File size: 19,953 Bytes
7b977a8
7acaad7
 
7b977a8
9223079
7b977a8
a9f1fc6
 
7acaad7
8869f68
9223079
 
42dde81
7acaad7
 
 
 
 
 
 
b7f7f2c
 
0f3f5ca
6ae8c1a
0f3f5ca
6ae8c1a
 
 
9223079
 
 
7acaad7
0f3f5ca
8e76240
 
 
 
 
 
 
 
 
 
 
9705edb
7acaad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
9705edb
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
9223079
 
 
 
9705edb
7b977a8
 
 
 
 
 
 
 
 
 
2947428
7b977a8
 
 
 
 
 
 
 
 
 
 
49a0323
7b977a8
7acaad7
a9f1fc6
8e76240
 
 
 
 
 
 
7b977a8
 
 
 
 
 
 
 
 
 
42dde81
7b977a8
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e76240
42dde81
8e76240
42dde81
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
9705edb
7b977a8
 
 
 
 
 
 
8e76240
7b977a8
 
9705edb
7b977a8
 
 
 
 
 
 
 
733c569
 
7b977a8
 
 
 
 
 
 
 
733c569
 
8869f68
 
 
 
 
 
 
 
 
 
9705edb
7b977a8
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
9705edb
7b977a8
 
 
 
 
9705edb
7b977a8
 
52878a0
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
9705edb
 
7b977a8
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
7acaad7
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
42dde81
 
 
 
7b977a8
6ae8c1a
 
 
 
 
 
 
7b977a8
7acaad7
7b977a8
 
 
b7f7f2c
7b977a8
 
 
 
 
 
 
 
7acaad7
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
42dde81
 
 
 
 
 
733c569
 
 
 
 
 
 
42dde81
 
 
 
 
 
 
 
 
7b977a8
42dde81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
 
b7f7f2c
7b977a8
b7f7f2c
7b977a8
42dde81
 
 
 
 
 
 
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import os
import cv2
import torch
import random
import numpy as np
import gradio as gr
from pathlib import Path
from itertools import combinations
from typing import Callable, Dict, Any, Optional, Tuple, List, Union
from hloc import matchers, extractors, logger
from hloc.utils.base_model import dynamic_load
from hloc import match_dense, match_features, extract_features
from hloc.utils.viz import add_text, plot_keypoints
from .viz import (
    draw_matches,
    fig2im,
    plot_images,
    display_matches,
    plot_color_line_matches,
)
import time
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings(
    "ignore", category=gr.deprecation.GradioDeprecationWarning
)

device = "cuda" if torch.cuda.is_available() else "cpu"

ROOT = Path(__file__).parent.parent
# some default values
DEFAULT_SETTING_THRESHOLD = 0.1
DEFAULT_SETTING_MAX_FEATURES = 2000
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
DEFAULT_ENABLE_RANSAC = True
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
DEFAULT_RANSAC_CONFIDENCE = 0.999
DEFAULT_RANSAC_MAX_ITER = 10000
DEFAULT_MIN_NUM_MATCHES = 4
DEFAULT_MATCHING_THRESHOLD = 0.2
DEFAULT_SETTING_GEOMETRY = "Homography"
GRADIO_VERSION = gr.__version__.split(".")[0]
MATCHER_ZOO = None


def load_config(config_name: str) -> Dict[str, Any]:
    """
    Load a YAML configuration file.

    Args:
        config_name: The path to the YAML configuration file.

    Returns:
        The configuration dictionary, with string keys and arbitrary values.
    """
    import yaml

    with open(config_name, "r") as stream:
        try:
            config: Dict[str, Any] = yaml.safe_load(stream)
        except yaml.YAMLError as exc:
            logger.error(exc)
    return config


def get_matcher_zoo(
    matcher_zoo: Dict[str, Dict[str, Union[str, bool]]]
) -> Dict[str, Dict[str, Union[Callable, bool]]]:
    """
    Restore matcher configurations from a dictionary.

