File size: 11,177 Bytes
0f8ec45
 
 
cd4e374
0f8ec45
2d30d63
0f8ec45
1fd4564
13de8f8
 
0f8ec45
c9e95c1
13de8f8
 
 
dd6d711
13de8f8
 
d50653b
13de8f8
 
d50653b
13de8f8
 
 
 
 
 
 
 
169bac6
2d30d63
 
 
 
 
 
 
 
 
 
 
 
 
 
ed2d2b6
db43e18
2d30d63
13de8f8
7f9d10e
2d30d63
0f8ec45
13de8f8
 
 
 
 
 
 
 
ed2d2b6
cd4e374
3142fb1
 
 
13de8f8
 
 
 
 
0f8ec45
 
13de8f8
 
 
0f8ec45
afeabee
13de8f8
dd6d711
13de8f8
afeabee
 
13de8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
afeabee
dd6d711
13de8f8
dd6d711
13de8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8ec45
6027158
ed2d2b6
2656341
0f8ec45
 
 
13de8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8ec45
 
 
13de8f8
0f8ec45
 
 
 
 
8f1a540
cf80990
8f1a540
 
cf80990
c1d1b49
1332b31
8f1a540
 
 
cf80990
1332b31
 
8f1a540
 
 
cf80990
1332b31
 
8f1a540
 
 
2d30d63
13de8f8
 
 
 
 
 
8f1a540
 
 
1332b31
8f1a540
 
 
 
f54eb79
13de8f8
0f8ec45
13de8f8
 
169bac6
13de8f8
 
 
 
0f8ec45
13de8f8
0f8ec45
d50653b
13de8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8ec45
8f1a540
cf80990
8f1a540
 
 
cd04efe
8f1a540
13de8f8
 
 
0f8ec45
13de8f8
6aef7b0
 
2d30d63
 
 
 
0f8ec45
 
 
 
13de8f8
 
0f8ec45
 
 
d50653b
169bac6
13de8f8
 
0f8ec45
 
13de8f8
 
0f8ec45
 
13de8f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import annotations
import math
import random
# import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
from huggingface_hub import hf_hub_download, InferenceClient

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, vae=vae)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
pipe.to("cuda")

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
refiner.to("cuda")

pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, use_safetensors=True)
pipe_fast.to("cuda")

help_text = """
To optimize image results:
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
- Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
- **Rephrase your instructions** for potentially better results.
- **Increase the number of steps** for enhanced edits.
"""

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu") 

# Image Editor
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
EDMEulerScheduler.set_timesteps = set_timesteps_patched
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16 )
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")

client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.\n<|user|>\n"

def promptifier(prompt):
    formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
    stream = client1.text_generation(formatted_prompt, max_new_tokens=100)
    return stream

# Generator
# @spaces.GPU(duration=60, queue=False)
def king(type ,
        input_image ,
        instruction: str ,
        negative_prompt: str ="",
        enhance_prompt: bool = True,
        steps: int = 25,
        randomize_seed: bool = True,
        seed: int = 2404,
        width: int = 1024,
        height: int = 1024,
        guidance_scale: float = 6,
        fast=True,
        progress=gr.Progress(track_tqdm=True)
    ):
    if type=="Image Editing" :
        input_image = Image.open(input_image).convert('RGB')
        if randomize_seed:
            seed = random.randint(0, 999999)
        generator = torch.manual_seed(seed)
        output_image = pipe_edit(
            instruction, negative_prompt=negative_prompt, image=input_image,
            guidance_scale=guidance_scale, image_guidance_scale=1.5,
            width = input_image.width, height = input_image.height,
            num_inference_steps=steps, generator=generator, output_type="latent",
        ).images
        refine = refiner(
            prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
            negative_prompt = negative_prompt,
            guidance_scale=7.5,
            num_inference_steps=steps,
            image=output_image,
            generator=generator,
        ).images[0]  
        return seed, refine
    else :
        if randomize_seed:
            seed = random.randint(0, 999999)
        generator = torch.Generator().manual_seed(seed)
        if enhance_prompt:
            print(f"BEFORE: {instruction} ")
            instruction = promptifier(instruction)
            print(f"AFTER: {instruction} ")
        guidance_scale2=(guidance_scale/2)
        if fast:
            refine = pipe_fast(prompt = instruction,
            guidance_scale = guidance_scale2, 
            num_inference_steps = int(steps/2.5),
            width = width, height = height,
            generator = generator,
            ).images[0]
        else:            
            image = pipe_fast( prompt = instruction,
            negative_prompt=negative_prompt,
            guidance_scale = guidance_scale, 
            num_inference_steps = steps, 
            width = width, height = height,
            generator = generator, output_type="latent",
            ).images 

