Spaces:
Sleeping
Sleeping
File size: 5,502 Bytes
797bb03 429a0a1 799d465 429a0a1 799d465 f12d515 799d465 89e0ec3 799d465 a643d17 799d465 89e0ec3 799d465 e7fedfd 799d465 c5afadc 799d465 c5afadc 799d465 c5afadc e7fedfd c5afadc 799d465 35d14b9 799d465 4ee2328 799d465 a643d17 799d465 9ffb21d 799d465 0a037bf 799d465 0a037bf 799d465 0a037bf 799d465 bbeeda7 799d465 429a0a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import spaces
import gradio as gr
import numpy as np
import random
import python
import torch
import os
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from peft import PeftModel
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
token = os.getenv("HF_TKN")
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype, token=token).to(device)
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=token).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048 # not used anymore
# Bind the custom method
# pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
# python.model_loading()
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=True, aspect_ratio="4:3 landscape 1152x896", lora_weight="lora_weight_rank_32_alpha_32.safetensors",
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# Randomize seed if requested
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Load the selected LoRA weight and fuse it
lora_weight_path = os.path.join("loras", lora_weight)
# pipe.load_lora_weights(weight_path)
# pipe.fuse_lora()
torch.cuda.empty_cache()
image, seed = python.generate_image(
prompt,
guidance_scale,
aspect_ratio,
seed,
num_inference_steps,
lora_weight,
)
# Generate images
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# output_type="pil",
# good_vae=good_vae,
# ):
# out_img = img
return image,seed
# Examples for the prompt
examples = [
"Photo on a small glass panel. Color. A vintage Autochrome photograph, early 1900s aesthetic depicts four roses in a brown vase with dark background.",
"Photo on a small glass panel. Color. A depiction of trees with orange leaves and a small path.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Text2Autochrome demo!
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=5,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# Dropdown for aspect ratio selection
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=["1:1 square 1024x1024", "3:4 portrait 896x1152", "5:8 portrait 832x1216", "9:16 portrait 768x1344", "4:3 landscape 1152x896", "3:2 landscape 1216x832", "16:9 landscape 1344x768"],
value="4:3 landscape 1152x896",
interactive=True,
)
# Dropdown for LoRA weight selection
lora_weight = gr.Dropdown(
label="LoRA Weight",
choices=[
"lora_weight_rank_16_alpha_32_1.safetensors",
"lora_weight_rank_16_alpha_32_2.safetensors",
"lora_weight_rank_32_alpha_32.safetensors",
"lora_weight_rank_32_alpha_64.safetensors",
],
value="lora_weight_rank_16_alpha_32_1.safetensors",
interactive=True,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=25,
step=0.1,
value=8.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, aspect_ratio, lora_weight, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|