    Args:
        matcher_zoo: A dictionary with the matcher configurations,
            where the configuration is a dictionary as loaded from a YAML file.

    Returns:
        A dictionary with the matcher configurations, where the configuration is
            a function or a function instead of a string.
    """
    matcher_zoo_restored = {}
    for k, v in matcher_zoo.items():
        dense = v["dense"]
        if dense:
            matcher_zoo_restored[k] = {
                "matcher": match_dense.confs.get(v["matcher"]),
                "dense": dense,
            }
        else:
            matcher_zoo_restored[k] = {
                "feature": extract_features.confs.get(v["feature"]),
                "matcher": match_features.confs.get(v["matcher"]),
                "dense": dense,
            }
    return matcher_zoo_restored


def get_model(match_conf: Dict[str, Any]):
    """
    Load a matcher model from the provided configuration.

    Args:
        match_conf: A dictionary containing the model configuration.

    Returns:
        A matcher model instance.
    """
    Model = dynamic_load(matchers, match_conf["model"]["name"])
    model = Model(match_conf["model"]).eval().to(device)
    return model


def get_feature_model(conf: Dict[str, Dict[str, Any]]):
    """
    Load a feature extraction model from the provided configuration.

    Args:
        conf: A dictionary containing the model configuration.

    Returns:
        A feature extraction model instance.
    """
    Model = dynamic_load(extractors, conf["model"]["name"])
    model = Model(conf["model"]).eval().to(device)
    return model


def gen_examples():
    random.seed(1)
    example_matchers = [
        "disk+lightglue",
        "loftr",
        "disk",
        "d2net",
        "topicfm",
        "superpoint+superglue",
        "disk+dualsoftmax",
        "roma",
    ]

    def gen_images_pairs(path: str, count: int = 5):
        imgs_list = [
            os.path.join(path, file)
            for file in os.listdir(path)
            if file.lower().endswith((".jpg", ".jpeg", ".png"))
        ]
        pairs = list(combinations(imgs_list, 2))
        selected = random.sample(range(len(pairs)), count)
        return [pairs[i] for i in selected]

    # image pair path
    path = ROOT / "datasets/sacre_coeur/mapping"
    pairs = gen_images_pairs(str(path), len(example_matchers))
    match_setting_threshold = DEFAULT_SETTING_THRESHOLD
    match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
    detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
    ransac_method = DEFAULT_RANSAC_METHOD
    ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
    ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
    ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
    input_lists = []
    for pair, mt in zip(pairs, example_matchers):
        input_lists.append(
            [
                pair[0],
                pair[1],
                match_setting_threshold,
                match_setting_max_features,
                detect_keypoints_threshold,
                mt,
                # enable_ransac,
                ransac_method,
                ransac_reproj_threshold,
                ransac_confidence,
                ransac_max_iter,
            ]
        )
    return input_lists


def filter_matches(
    pred: Dict[str, Any],
    ransac_method: str = DEFAULT_RANSAC_METHOD,
    ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
    ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
    ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
) -> Dict[str, Any]:
    """
    Filter matches using RANSAC. If keypoints are available, filter by keypoints.
    If lines are available, filter by lines. If both keypoints and lines are
    available, filter by keypoints.

    Args:
        pred (Dict[str, Any]): dict of matches, including original keypoints.
        ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
        ransac_reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
        ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
        ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.

