Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -215,7 +215,7 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
215 |
print(" No text extracted")
|
216 |
return all_results
|
217 |
|
218 |
-
def process_question(question, documents, history, temperature, top_p, repetition_penalty):
|
219 |
global conversation_history
|
220 |
|
221 |
embeddings = get_embeddings()
|
@@ -223,26 +223,24 @@ def process_question(question, documents, history, temperature, top_p, repetitio
|
|
223 |
# Check the memory database for similar questions
|
224 |
for prev_question, prev_answer in memory_database.items():
|
225 |
similarity = get_similarity(question, prev_question)
|
226 |
-
if similarity > 0.
|
227 |
return prev_answer
|
228 |
|
229 |
-
#
|
230 |
if os.path.exists("faiss_database"):
|
231 |
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
232 |
relevant_docs = db.similarity_search(question, k=3)
|
233 |
else:
|
234 |
relevant_docs = []
|
235 |
|
236 |
-
if
|
237 |
-
|
238 |
web_search_results = google_search(question, num_results=5)
|
239 |
web_docs = [Document(page_content=res["text"] or "", metadata={"source": res["link"]}) for res in web_search_results if res["text"]]
|
240 |
|
241 |
if web_docs:
|
242 |
# Update the FAISS vector store with new documents
|
243 |
create_or_update_database(web_docs, embeddings)
|
244 |
-
|
245 |
-
# Reload the updated FAISS store and retrieve relevant documents
|
246 |
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
247 |
relevant_docs = db.similarity_search(question, k=3)
|
248 |
|
@@ -251,7 +249,7 @@ def process_question(question, documents, history, temperature, top_p, repetitio
|
|
251 |
if is_related_to_history(question, history):
|
252 |
context = "None"
|
253 |
else:
|
254 |
-
history_text = "\n".join([f"Q: {h['question']}\nA: {h['answer']}" for h in history])
|
255 |
context = context if context else "None"
|
256 |
|
257 |
prompt_text = ChatPromptTemplate(
|
@@ -306,43 +304,40 @@ def export_memory_db_to_excel():
|
|
306 |
return excel_path
|
307 |
|
308 |
with gr.Blocks() as demo:
|
309 |
-
with gr.
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
upload_output = gr.Textbox(label="Upload Output")
|
317 |
|
318 |
-
with gr.
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
|
330 |
-
with gr.
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
export_memory_button = gr.Button("Export Memory DB to Excel")
|
342 |
-
export_memory_output = gr.Textbox(label="Export Output")
|
343 |
|
344 |
upload_button.click(process_uploaded_file, [pdf_file, recursive_check], upload_output)
|
345 |
-
ask_button.click(process_question, [question, pdf_file,
|
346 |
clear_button.click(clear_cache, [], clear_output)
|
347 |
export_db_button.click(extract_db_to_excel, [], export_db_output)
|
348 |
export_memory_button.click(export_memory_db_to_excel, [], export_memory_output)
|
|
|
215 |
print(" No text extracted")
|
216 |
return all_results
|
217 |
|
218 |
+
def process_question(question, documents, history, temperature, top_p, repetition_penalty, enable_web_search):
|
219 |
global conversation_history
|
220 |
|
221 |
embeddings = get_embeddings()
|
|
|
223 |
# Check the memory database for similar questions
|
224 |
for prev_question, prev_answer in memory_database.items():
|
225 |
similarity = get_similarity(question, prev_question)
|
226 |
+
if similarity > 0.8:
|
227 |
return prev_answer
|
228 |
|
229 |
+
# Retrieve relevant documents from the vector store
|
230 |
if os.path.exists("faiss_database"):
|
231 |
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
232 |
relevant_docs = db.similarity_search(question, k=3)
|
233 |
else:
|
234 |
relevant_docs = []
|
235 |
|
236 |
+
# Perform web search if enabled and no relevant documents found
|
237 |
+
if enable_web_search and len(relevant_docs) == 0:
|
238 |
web_search_results = google_search(question, num_results=5)
|
239 |
web_docs = [Document(page_content=res["text"] or "", metadata={"source": res["link"]}) for res in web_search_results if res["text"]]
|
240 |
|
241 |
if web_docs:
|
242 |
# Update the FAISS vector store with new documents
|
243 |
create_or_update_database(web_docs, embeddings)
|
|
|
|
|
244 |
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
245 |
relevant_docs = db.similarity_search(question, k=3)
|
246 |
|
|
|
249 |
if is_related_to_history(question, history):
|
250 |
context = "None"
|
251 |
else:
|
252 |
+
history_text = "\n".join([f"Q: {h['question']}\nA: {h['answer']}" for h in history]) if history else "None"
|
253 |
context = context if context else "None"
|
254 |
|
255 |
prompt_text = ChatPromptTemplate(
|
|
|
304 |
return excel_path
|
305 |
|
306 |
with gr.Blocks() as demo:
|
307 |
+
with gr.Row():
|
308 |
+
pdf_file = gr.File(label="Upload PDF")
|
309 |
+
with gr.Row():
|
310 |
+
recursive_check = gr.Checkbox(label="Use Recursive Text Splitter")
|
311 |
+
upload_button = gr.Button("Upload and Process")
|
312 |
+
with gr.Row():
|
313 |
+
upload_output = gr.Textbox(label="Upload Output")
|
|
|
314 |
|
315 |
+
with gr.Row():
|
316 |
+
question = gr.Textbox(label="Your Question")
|
317 |
+
with gr.Row():
|
318 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
319 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
320 |
+
repetition_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label="Repetition Penalty")
|
321 |
+
web_search_check = gr.Checkbox(label="Enable Web Search")
|
322 |
+
with gr.Row():
|
323 |
+
ask_button = gr.Button("Ask")
|
324 |
+
with gr.Row():
|
325 |
+
answer = gr.Textbox(label="Answer")
|
326 |
|
327 |
+
with gr.Row():
|
328 |
+
clear_button = gr.Button("Clear Cache")
|
329 |
+
with gr.Row():
|
330 |
+
clear_output = gr.Textbox(label="Clear Output")
|
331 |
+
|
332 |
+
with gr.Row():
|
333 |
+
export_db_button = gr.Button("Export Database to Excel")
|
334 |
+
export_db_output = gr.Textbox(label="Export Output")
|
335 |
+
with gr.Row():
|
336 |
+
export_memory_button = gr.Button("Export Memory DB to Excel")
|
337 |
+
export_memory_output = gr.Textbox(label="Export Output")
|
|
|
|
|
338 |
|
339 |
upload_button.click(process_uploaded_file, [pdf_file, recursive_check], upload_output)
|
340 |
+
ask_button.click(process_question, [question, pdf_file, conversation_history, temperature, top_p, repetition_penalty, web_search_check], answer)
|
341 |
clear_button.click(clear_cache, [], clear_output)
|
342 |
export_db_button.click(extract_db_to_excel, [], export_db_output)
|
343 |
export_memory_button.click(export_memory_db_to_excel, [], export_memory_output)
|