airplane194 commited on
Commit
799d465
·
1 Parent(s): 739496f
app.py CHANGED
@@ -1,7 +1,163 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
  demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
+ import numpy as np
4
+ import random
5
+ import python
6
+ import spaces
7
+ import torch
8
+ import os
9
+ from huggingface_hub import hf_hub_download
10
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderKL
11
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
12
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
13
+ from peft import PeftModel
14
 
15
+ dtype = torch.bfloat16
16
+ device = "cuda" if torch.cuda.is_available() else "cpu"
17
+ token = os.getenv("HUGGINGFACE_TOKEN")
18
+
19
+ # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype, token=token).to(device)
20
+ # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=token).to(device)
21
+ torch.cuda.empty_cache()
22
+
23
+ MAX_SEED = np.iinfo(np.int32).max
24
+ MAX_IMAGE_SIZE = 2048 # not used anymore
25
+
26
+ # Bind the custom method
27
+ # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
28
+ python.model_loading()
29
+
30
+
31
+ @spaces.GPU()
32
+ def infer(prompt, seed=42, randomize_seed=False, aspect_ratio="4:3 landscape 1152x896", lora_weight="lora_weight_rank_32_alpha_32.safetensors",
33
+ guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
34
+ # Default height + width
35
+ width, height = 1024, 1024
36
+
37
+ # Randomize seed if requested
38
+ if randomize_seed:
39
+ seed = random.randint(0, MAX_SEED)
40
+ generator = torch.Generator().manual_seed(seed)
41
+
42
+ # Load the selected LoRA weight and fuse it
43
+ lora_weight_path = os.path.join("lora_weights", lora_weight)
44
+ # pipe.load_lora_weights(weight_path)
45
+ # pipe.fuse_lora()
46
+ torch.cuda.empty_cache()
47
+ image = python.generate_image(
48
+ prompt,
49
+ height,
50
+ width,
51
+ aspect_ratio,
52
+ seed,
53
+ guidance_scale=guidance_scale,
54
+ ).images[0]
55
+ # Generate images
56
+ # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
57
+ # prompt=prompt,
58
+ # guidance_scale=guidance_scale,
59
+ # num_inference_steps=num_inference_steps,
60
+ # width=width,
61
+ # height=height,
62
+ # generator=generator,
63
+ # output_type="pil",
64
+ # good_vae=good_vae,
65
+ # ):
66
+ # out_img = img
67
+ return image,seed
68
+
69
+ # Examples for the prompt
70
+ examples = [
71
+ "Photo on a small glass panel. Color. A vintage Autochrome photograph, early 1900s aesthetic depicts four roses in a brown vase with dark background.",
72
+ "Colorized photograph on a small glass panel depicting trees with orange leaves, a dirt path, and a wood and rope fence.",
73
+ ]
74
+
75
+ css = """
76
+ #col-container {
77
+ margin: 0 auto;
78
+ max-width: 520px;
79
+ }
80
+ """
81
+
82
+ with gr.Blocks(css=css) as demo:
83
+ with gr.Column(elem_id="col-container"):
84
+ gr.Markdown(f"""# Autochrome image generator demo using FLUX.1 [dev]
85
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
86
+ """)
87
+
88
+ with gr.Row():
89
+ prompt = gr.Text(
90
+ label="Prompt",
91
+ show_label=False,
92
+ max_lines=5,
93
+ placeholder="Enter your prompt",
94
+ container=False,
95
+ )
96
+ run_button = gr.Button("Run", scale=0)
97
+
98
+ result = gr.Image(label="Result", show_label=False)
99
+
100
+ with gr.Accordion("Advanced Settings", open=False):
101
+ seed = gr.Slider(
102
+ label="Seed",
103
+ minimum=0,
104
+ maximum=MAX_SEED,
105
+ step=1,
106
+ value=0,
107
+ )
108
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
109
+
110
+ # Dropdown for aspect ratio selection
111
+ aspect_ratio = gr.Dropdown(
112
+ label="Aspect Ratio",
113
+ choices=["1:1 square 1024x1024", "3:4 portrait 896x1152", "5:8 portrait 832x1216", "9:16 portrait 768x1344", "4:3 landscape 1152x896", "3:2 landscape 1216x832", "16:9 landscape 1344x768"],
114
+ value="4:3 landscape 1152x896",
115
+ interactive=True,
116
+ )
117
+
118
+ # Dropdown for LoRA weight selection
119
+ lora_weight = gr.Dropdown(
120
+ label="LoRA Weight",
121
+ choices=[
122
+ "lora_weight_rank_16_alpha_32_1.safetensors",
123
+ "lora_weight_rank_16_alpha_32_2.safetensors",
124
+ "lora_weight_rank_32_alpha_32.safetensors",
125
+ "lora_weight_rank_32_alpha_64.safetensors",
126
+ ],
127
+ value="lora_weight_rank_32_alpha_32.safetensors",
128
+ interactive=True,
129
+ )
130
+
131
+ with gr.Row():
132
+ guidance_scale = gr.Slider(
133
+ label="Guidance Scale",
134
+ minimum=1,
135
+ maximum=25,
136
+ step=0.1,
137
