File size: 3,158 Bytes
ff1f92b 5585965 cf0475c 5585965 ff1f92b f5dd29d 5585965 ff1f92b 5585965 ff1f92b 5585965 ff1f92b 5585965 7446d35 cc21256 5585965 ff1f92b 5585965 cc21256 5585965 ff1f92b 5585965 f1e2b8d 87177f6 f1e2b8d 87177f6 5585965 ff1f92b 5585965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
import os
from PyPDF2 import PdfReader
###########
#pip install faiss-cpu
#pip install langchain
#pip install pypdf
#pip tiktoken
#pip install InstructorEmbedding
###############
# PDF in String umwandeln
def get_pdf_text(folder_path):
text = ""
# Durchsuche alle Dateien im angegebenen Verzeichnis
for filename in os.listdir(folder_path):
filepath = os.path.join(folder_path, filename)
# Überprüfe, ob die Datei die Erweiterung ".pdf" hat
if os.path.isfile(filepath) and filename.lower().endswith(".pdf"):
pdf_reader = PdfReader(filepath)
for page in pdf_reader.pages:
text += page.extract_text()
#text += '\n'
return text
#Chunks erstellen
def get_text_chunks(text):
#Arbeitsweise Textsplitter definieren
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank
def create_vectorstore_and_store():
folder_path = './files'
pdf_text = get_pdf_text(folder_path)
text_chunks = get_text_chunks(pdf_text)
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
#embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2")
# Initiate Faiss DB
vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks,
# Verzeichnis in dem die VektorDB gespeichert werden soll
save_directory = "Store"
#VektorDB lokal speichern
vectorstoreDB.save_local(save_directory)
print(vectorstoreDB)
return None
########
def get_vectorstore():
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
#embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2")
#Abruf lokaler Vektordatenbank
save_directory = "Store"
vectorstoreDB = FAISS.load_local(save_directory, embeddings)
return vectorstoreDB
def main():
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
user_question = st.text_area("Stell mir eine Frage: ")
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
retriever=get_vectorstore().as_retriever()
retrieved_docs=retriever.invoke(
user_question
)
if user_question:
st.text(retrieved_docs[0].page_content)
# bei incoming pdf
#vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot
#print(get_vectorstore().similarity_search_with_score("stelle")) # zeigt an ob Vektordatenbank gefüllt ist
#print(get_conversation_chain(get_vectorstore()))
if __name__ == '__main__':
main() |