    Returns:
        Dict[str, Any]: filtered matches.
    """
    mkpts0: Optional[np.ndarray] = None
    mkpts1: Optional[np.ndarray] = None
    feature_type: Optional[str] = None
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
        feature_type = "KEYPOINT"
    elif (
        "line_keypoints0_orig" in pred.keys()
        and "line_keypoints1_orig" in pred.keys()
    ):
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]
        feature_type = "LINE"
    else:
        return pred
    if mkpts0 is None or mkpts0 is None:
        return pred
    if ransac_method not in ransac_zoo.keys():
        ransac_method = DEFAULT_RANSAC_METHOD

    if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
        return pred
    H, mask = cv2.findHomography(
        mkpts0,
        mkpts1,
        method=ransac_zoo[ransac_method],
        ransacReprojThreshold=ransac_reproj_threshold,
        confidence=ransac_confidence,
        maxIters=ransac_max_iter,
    )
    mask = np.array(mask.ravel().astype("bool"), dtype="bool")
    if H is not None:
        if feature_type == "KEYPOINT":
            pred["keypoints0_orig"] = mkpts0[mask]
            pred["keypoints1_orig"] = mkpts1[mask]
            pred["mconf"] = pred["mconf"][mask]
        elif feature_type == "LINE":
            pred["line_keypoints0_orig"] = mkpts0[mask]
            pred["line_keypoints1_orig"] = mkpts1[mask]
    return pred


def compute_geom(
    pred: Dict[str, Any],
    ransac_method: str = DEFAULT_RANSAC_METHOD,
    ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
    ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
    ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
) -> Dict[str, List[float]]:
    """
    Compute geometric information of matches, including Fundamental matrix,
    Homography matrix, and rectification matrices (if available).

    Args:
        pred (Dict[str, Any]): dict of matches, including original keypoints.
        ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
        ransac_reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
        ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
        ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.

    Returns:
        Dict[str, List[float]]: geometric information in form of a dict.
    """
    mkpts0: Optional[np.ndarray] = None
    mkpts1: Optional[np.ndarray] = None

    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
    elif (
        "line_keypoints0_orig" in pred.keys()
        and "line_keypoints1_orig" in pred.keys()
    ):
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]

    if mkpts0 is not None and mkpts1 is not None:
        if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
            return {}
        h1, w1, _ = pred["image0_orig"].shape
        geo_info: Dict[str, List[float]] = {}
        F, inliers = cv2.findFundamentalMat(
            mkpts0,
            mkpts1,
            method=ransac_zoo[ransac_method],
            ransacReprojThreshold=ransac_reproj_threshold,
            confidence=ransac_confidence,
            maxIters=ransac_max_iter,
        )
        if F is not None:
            geo_info["Fundamental"] = F.tolist()
        H, _ = cv2.findHomography(
            mkpts1,
            mkpts0,
            method=ransac_zoo[ransac_method],
            ransacReprojThreshold=ransac_reproj_threshold,
            confidence=ransac_confidence,
            maxIters=ransac_max_iter,
        )
        if H is not None:
            geo_info["Homography"] = H.tolist()
            try:
                _, H1, H2 = cv2.stereoRectifyUncalibrated(
                    mkpts0.reshape(-1, 2),
                    mkpts1.reshape(-1, 2),
                    F,
                    imgSize=(w1, h1),
                )
                geo_info["H1"] = H1.tolist()
                geo_info["H2"] = H2.tolist()
            except cv2.error as e:
                logger.error(f"{e}, skip")
        return geo_info
    else:
        return {}


def wrap_images(
    img0: np.ndarray,
    img1: np.ndarray,
    geo_info: Optional[Dict[str, List[float]]],
    geom_type: str,
) -> Tuple[Optional[str], Optional[Dict[str, List[float]]]]:
    """
    Wraps the images based on the geometric transformation used to align them.

    Args:
        img0: numpy array representing the first image.
        img1: numpy array representing the second image.
        geo_info: dictionary containing the geometric transformation information.
        geom_type: type of geometric transformation used to align the images.

