Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -227,66 +227,58 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
227 |
if not question:
|
228 |
return "Please enter a question."
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
else:
|
233 |
-
model = get_model(temperature, top_p, repetition_penalty)
|
234 |
-
embed = get_embeddings()
|
235 |
-
|
236 |
-
if web_search:
|
237 |
-
search_results = google_search(question)
|
238 |
-
context_str = "\n".join([result["text"] for result in search_results if result["text"]])
|
239 |
-
|
240 |
-
# Convert web search results to Document format
|
241 |
-
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
|
242 |
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
-
|
|
|
|
|
|
|
247 |
relevant_docs = retriever.get_relevant_documents(question)
|
248 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
Web Search Results:
|
253 |
-
{context}
|
254 |
-
Current Question: {question}
|
255 |
-
If the web search results don't contain relevant information, state that the information is not available in the search results.
|
256 |
-
Provide a concise and direct answer to the question without mentioning the web search or these instructions:
|
257 |
-
"""
|
258 |
-
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
259 |
-
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
260 |
-
else:
|
261 |
-
# Check if the FAISS database exists
|
262 |
-
if os.path.exists("faiss_database"):
|
263 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
264 |
-
else:
|
265 |
-
return "No FAISS database found. Please upload documents to create the vector store."
|
266 |
-
|
267 |
-
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
268 |
-
|
269 |
-
if is_related_to_history(question, conversation_history):
|
270 |
-
context_str = "No additional context needed. Please refer to the conversation history."
|
271 |
-
else:
|
272 |
-
retriever = database.as_retriever()
|
273 |
-
relevant_docs = retriever.get_relevant_documents(question)
|
274 |
-
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
275 |
-
|
276 |
-
prompt_val = ChatPromptTemplate.from_template(prompt)
|
277 |
-
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
278 |
-
|
279 |
-
answer = generate_chunked_response(model, formatted_prompt)
|
280 |
-
answer = re.split(r'Question:|Current Question:', answer)[-1].strip()
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
answer = '\n'.join(line for line in answer_lines if not line.startswith('If') and not line.startswith('Provide'))
|
285 |
|
286 |
-
|
287 |
-
|
|
|
288 |
|
289 |
if not web_search:
|
|
|
290 |
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
291 |
|
292 |
return answer
|
|
|
227 |
if not question:
|
228 |
return "Please enter a question."
|
229 |
|
230 |
+
model = get_model(temperature, top_p, repetition_penalty)
|
231 |
+
embed = get_embeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
# Check if the FAISS database exists, if not create an empty one
|
234 |
+
if os.path.exists("faiss_database"):
|
235 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
236 |
+
else:
|
237 |
+
database = FAISS.from_documents([], embed)
|
238 |
+
database.save_local("faiss_database")
|
239 |
+
|
240 |
+
if web_search:
|
241 |
+
search_results = google_search(question)
|
242 |
+
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
|
243 |
+
|
244 |
+
# Add web search results to the existing database
|
245 |
+
database.add_documents(web_docs)
|
246 |
+
database.save_local("faiss_database")
|
247 |
+
|
248 |
+
context_str = "\n".join([doc.page_content for doc in web_docs])
|
249 |
+
|
250 |
+
prompt_template = """
|
251 |
+
Answer the question based on the following web search results:
|
252 |
+
Web Search Results:
|
253 |
+
{context}
|
254 |
+
Current Question: {question}
|
255 |
+
If the web search results don't contain relevant information, state that the information is not available in the search results.
|
256 |
+
Provide a concise and direct answer to the question without mentioning the web search or these instructions:
|
257 |
+
"""
|
258 |
+
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
259 |
+
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
260 |
+
else:
|
261 |
+
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
262 |
|
263 |
+
if is_related_to_history(question, conversation_history):
|
264 |
+
context_str = "No additional context needed. Please refer to the conversation history."
|
265 |
+
else:
|
266 |
+
retriever = database.as_retriever()
|
267 |
relevant_docs = retriever.get_relevant_documents(question)
|
268 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
269 |
|
270 |
+
prompt_val = ChatPromptTemplate.from_template(prompt)
|
271 |
+
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
answer = generate_chunked_response(model, formatted_prompt)
|
274 |
+
answer = re.split(r'Question:|Current Question:', answer)[-1].strip()
|
|
|
275 |
|
276 |
+
# Remove any remaining prompt instructions from the answer
|
277 |
+
answer_lines = answer.split('\n')
|
278 |
+
answer = '\n'.join(line for line in answer_lines if not line.startswith('If') and not line.startswith('Provide'))
|
279 |
|
280 |
if not web_search:
|
281 |
+
memory_database[question] = answer
|
282 |
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
283 |
|
284 |
return answer
|