airplane194 commited on
Commit
e7fedfd
·
1 Parent(s): f5fe9a4
Files changed (2) hide show
  1. app.py +2 -1
  2. python.py +11 -7
app.py CHANGED
@@ -40,7 +40,7 @@ def infer(prompt, seed=42, randomize_seed=False, aspect_ratio="4:3 landscape 115
40
  generator = torch.Generator().manual_seed(seed)
41
 
42
  # Load the selected LoRA weight and fuse it
43
- lora_weight_path = os.path.join("lora_weights", lora_weight)
44
  # pipe.load_lora_weights(weight_path)
45
  # pipe.fuse_lora()
46
  torch.cuda.empty_cache()
@@ -52,6 +52,7 @@ def infer(prompt, seed=42, randomize_seed=False, aspect_ratio="4:3 landscape 115
52
  aspect_ratio,
53
  seed,
54
  num_inference_steps,
 
55
  )
56
  # Generate images
57
  # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
 
40
  generator = torch.Generator().manual_seed(seed)
41
 
42
  # Load the selected LoRA weight and fuse it
43
+ lora_weight_path = os.path.join("loras", lora_weight)
44
  # pipe.load_lora_weights(weight_path)
45
  # pipe.fuse_lora()
46
  torch.cuda.empty_cache()
 
52
  aspect_ratio,
53
  seed,
54
  num_inference_steps,
55
+ lora_weight,
56
  )
57
  # Generate images
58
  # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
python.py CHANGED
@@ -183,12 +183,6 @@ vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
183
  saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
184
 
185
  def model_loading():
186
- # loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
187
- # loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
188
- # lora_name=lora_weight_path,
189
- # strength_model=1,
190
- # model=get_value_at_index(unetloader_12, 0),
191
- # )
192
  model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72]
193
  valid_models = [
194
  getattr(loader[0], 'patcher', loader[0])
@@ -206,7 +200,9 @@ def generate_image(prompt,
206
  aspect_ratio,
207
  seed,
208
  num_inference_steps,
 
209
  ):
 
210
  cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
211
  cliptextencode_6 = cliptextencode.encode(
212
  text=prompt,
@@ -221,6 +217,14 @@ def generate_image(prompt,
221
  upscale_factor=1.5,
222
  batch_size=1,
223
  )
 
 
 
 
 
 
 
 
224
  with torch.inference_mode():
225
  for q in range(1):
226
  modelsamplingflux_61 = modelsamplingflux.patch(
@@ -261,7 +265,7 @@ def generate_image(prompt,
261
  )
262
 
263
  saveimage_9 = saveimage.save_images(
264
- filename_prefix="MarkuryFLUX", images=get_value_at_index(vaedecode_8, 0)
265
  )
266
  saved_path = f"output/{saveimage_9['ui']['images'][0]['filename']}"
267
  return saved_path, seed
 
183
  saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
184
 
185
  def model_loading():
 
 
 
 
 
 
186
  model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72]
187
  valid_models = [
188
  getattr(loader[0], 'patcher', loader[0])
 
200
  aspect_ratio,
201
  seed,
202
  num_inference_steps,
203
+ lora_weight,
204
  ):
205
+ print(seed)
206
  cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
207
  cliptextencode_6 = cliptextencode.encode(
208
  text=prompt,
 
217
  upscale_factor=1.5,
218
  batch_size=1,
219
  )
220
+ loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
221
+ loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
222
+ lora_name=lora_weight_path,
223
+ strength_model=1,
224
+ model=get_value_at_index(unetloader_12, 0),
225
+ )
226
+ randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
227
+ randomnoise_25 = randomnoise.get_noise(noise_seed='42')
228
  with torch.inference_mode():
229
  for q in range(1):
230
  modelsamplingflux_61 = modelsamplingflux.patch(
 
265
  )
266
 
267
  saveimage_9 = saveimage.save_images(
268
+ filename_prefix="image", images=get_value_at_index(vaedecode_8, 0)
269
  )
270
  saved_path = f"output/{saveimage_9['ui']['images'][0]['filename']}"
271
  return saved_path, seed