+ value=6,
138
+ )
139
+ num_inference_steps = gr.Slider(
140
+ label="Number of inference steps",
141
+ minimum=1,
142
+ maximum=100,
143
+ step=1,
144
+ value=40,
145
+ )
146
+
147
+ gr.Examples(
148
+ examples=examples,
149
+ fn=infer,
150
+ inputs=[prompt],
151
+ outputs=[result, seed],
152
+ cache_examples="lazy"
153
+ )
154
+
155
+ gr.on(
156
+ triggers=[run_button.click, prompt.submit],
157
+ fn=infer,
158
+ inputs=[prompt, seed, randomize_seed, aspect_ratio, lora_weight, guidance_scale, num_inference_steps],
159
+ outputs=[result, seed]
160
+
161
+ )
162
 
 
163
  demo.launch()
custom_nodes/ComfyUI-to-Python-Extension ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 0aa2747736193939a3e1e8ef35aa3d0e378c60db
custom_nodes/ComfyUI_Comfyroll_CustomNodes ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit d78b780ae43fcf8c6b7c6505e6ffb4584281ceca
live_preview_helpers.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ good_vae: Optional[Any] = None,
63
+ ):
64
+ height = height or self.default_sample_size * self.vae_scale_factor
65
+ width = width or self.default_sample_size * self.vae_scale_factor
66
+
67
+ # 1. Check inputs
68
+ self.check_inputs(
69
+ prompt,
70
+ prompt_2,
71
+ height,
72
+ width,
73
+ prompt_embeds=prompt_embeds,
74
+ pooled_prompt_embeds=pooled_prompt_embeds,
75
+ max_sequence_length=max_sequence_length,
76
+ )
77
+
78
+ self._guidance_scale = guidance_scale
79
+ self._joint_attention_kwargs = joint_attention_kwargs
80
+ self._interrupt = False
81
+
82
+ # 2. Define call parameters
83
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
+ device = self._execution_device
85
+
86
+ # 3. Encode prompt
87
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
+ prompt=prompt,
90
+ prompt_2=prompt_2,
91
+ prompt_embeds=prompt_embeds,
92
+ pooled_prompt_embeds=pooled_prompt_embeds,
93
+ device=device,
94
+ num_images_per_prompt=num_images_per_prompt,
95
+ max_sequence_length=max_sequence_length,
96
+ lora_scale=lora_scale,
97
+ )
98
+ # 4. Prepare latent variables
99
+ num_channels_latents = self.transformer.config.in_channels // 4
100
+ latents, latent_image_ids = self.prepare_latents(
101
+ batch_size * num_images_per_prompt,
102
+ num_channels_latents,
103
+ height,
104
+ width,
105
+ prompt_embeds.dtype,
106
+ device,
107
+ generator,
108
+ latents,
109
+ )
110
+ # 5. Prepare timesteps
111
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
+ image_seq_len = latents.shape[1]
113
+ mu = calculate_shift(
114
+ image_seq_len,
115
+ self.scheduler.config.base_image_seq_len,
116
+ self.scheduler.config.max_image_seq_len,
117
+ self.scheduler.config.base_shift,
118
+ self.scheduler.config.max_shift,
119
+ )
120
+ timesteps, num_inference_steps = retrieve_timesteps(
121
+ self.scheduler,
122
+ num_inference_steps,
123
+ device,
124
+ timesteps,
125
+ sigmas,
126
+ mu=mu,
127
+ )
128
+ self._num_timesteps = len(timesteps)
129
+
130
+ # Handle guidance
131
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
+
133
+ # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+
157
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
158
+ torch.cuda.empty_cache()
159
+
160
+ # Final image using good_vae
161
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
+ image = good_vae.decode(latents, return_dict=False)[0]
164
+ self.maybe_free_model_hooks()
165
+ torch.cuda.empty_cache()
166
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
python.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import sys
4
+ from typing import Sequence, Mapping, Any, Union
5
+ import torch
6
+ import spaces
7
+ # from comfy import model_management
8
+ from nodes import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_1
9
+ from comfy_extras.nodes_custom_sampler import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_2
10
+ from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_3
11
+ from huggingface_hub import hf_hub_download
12
+
13
+ # Merge both mappings
14
+ COMBINED_NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS_1, **NODE_CLASS_MAPPINGS_2, **NODE_CLASS_MAPPINGS_3}
15
+ hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/unet")
16
+ hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae")
17
+ hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
18
+ hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders")
19
+
20
+
21
+ def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
22
+ """Returns the value at the given index of a sequence or mapping.
