Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,29 @@ pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="exampl
|
|
| 24 |
pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.7])
|
| 25 |
pipe_best.to("cuda")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
help_text = """
|
| 28 |
To optimize image results:
|
| 29 |
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
|
|
@@ -68,7 +91,7 @@ def king(type ,
|
|
| 68 |
image_cfg_scale: float = 1.7,
|
| 69 |
width: int = 1024,
|
| 70 |
height: int = 1024,
|
| 71 |
-
|
| 72 |
use_resolution_binning: bool = True,
|
| 73 |
progress=gr.Progress(track_tqdm=True),
|
| 74 |
):
|
|
@@ -90,7 +113,16 @@ def king(type ,
|
|
| 90 |
if randomize_seed:
|
| 91 |
seed = random.randint(0, 99999)
|
| 92 |
generator = torch.Generator().manual_seed(seed)
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
return seed, image
|
| 95 |
|
| 96 |
client = InferenceClient()
|
|
@@ -160,7 +192,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 160 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
|
| 161 |
with gr.Column(scale=1):
|
| 162 |
generate_button = gr.Button("Generate")
|
| 163 |
-
|
|
|
|
| 164 |
with gr.Row():
|
| 165 |
input_image = gr.Image(label="Image", type="pil", interactive=True)
|
| 166 |
|
|
@@ -207,7 +240,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 207 |
text_cfg_scale,
|
| 208 |
image_cfg_scale,
|
| 209 |
width,
|
| 210 |
-
height
|
|
|
|
| 211 |
],
|
| 212 |
outputs=[seed, input_image],
|
| 213 |
)
|
|
|
|
| 24 |
pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.7])
|
| 25 |
pipe_best.to("cuda")
|
| 26 |
|
| 27 |
+
pipe_ori = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
| 28 |
+
pipe_ori.load_lora_weights("RalFinger/origami-style-sdxl-lora", weight_name="ral-orgmi-sdxl.safetensors", adapter_name="origami")
|
| 29 |
+
pipe_ori.set_adapters(["origami"], adapter_weights=[2])
|
| 30 |
+
pipe_ori.to("cuda")
|
| 31 |
+
|
| 32 |
+
pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
| 33 |
+
pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="dalle2")
|
| 34 |
+
pipe_3D.load_lora_weights("goofyai/3d_render_style_xl", weight_name="3d_render_style_xl.safetensors", adapter_name="dalle1")
|
| 35 |
+
pipe_3D.set_adapters(["dalle2","dalle1"], adapter_weights=[1.1, 0.8])
|
| 36 |
+
pipe_3D.to("cuda")
|
| 37 |
+
|
| 38 |
+
pipe_pixel = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
| 39 |
+
pipe_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", weight_name="PixelArtRedmond-Lite64.safetensors", adapter_name="lora")
|
| 40 |
+
pipe_pixel.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
| 41 |
+
pipe_pixel.set_adapters(["lora", "pixel"], adapter_weights=[1.0, 1.2])
|
| 42 |
+
pipe_pixel.to("cuda")
|
| 43 |
+
|
| 44 |
+
pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
| 45 |
+
pipe_logo.load_lora_weights("artificialguybr/StickersRedmond", weight_name="StickersRedmond.safetensors", adapter_name="lora")
|
| 46 |
+
pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="pixel")
|
| 47 |
+
pipe_logo.set_adapters(["lora", "pixel"], adapter_weights=[0.5, 1.2])
|
| 48 |
+
pipe_logo.to("cuda")
|
| 49 |
+
|
| 50 |
help_text = """
|
| 51 |
To optimize image results:
|
| 52 |
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
|
|
|
|
| 91 |
image_cfg_scale: float = 1.7,
|
| 92 |
width: int = 1024,
|
| 93 |
height: int = 1024,
|
| 94 |
+
style="BEST",
|
| 95 |
use_resolution_binning: bool = True,
|
| 96 |
progress=gr.Progress(track_tqdm=True),
|
| 97 |
):
|
|
|
|
| 113 |
if randomize_seed:
|
| 114 |
seed = random.randint(0, 99999)
|
| 115 |
generator = torch.Generator().manual_seed(seed)
|
| 116 |
+
if style=="3D"
|
| 117 |
+
image = pipe_3D( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
| 118 |
+
elif style=="PixelArt"
|
| 119 |
+
image = pipe_pixel( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
| 120 |
+
elif style=="Logo"
|
| 121 |
+
image = pipe_logo( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
| 122 |
+
elif style=="Origami"
|
| 123 |
+
image = pipe_ori( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
| 124 |
+
else:
|
| 125 |
+
image = pipe_best( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
| 126 |
return seed, image
|
| 127 |
|
| 128 |
client = InferenceClient()
|
|
|
|
| 192 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
|
| 193 |
with gr.Column(scale=1):
|
| 194 |
generate_button = gr.Button("Generate")
|
| 195 |
+
with gr.Row():
|
| 196 |
+
style = gr.Radio(choices=["BEST","3D", "PixelART","Logo","Origami"],label="Style", value="BEST", interactive=True)
|
| 197 |
with gr.Row():
|
| 198 |
input_image = gr.Image(label="Image", type="pil", interactive=True)
|
| 199 |
|
|
|
|
| 240 |
text_cfg_scale,
|
| 241 |
image_cfg_scale,
|
| 242 |
width,
|
| 243 |
+
height,
|
| 244 |
+
style
|
| 245 |
],
|
| 246 |
outputs=[seed, input_image],
|
| 247 |
)
|