Update pages/bot.py
Browse files- pages/bot.py +89 -25
pages/bot.py
CHANGED
@@ -1,36 +1,100 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
import
|
4 |
-
|
5 |
-
from
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
# Get answer to the user's question
|
32 |
-
answer = question_answering(question=user_question, context=file_content)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
st.write("Confidence Score:", answer['score'])
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
6 |
+
import os
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
#from htmlTemplates import css, bot_template, user_template
|
12 |
+
from langchain.llms import HuggingFaceHub
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
###########
|
15 |
+
#pip install faiss-cpu
|
16 |
+
#pip install langchain
|
17 |
+
#pip install pypdf
|
18 |
+
#pip tiktoken
|
19 |
+
#pip install InstructorEmbedding
|
20 |
+
###############
|
21 |
|
22 |
+
# PDF in String umwandeln
|
23 |
+
def get_pdf_text(folder_path):
|
24 |
+
text = ""
|
25 |
+
# Durchsuche alle Dateien im angegebenen Verzeichnis
|
26 |
+
for filename in os.listdir(folder_path):
|
27 |
+
filepath = os.path.join(folder_path, filename)
|
28 |
|
29 |
+
# Überprüfe, ob die Datei die Erweiterung ".pdf" hat
|
30 |
+
if os.path.isfile(filepath) and filename.lower().endswith(".pdf"):
|
31 |
+
pdf_reader = PdfReader(filepath)
|
32 |
+
for page in pdf_reader.pages:
|
33 |
+
text += page.extract_text()
|
34 |
+
#text += '\n'
|
35 |
|
36 |
+
return text
|
37 |
|
38 |
+
#Chunks erstellen
|
39 |
+
def get_text_chunks(text):
|
40 |
+
#Arbeitsweise Textsplitter definieren
|
41 |
+
text_splitter = CharacterTextSplitter(
|
42 |
+
separator="\n",
|
43 |
+
chunk_size=1000,
|
44 |
+
chunk_overlap=200,
|
45 |
+
length_function=len
|
46 |
+
)
|
47 |
+
chunks = text_splitter.split_text(text)
|
48 |
+
return chunks
|
49 |
+
|
50 |
+
# nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank
|
51 |
+
def create_vectorstore_and_store(text_chunks):
|
52 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
53 |
+
# Initiate Faiss DB
|
54 |
+
vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks,
|
55 |
+
###
|
56 |
+
### --> danach soll das PDF-Verzeichnis gelöscht werden, bzw. Datein verschieben, weil beim nächsten Upload
|
57 |
+
###
|
58 |
+
# Verzeichnis in dem die VektorDB gespeichert werden soll
|
59 |
+
save_directory = "Store"
|
60 |
+
#VektorDB lokal speichern
|
61 |
+
vectorstoreDB.save_local(save_directory)
|
62 |
+
print(vectorstoreDB)
|
63 |
+
return None
|
64 |
+
|
65 |
+
########
|
66 |
|
67 |
+
def get_vectorstore():
|
68 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
69 |
+
#Abruf lokaler Vektordatenbank
|
70 |
+
save_directory = "Store"
|
71 |
+
vectorstoreDB = FAISS.load_local(save_directory, embeddings)
|
72 |
+
return vectorstoreDB
|
73 |
|
74 |
|
75 |
+
def main():
|
76 |
+
load_dotenv()
|
77 |
+
user_question = st.text_area("Eingabe:")
|
78 |
+
folder_path = './PDFs'
|
79 |
+
pdf_text = get_pdf_text(folder_path)
|
80 |
+
text_chunks = get_text_chunks(pdf_text)
|
81 |
+
create_vectorstore_and_store(text_chunks)
|
82 |
+
|
83 |
+
retriever=get_vectorstore().as_retriever()
|
84 |
+
retrieved_docs=retriever.invoke(
|
85 |
+
user_question
|
86 |
)
|
87 |
+
if user_question:
|
88 |
+
st.text(retrieved_docs[0].page_content)
|
89 |
+
# bei incoming pdf
|
90 |
+
|
91 |
+
#vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot
|
92 |
+
#print(get_vectorstore().similarity_search_with_score("stelle")) # zeigt an ob Vektordatenbank gefüllt ist
|
93 |
+
|
94 |
+
#print(get_conversation_chain(get_vectorstore()))
|
95 |
+
|
96 |
+
|
97 |
|
|
|
|
|
98 |
|
99 |
+
if __name__ == '__main__':
|
100 |
+
main()
|
|