23
+
24
+ If the object is a sequence (like list or string), returns the value at the given index.
25
+ If the object is a mapping (like a dictionary), returns the value at the index-th key.
26
+
27
+ Some return a dictionary, in these cases, we look for the "results" key
28
+
29
+ Args:
30
+ obj (Union[Sequence, Mapping]): The object to retrieve the value from.
31
+ index (int): The index of the value to retrieve.
32
+
33
+ Returns:
34
+ Any: The value at the given index.
35
+
36
+ Raises:
37
+ IndexError: If the index is o of bounds for the object and the object is not a mapping.
38
+ """
39
+ try:
40
+ return obj[index]
41
+ except KeyError:
42
+ return obj["result"][index]
43
+
44
+
45
+ def find_path(name: str, path: str = None) -> str:
46
+ """
47
+ Recursively looks at parent folders starting from the given path until it finds the given name.
48
+ Returns the path as a Path object if found, or None otherwise.
49
+ """
50
+ # If no path is given, use the current working directory
51
+ if path is None:
52
+ path = os.getcwd()
53
+
54
+ # Check if the current directory contains the name
55
+ if name in os.listdir(path):
56
+ path_name = os.path.join(path, name)
57
+ print(f"{name} found: {path_name}")
58
+ return path_name
59
+
60
+ # Get the parent directory
61
+ parent_directory = os.path.dirname(path)
62
+
63
+ # If the parent directory is the same as the current directory, we've reached the root and stop the search
64
+ if parent_directory == path:
65
+ return None
66
+
67
+ # Recursively call the function with the parent directory
68
+ return find_path(name, parent_directory)
69
+
70
+
71
+ def add_comfyui_directory_to_sys_path() -> None:
72
+ """
73
+ Add 'ComfyUI' to the sys.path
74
+ """
75
+ comfyui_path = find_path("ComfyUI")
76
+ if comfyui_path is not None and os.path.isdir(comfyui_path):
77
+ sys.path.append(comfyui_path)
78
+ print(f"'{comfyui_path}' added to sys.path")
79
+
80
+
81
+ def add_extra_model_paths() -> None:
82
+ """
83
+ Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
84
+ """
85
+ try:
86
+ from main import load_extra_path_config
87
+ except ImportError:
88
+ print(
89
+ "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
90
+ )
91
+ from utils.extra_config import load_extra_path_config
92
+
93
+ extra_model_paths = find_path("extra_model_paths.yaml")
94
+
95
+ if extra_model_paths is not None:
96
+ load_extra_path_config(extra_model_paths)
97
+ else:
98
+ print("Could not find the extra_model_paths config file.")
99
+
100
+
101
+ def import_custom_nodes() -> None:
102
+ """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
103
+
104
+ This function sets up a new asyncio event loop, initializes the PromptServer,
105
+ creates a PromptQueue, and initializes the custom nodes.
