File size: 4,236 Bytes
ff1f92b 5585965 900a2bf b884de1 cf0475c 565faf3 5585965 ff1f92b f5dd29d 5585965 ff1f92b 5585965 ff1f92b 5585965 ff1f92b 5585965 7446d35 cc21256 5585965 ff1f92b 5585965 cc21256 5585965 ff1f92b 5585965 f1e2b8d 87177f6 f1e2b8d 900a2bf 565faf3 171a569 565faf3 8237a67 26e5516 900a2bf 6f5db45 f7f0cba 26e5516 5585965 565faf3 dab4ccd 565faf3 171a569 3076e0a 5585965 ff1f92b 5585965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import streamlit as st
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
import os
from PyPDF2 import PdfReader
from transformers import pipeline
from transformers import AutoModel
#Retriever erweiterung
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
###########
#pip install faiss-cpu
#pip install langchain
#pip install pypdf
#pip tiktoken
#pip install InstructorEmbedding
###############
# PDF in String umwandeln
def get_pdf_text(folder_path):
text = ""
# Durchsuche alle Dateien im angegebenen Verzeichnis
for filename in os.listdir(folder_path):
filepath = os.path.join(folder_path, filename)
# Überprüfe, ob die Datei die Erweiterung ".pdf" hat
if os.path.isfile(filepath) and filename.lower().endswith(".pdf"):
pdf_reader = PdfReader(filepath)
for page in pdf_reader.pages:
text += page.extract_text()
#text += '\n'
return text
#Chunks erstellen
def get_text_chunks(text):
#Arbeitsweise Textsplitter definieren
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank
def create_vectorstore_and_store():
folder_path = './files'
pdf_text = get_pdf_text(folder_path)
text_chunks = get_text_chunks(pdf_text)
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
#embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2")
# Initiate Faiss DB
vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks,
# Verzeichnis in dem die VektorDB gespeichert werden soll
save_directory = "Store"
#VektorDB lokal speichern
vectorstoreDB.save_local(save_directory)
print(vectorstoreDB)
return None
########
def get_vectorstore():
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
#embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2")
#Abruf lokaler Vektordatenbank
save_directory = "Store"
vectorstoreDB = FAISS.load_local(save_directory, embeddings)
return vectorstoreDB
def main():
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
user_question = st.text_area("Stell mir eine Frage: ")
#if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt
retriever=get_vectorstore().as_retriever()
retrieved_docs=retriever.invoke(
user_question
)
if user_question:
st.text(retrieved_docs[0].page_content)
context=retrieved_docs[0].page_content
question=user_question
st.text(user_question)
##IDEE Text Generation
generator = pipeline('text-generation', model = 'gpt2')
answer = generator(context, max_length = 30, num_return_sequences=3)
st.text("FORMATIERTE ANTWORT:")
#st.text_area()
st.text(answer)
st.text(type(answer))
#IDEE Retriever erweitern
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = AutoModel.from_pretrained("hkunlp/instructor-base")
def format_docs(docs):
return "\n\n".join([d.page_content for d in docs])
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
ausgabetext = chain.invoke(user_question)
st.text(ausgabetext)
if __name__ == '__main__':
main() |