    Returns:
        A tuple containing a base64 encoded image string and a dictionary with the transformation matrix.
    """
    h1, w1, _ = img0.shape
    h2, w2, _ = img1.shape
    result_matrix: Optional[np.ndarray] = None
    if geo_info is not None and len(geo_info) != 0:
        rectified_image0 = img0
        rectified_image1 = None
        H = np.array(geo_info["Homography"])
        F = np.array(geo_info["Fundamental"])
        title: List[str] = []
        if geom_type == "Homography":
            rectified_image1 = cv2.warpPerspective(
                img1, H, (img0.shape[1], img0.shape[0])
            )
            result_matrix = H
            title = ["Image 0", "Image 1 - warped"]
        elif geom_type == "Fundamental":
            H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
            rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1))
            rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2))
            result_matrix = F
            title = ["Image 0 - warped", "Image 1 - warped"]
        else:
            print("Error: Unknown geometry type")
        fig = plot_images(
            [rectified_image0.squeeze(), rectified_image1.squeeze()],
            title,
            dpi=300,
        )
        dictionary = {
            "row1": result_matrix[0].tolist(),
            "row2": result_matrix[1].tolist(),
            "row3": result_matrix[2].tolist(),
        }
        return fig2im(fig), dictionary
    else:
        return None, None


def change_estimate_geom(
    input_image0: np.ndarray,
    input_image1: np.ndarray,
    matches_info: Dict[str, Any],
    choice: str,
) -> Tuple[Optional[np.ndarray], Optional[Dict[str, Any]]]:
    """
    Changes the estimate of the geometric transformation used to align the images.

    Args:
        input_image0: First input image.
        input_image1: Second input image.
        matches_info: Dictionary containing information about the matches.
        choice: Type of geometric transformation to use ('Homography' or 'Fundamental') or 'No' to disable.

    Returns:
        A tuple containing the updated images and the updated matches info.
    """
    if (
        matches_info is None
        or len(matches_info) < 1
        or "geom_info" not in matches_info.keys()
    ):
        return None, None
    geom_info: Dict[str, Any] = matches_info["geom_info"]
    wrapped_images: Optional[np.ndarray] = None
    if choice != "No":
        wrapped_images, _ = wrap_images(
            input_image0, input_image1, geom_info, choice
        )
        return wrapped_images, matches_info
    else:
        return None, None


def run_matching(
    image0: np.ndarray,
    image1: np.ndarray,
    match_threshold: float,
    extract_max_keypoints: int,
    keypoint_threshold: float,
    key: str,
    ransac_method: str = DEFAULT_RANSAC_METHOD,
    ransac_reproj_threshold: int = DEFAULT_RANSAC_REPROJ_THRESHOLD,
    ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
    ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
    choice_estimate_geom: str = DEFAULT_SETTING_GEOMETRY,
    matcher_zoo: Dict[str, Any] = None,
) -> Tuple[
    np.ndarray,
    np.ndarray,
    np.ndarray,
    Dict[str, int],
    Dict[str, Dict[str, Any]],
    Dict[str, Dict[str, float]],
    np.ndarray,
]:
    """Match two images using the given parameters.

    Args:
        image0 (np.ndarray): RGB image 0.
        image1 (np.ndarray): RGB image 1.
        match_threshold (float): match threshold.
        extract_max_keypoints (int): number of keypoints to extract.
        keypoint_threshold (float): keypoint threshold.
        key (str): key of the model to use.
        ransac_method (str, optional): RANSAC method to use.
        ransac_reproj_threshold (int, optional): RANSAC reprojection threshold.
        ransac_confidence (float, optional): RANSAC confidence level.
        ransac_max_iter (int, optional): RANSAC maximum number of iterations.
        choice_estimate_geom (str, optional): setting of geometry estimation.

