SwatGarg commited on
Commit
ce8e0a3
1 Parent(s): 21d8b0c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -6,7 +6,6 @@ from streamlit_extras.add_vertical_space import add_vertical_space
6
  from streamlit_mic_recorder import speech_to_text
7
  from model_pipeline import ModelPipeLine
8
  from q_learning_chatbot import QLearningChatbot
9
- from model_pipeline.ModelPipeLine import rag_retriever
10
 
11
  from gtts import gTTS
12
  from io import BytesIO
@@ -18,6 +17,9 @@ st.sidebar.image(image_path, use_column_width=True)
18
  st.title('PeacePal 🌱')
19
 
20
  mdl = ModelPipeLine()
 
 
 
21
  final_chain = mdl.create_final_chain()
22
 
23
  # Define states and actions
@@ -128,7 +130,7 @@ with input_container:
128
 
129
  # Retrieve question
130
  if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]:
131
- question = rag_retriever.get_response(
132
  user_message, predicted_mental_category
133
  )
134
  st.session_state.asked_questions.append(question)
@@ -192,7 +194,7 @@ with input_container:
192
 
193
  # Retrieve question
194
  if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]:
195
- question = rag_retriever.get_response(
196
  user_message, predicted_mental_category
197
  )
198
  st.session_state.asked_questions.append(question)
 
6
  from streamlit_mic_recorder import speech_to_text
7
  from model_pipeline import ModelPipeLine
8
  from q_learning_chatbot import QLearningChatbot
 
9
 
10
  from gtts import gTTS
11
  from io import BytesIO
 
17
  st.title('PeacePal 🌱')
18
 
19
  mdl = ModelPipeLine()
20
+ # Now you can access the retriever attribute of the ModelPipeLine instance
21
+ retriever = mdl.retriever
22
+
23
  final_chain = mdl.create_final_chain()
24
 
25
  # Define states and actions
 
130
 
131
  # Retrieve question
132
  if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]:
133
+ question = retriever.get_response(
134
  user_message, predicted_mental_category
135
  )
136
  st.session_state.asked_questions.append(question)
 
194
 
195
  # Retrieve question
196
  if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]:
197
+ question = retriever.get_response(
198
  user_message, predicted_mental_category
199
  )
200
  st.session_state.asked_questions.append(question)