Update pages/bot.py
Browse files- pages/bot.py +6 -5
pages/bot.py
CHANGED
@@ -49,7 +49,10 @@ def get_text_chunks(text):
|
|
49 |
return chunks
|
50 |
|
51 |
# nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank
|
52 |
-
def create_vectorstore_and_store(
|
|
|
|
|
|
|
53 |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
54 |
# Initiate Faiss DB
|
55 |
vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks,
|
@@ -72,10 +75,8 @@ def get_vectorstore():
|
|
72 |
|
73 |
def main():
|
74 |
user_question = st.text_area("Stell mir eine Frage2: ")
|
75 |
-
|
76 |
-
|
77 |
-
text_chunks = get_text_chunks(pdf_text)
|
78 |
-
create_vectorstore_and_store(text_chunks)
|
79 |
|
80 |
retriever=get_vectorstore().as_retriever()
|
81 |
retrieved_docs=retriever.invoke(
|
|
|
49 |
return chunks
|
50 |
|
51 |
# nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank
|
52 |
+
def create_vectorstore_and_store():
|
53 |
+
folder_path = './files'
|
54 |
+
pdf_text = get_pdf_text(folder_path)
|
55 |
+
text_chunks = get_text_chunks(pdf_text)
|
56 |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
57 |
# Initiate Faiss DB
|
58 |
vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks,
|
|
|
75 |
|
76 |
def main():
|
77 |
user_question = st.text_area("Stell mir eine Frage2: ")
|
78 |
+
|
79 |
+
create_vectorstore_and_store()
|
|
|
|
|
80 |
|
81 |
retriever=get_vectorstore().as_retriever()
|
82 |
retrieved_docs=retriever.invoke(
|