    Returns:
        tuple:
            - output_keypoints (np.ndarray): image with keypoints.
            - output_matches_raw (np.ndarray): image with raw matches.
            - output_matches_ransac (np.ndarray): image with RANSAC matches.
            - num_matches (Dict[str, int]): number of raw and RANSAC matches.
            - configs (Dict[str, Dict[str, Any]]): match and feature extraction configs.
            - geom_info (Dict[str, Dict[str, float]]): geometry information.
            - output_wrapped (np.ndarray): wrapped images.
    """
    # image0 and image1 is RGB mode
    if image0 is None or image1 is None:
        raise gr.Error("Error: No images found! Please upload two images.")
    # init output
    output_keypoints = None
    output_matches_raw = None
    output_matches_ransac = None

    # super slow!
    if "roma" in key.lower():
        gr.Info(
            f"Success! Please be patient and allow for about 2-3 minutes."
            f" Due to CPU inference, {key} is quiet slow."
        )

    model = matcher_zoo[key]
    match_conf = model["matcher"]
    # update match config
    match_conf["model"]["match_threshold"] = match_threshold
    match_conf["model"]["max_keypoints"] = extract_max_keypoints
    t1 = time.time()
    matcher = get_model(match_conf)
    if model["dense"]:
        pred = match_dense.match_images(
            matcher, image0, image1, match_conf["preprocessing"], device=device
        )
        del matcher
        extract_conf = None
    else:
        extract_conf = model["feature"]
        # update extract config
        extract_conf["model"]["max_keypoints"] = extract_max_keypoints
        extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
        extractor = get_feature_model(extract_conf)
        pred0 = extract_features.extract(
            extractor, image0, extract_conf["preprocessing"]
        )
        pred1 = extract_features.extract(
            extractor, image1, extract_conf["preprocessing"]
        )
        pred = match_features.match_images(matcher, pred0, pred1)
        del extractor

    # plot images with keypoints
    titles = [
        "Image 0 - Keypoints",
        "Image 1 - Keypoints",
    ]
    output_keypoints = plot_images([image0, image1], titles=titles, dpi=300)
    if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
        plot_keypoints([pred["keypoints0"], pred["keypoints1"]])
        text = (
            f"# keypoints0: {len(pred['keypoints0'])} \n"
            + f"# keypoints1: {len(pred['keypoints1'])}"
        )
        add_text(0, text, fs=15)
    output_keypoints = fig2im(output_keypoints)

    # plot images with raw matches
    titles = [
        "Image 0 - Raw matched keypoints",
        "Image 1 - Raw matched keypoints",
    ]

    output_matches_raw, num_matches_raw = display_matches(pred, titles=titles)

    # if enable_ransac:
    filter_matches(
        pred,
        ransac_method=ransac_method,
        ransac_reproj_threshold=ransac_reproj_threshold,
        ransac_confidence=ransac_confidence,
        ransac_max_iter=ransac_max_iter,
    )

    # plot images with ransac matches
    titles = [
        "Image 0 - Ransac matched keypoints",
        "Image 1 - Ransac matched keypoints",
    ]
    output_matches_ransac, num_matches_ransac = display_matches(
        pred, titles=titles
    )

    # plot wrapped images
    geom_info = compute_geom(pred)
    output_wrapped, _ = change_estimate_geom(
        pred["image0_orig"],
        pred["image1_orig"],
        {"geom_info": geom_info},
        choice_estimate_geom,
    )
    plt.close("all")
    del pred
    logger.info(f"TOTAL time: {time.time()-t1:.3f}s")
    return (
        output_keypoints,
        output_matches_raw,
        output_matches_ransac,
        {
            "number raw matches": num_matches_raw,
            "number ransac matches": num_matches_ransac,
        },
        {
            "match_conf": match_conf,
            "extractor_conf": extract_conf,
        },
        {
            "geom_info": geom_info,
        },
        output_wrapped,
    )


# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
ransac_zoo = {
    "RANSAC": cv2.RANSAC,
    "USAC_MAGSAC": cv2.USAC_MAGSAC,
    "USAC_DEFAULT": cv2.USAC_DEFAULT,
    "USAC_FM_8PTS": cv2.USAC_FM_8PTS,
    "USAC_PROSAC": cv2.USAC_PROSAC,
    "USAC_FAST": cv2.USAC_FAST,
    "USAC_ACCURATE": cv2.USAC_ACCURATE,
    "USAC_PARALLEL": cv2.USAC_PARALLEL,
}