File size: 6,844 Bytes
2250554
7399125
a8ba6ba
2250554
 
 
 
2641ab6
5e10bd7
2250554
 
 
0ca1b78
 
1c80fdd
 
0ca1b78
 
2250554
 
ce8e0a3
 
 
2250554
 
5e10bd7
 
 
 
 
 
 
 
1c44021
0ca1b78
 
1c44021
0ca1b78
 
 
 
 
 
 
 
 
 
 
 
 
9d8f96d
0ca1b78
 
 
 
 
 
 
 
 
 
 
 
2250554
 
 
 
 
 
 
 
0ca1b78
 
 
 
 
 
 
 
 
 
 
 
 
 
2250554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5353a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d2bcce
2250554
 
a5353a1
 
16f846e
52593f1
 
71bf438
16f846e
2250554
52593f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9940c4f
0ca1b78
 
9940c4f
0ca1b78
9940c4f
 
0ca1b78
9940c4f
52593f1
9940c4f
0ca1b78
 
9940c4f
0ca1b78
9940c4f
 
0ca1b78
9940c4f
0ca1b78
9940c4f
0ca1b78
52593f1
 
 
 
 
31e3bf4
94e7c0f
ffbf5ed
 
 
52593f1
2250554
 
 
 
 
8a6b4cf
ffbf5ed
8a6b4cf
 
 
 
 
 
6df9bd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import streamlit as st
import os
import pandas as pd
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_mic_recorder import speech_to_text
from model_pipelineV2 import ModelPipeLine
from q_learning_chatbot import QLearningChatbot

from gtts import gTTS
from io import BytesIO
st.set_page_config(page_title="PeacePal") 
#image to the sidebar
#image_path = os.path.join('images', 'sidebar.jpg')
#st.sidebar.image(image_path, use_column_width=True)

st.title('PeacePal 🌱')

mdl = ModelPipeLine()
# Now you can access the retriever attribute of the ModelPipeLine instance
retriever = mdl.retriever

final_chain = mdl.create_final_chain()

# Define states and actions
states = [
    "Negative",
    "Moderately Negative",
    "Neutral",
    "Moderately Positive",
    "Positive",
]

# Initialize Q-learning chatbot and mental health classifier
chatbot = QLearningChatbot(states)

# Function to display Q-table
def display_q_table(q_values, states):
    q_table_dict = {"State": states}
    q_table_df = pd.DataFrame(q_table_dict)
    return q_table_df

def text_to_speech(text):
    # Use gTTS to convert text to speech
    tts = gTTS(text=text, lang="en")
    # Save the speech as bytes in memory
    fp = BytesIO()
    tts.write_to_fp(fp)
    return fp


def speech_recognition_callback():
    # Ensure that speech output is available
    if st.session_state.my_stt_output is None:
        st.session_state.p01_error_message = "Please record your response again."
        return

    # Clear any previous error messages
    st.session_state.p01_error_message = None

    # Store the speech output in the session state
    st.session_state.speech_input = st.session_state.my_stt_output 

## generated stores AI generated responses
if 'generated' not in st.session_state:
    st.session_state['generated'] = ["I'm your Mental health Assistant, How may I help you?"]
## past stores User's questions
if 'past' not in st.session_state:
    st.session_state['past'] = ['Hi!']

# Initialize memory
if "entered_text" not in st.session_state:
    st.session_state.entered_text = []
if "entered_mood" not in st.session_state:
    st.session_state.entered_mood = []
if "messages" not in st.session_state:
    st.session_state.messages = []
if "user_sentiment" not in st.session_state:
    st.session_state.user_sentiment = "Neutral"
if "mood_trend" not in st.session_state:
    st.session_state.mood_trend = "Unchanged"
if "mood_trend_symbol" not in st.session_state:
    st.session_state.mood_trend_symbol = ""

# Layout of input/response containers

colored_header(label='', description='', color_name='blue-30')
response_container = st.container()
input_container = st.container()

# User input
## Function for taking user provided prompt as input
def get_text():
    input_text = st.text_input("You: ", "", key="input")
    return input_text

def generate_response(prompt):
    response = mdl.call_conversational_rag(prompt,final_chain)
    return response['answer']

# Collect user input
# Add a radio button to choose input mode
input_mode = st.sidebar.radio("Select input mode:", ["Text", "Speech"])
user_message = None
if input_mode == "Speech":
    # Use the speech_to_text function to capture speech input
    speech_input = speech_to_text(key="my_stt", callback=speech_recognition_callback)
    # Check if speech input is available
    if "speech_input" in st.session_state and st.session_state.speech_input:
        # Display the speech input
        # st.text(f"Speech Input: {st.session_state.speech_input}")

        # Process the speech input as a query
        user_message = st.session_state.speech_input
        st.session_state.speech_input = None
else:
    user_message = st.chat_input("Type your message here:")

## Applying the user input box        
with input_container:
    if user_message:
        st.session_state.entered_text.append(user_message)
        st.session_state.messages.append({"role": "user", "content": user_message})
        
        # Display the user's message
        with st.chat_message("user"):
            st.write(user_message)
            
        # Process the user's message and generate a response
        with st.spinner("Processing..."):
            response = generate_response(user_message)
            st.session_state.past.append(user_message)
            st.session_state.messages.append({"role": "ai", "content": response})
            
            # Detect sentiment
            user_sentiment = chatbot.detect_sentiment(user_message)
            
            # Update mood history / mood_trend
            chatbot.update_mood_history()
            mood_trend = chatbot.check_mood_trend()

            # Define rewards
            if user_sentiment in ["Positive", "Moderately Positive"]:
                if mood_trend == "increased":
                        reward = +1
                        mood_trend_symbol = " ⬆️"
                elif mood_trend == "unchanged":
                        reward = +0.8
                        mood_trend_symbol = ""    
                else:  # decreased
                        reward = -0.2
                        mood_trend_symbol = " ⬇️"            
            else:
                 if mood_trend == "increased":
                        reward = +1
                        mood_trend_symbol = " ⬆️"
                 elif mood_trend == "unchanged":
                        reward = -0.2
                        mood_trend_symbol = ""   
                 else:  # decreased
                        reward = -1
                        mood_trend_symbol = " ⬇️"      
    
            print(f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑")    
    

            # Update Q-values
            chatbot.update_q_values(user_sentiment, reward, user_sentiment)
            
            # Display the AI's response
            with st.chat_message("ai"):
                st.markdown(response)
                st.session_state.user_sentiment = user_sentiment
                st.session_state.mood_trend = mood_trend
                st.session_state.mood_trend_symbol = mood_trend_symbol
                
                # Convert the response to speech
                speech_fp = text_to_speech(response)
                # Play the speech
                st.audio(speech_fp, format='audio/mp3')


with st.sidebar.expander("Sentiment Analysis"):
        # Use the values stored in session state
        st.write(
            f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})"
        )
            
        # Display Q-table
        st.dataframe(display_q_table(chatbot.q_values, states))