106
+ """
107
+ import asyncio
108
+ import execution
109
+ from nodes import init_extra_nodes
110
+ import server
111
+
112
+ # Creating a new event loop and setting it as the default loop
113
+ loop = asyncio.new_event_loop()
114
+ asyncio.set_event_loop(loop)
115
+
116
+ # Creating an instance of PromptServer with the loop
117
+ server_instance = server.PromptServer(loop)
118
+ execution.PromptQueue(server_instance)
119
+
120
+ # Initializing custom nodes
121
+ init_extra_nodes()
122
+
123
+
124
+
125
+ add_comfyui_directory_to_sys_path()
126
+ import_custom_nodes()
127
+ # add_extra_model_paths()
128
+ dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
129
+ dualcliploader_11 = dualcliploader.load_clip(
130
+ clip_name1="t5xxl_fp16.safetensors",
131
+ clip_name2="clip_l.safetensors",
132
+ type="flux",
133
+ device="default",
134
+ )
135
+
136
+ cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
137
+ cliptextencode_6 = cliptextencode.encode(
138
+ text="Photo on a small glass panel. Color. Photo of trees with a body of water in the front and moutain in the background.",
139
+ clip=get_value_at_index(dualcliploader_11, 0),
140
+ )
141
+
142
+ vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
143
+ vaeloader_10 = vaeloader.load_vae(vae_name="ae.safetensors")
144
+
145
+ unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
146
+ unetloader_12 = unetloader.load_unet(
147
+ unet_name="flux1-dev.safetensors", weight_dtype="default"
148
+ )
149
+
150
+ ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
151
+ ksamplerselect_16 = ksamplerselect.get_sampler(sampler_name="dpmpp_2m")
152
+
153
+ randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
154
+ randomnoise_25 = randomnoise.get_noise(noise_seed='42')
155
+
156
+ loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
157
+ loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
158
+ lora_name='lora_weights/lora_weight_rank_32_alpha_32.safetensors',
159
+ strength_model=1,
160
+ model=get_value_at_index(unetloader_12, 0),
161
+ )
162
+
163
+ cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
164
+ cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
165
+ width=1024,
166
+ height=1024,
167
+ aspect_ratio="4:3 landscape 1152x896",
168
+ swap_dimensions="Off",
169
+ upscale_factor=1.5,
170
+ batch_size=1,
171
+ )
172
+
173
+ modelsamplingflux = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]()
174
+ fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
175
+ basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
176
+ basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
177
+ samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
178
+ vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
179
+
180
+
181
+ def model_loading():
182
+ # loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
183
+ # loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
184
+ # lora_name=lora_weight_path,
185
+ # strength_model=1,
186
+ # model=get_value_at_index(unetloader_12, 0),
187
+ # )
188
+ model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72]
189
+ valid_models = [
190
+ getattr(loader[0], 'patcher', loader[0])
191
+ for loader in model_loaders
192
+ if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
193
+ ]
194
+ #Load the models
195
+ # model_management.load_models_gpu(valid_models)
196
+
197
+
198
+ def generate_image(prompt,
199
+ height,
200
+ width,
201
+ guidance_scale,
202
+ aspect_ratio,
203
+ seed,
204
+ num_inference_steps,
205
+ ):
206
+ cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
207
+ cliptextencode_6 = cliptextencode.encode(
208
+ text=prompt,
209
+ clip=get_value_at_index(dualcliploader_11, 0),
210
+ )
211
+ cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
212
+ cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
213
+ width=width,
214
+ height=height,
215
+ aspect_ratio=aspect_ratio,
216
+ swap_dimensions="Off",
217
+ upscale_factor=1.5,
218
+ batch_size=1,
219
+ )
220
+ with torch.inference_mode():
221
+ for q in range(1):
222
+ modelsamplingflux_61 = modelsamplingflux.patch(
223
+ max_shift=1.15,
224
+ base_shift=0.5,
225
+ width=get_value_at_index(cr_sdxl_aspect_ratio_85, 0),
226
+ height=get_value_at_index(cr_sdxl_aspect_ratio_85, 1),
227
+ model=get_value_at_index(loraloadermodelonly_72, 0),
228
+ )
229
+
230
+ fluxguidance_60 = fluxguidance.append(
231
+ guidance=guidance_scale, conditioning=get_value_at_index(cliptextencode_6, 0)
232
+ )
233
+
234
+ basicguider_22 = basicguider.get_guider(
235
+ model=get_value_at_index(modelsamplingflux_61, 0),
236
+ conditioning=get_value_at_index(fluxguidance_60, 0),
237
+ )
238
+
239
+ basicscheduler_17 = basicscheduler.get_sigmas(
240
+ scheduler="sgm_uniform",
241
+ steps=num_inference_steps,
242
+ denoise=1,
243
+ model=get_value_at_index(modelsamplingflux_61, 0),
244
+ )
245
+
246
+ samplercustomadvanced_13 = samplercustomadvanced.sample(
247
+ noise=get_value_at_index(randomnoise_25, 0),
248
+ guider=get_value_at_index(basicguider_22, 0),
249
+ sampler=get_value_at_index(ksamplerselect_16, 0),
250
+ sigmas=get_value_at_index(basicscheduler_17, 0),
251
+ latent_image=get_value_at_index(cr_sdxl_aspect_ratio_85, 4),
252
+ )
253
+
254
+ vaedecode_8 = vaedecode.decode(
255
+ samples=get_value_at_index(samplercustomadvanced_13, 0),
256
+ vae=get_value_at_index(vaeloader_10, 0),
257
+ )
258
+
259
+ # saveimage_9 = saveimage.save_images(
260
+ # filename_prefix="MarkuryFLUX", images=get_value_at_index(vaedecode_8, 0)
261
+ # )
262
+ return get_value_at_index(vaedecode_8, 0), seed