            refine = refiner( prompt=instruction,
                    negative_prompt = negative_prompt,
                    guidance_scale = 7.5,
                    num_inference_steps=  steps,
                    image=image, generator=generator,
            ).images[0]        
        return seed, refine

client = InferenceClient()
# Prompt classifier
def response(instruction, input_image=None ):
    if input_image is None:
        output="Image Generation"
    else:
        try:
            text = instruction
            labels = ["Image Editing", "Image Generation"]
            classification = client.zero_shot_classification(text, labels, multi_label=True)
            output = classification[0]
            output = str(output)
            if "Editing" in output:
                output = "Image Editing"
            else:
                output = "Image Generation"
        except:
            if input_image is None:
                output="Image Generation"
            else:
                output="Image Editing"
    return output

css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

examples=[
        [
            "Image Generation",
            None,
            "A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic.",

        ],
        [
            "Image Editing",
            "./supercar.png",
            "make it red",

        ],
        [
            "Image Editing",
            "./red_car.png",
            "add some snow",

        ],
        [
            "Image Generation",
            None,
            "An alien grasping a sign board contain word 'ALIEN' with Neon Glow, neon, futuristic, neonpunk, neon lights",
        ],
        [
            "Image Generation",
            None,
            "Beautiful Eiffel Tower at Night",
        ],
        [
            "Image Generation",
            None,
            "Beautiful Eiffel Tower at Night",
        ],
    ]

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<center><h1>Image Gen & Auto Edit</h1></center>")
    with gr.Row():
        instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
        generate_button = gr.Button("Run", scale=0)
    with gr.Row():
        type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
        enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
        fast = gr.Checkbox(label="FAST Generation", value=True, scale=0)
        
    with gr.Row():
        input_image = gr.Image(label="Image", type='filepath', interactive=True)

    with gr.Row():
        guidance_scale = gr.Number(value=6.0, step=0.1, label="Guidance Scale", interactive=True)
        steps = gr.Number(value=25, step=1, label="Steps", interactive=True)

    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
                    visible=True)
        with gr.Row():
            width =  gr.Slider( label="Width", minimum=256, maximum=2048, step=64, value=1024)
            height =  gr.Slider( label="Height", minimum=256, maximum=2048, step=64, value=1024)
        with gr.Row():
            randomize_seed = gr.Checkbox(label="Randomize Seed", value = True, interactive=True )
            seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)

    gr.Examples(
        examples=examples,
        inputs=[type,input_image, instruction],
        fn=king,
        outputs=[input_image],
        cache_examples=False,
    )

    # gr.Markdown(help_text)

    instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)

    input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
    
    gr.on(triggers=[
            generate_button.click,
            instruction.submit
        ],
            fn=king,
            inputs=[type,
                input_image,
                instruction,
                negative_prompt,
                enhance_prompt,
                steps,
                randomize_seed,
                seed,
                width,
                height,
                guidance_scale,
                fast,
            ],
            outputs=[seed, input_image],
          api_name = "image_gen_pro",
          queue=False
        )

demo.queue(max_size=500).launch()