advancements in Python programming"],
],
inputs=msg,
)
submit.click(chatbot_interface,
inputs=[msg, chatbot, use_web_search, temperature_slider, repetition_penalty_slider],
outputs=[chatbot])
msg.submit(chatbot_interface,
inputs=[msg, chatbot, use_web_search, temperature_slider, repetition_penalty_slider],
outputs=[chatbot])
gr.Markdown(
"""
## How to use
1. Upload PDF documents using the file input at the top.
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
3. Ask questions in the textbox.
4. Toggle "Use Web Search" to switch between PDF chat and web search.
5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
6. Click "Submit" or press Enter to get a response.
"""
)
if __name__ == "__main__":
demo.launch(share=True) |