Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,17 @@
|
|
1 |
from __future__ import annotations
|
2 |
-
import uuid
|
3 |
-
import os
|
4 |
import math
|
5 |
import random
|
6 |
import spaces
|
7 |
import gradio as gr
|
|
|
8 |
import torch
|
9 |
from PIL import Image
|
10 |
-
from diffusers import
|
|
|
|
|
11 |
from huggingface_hub import InferenceClient
|
12 |
|
|
|
13 |
help_text = """
|
14 |
To optimize image editing results:
|
15 |
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
|
@@ -20,14 +22,38 @@ To optimize image editing results:
|
|
20 |
- For better facial details, especially if they're small, **crop the image** to enlarge the face's presence.
|
21 |
"""
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
|
27 |
if not torch.cuda.is_available():
|
28 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
29 |
-
|
30 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
31 |
|
32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
|
@@ -45,8 +71,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
45 |
seed = random.randint(0, 999999)
|
46 |
return seed
|
47 |
|
48 |
-
pipe2 = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
|
49 |
-
|
50 |
@spaces.GPU(duration=30, queue=False)
|
51 |
def king(type = "Image Editing",
|
52 |
input_image = None,
|
@@ -86,14 +110,14 @@ def king(type = "Image Editing",
|
|
86 |
image_cfg_scale = image_cfg_scale
|
87 |
input_image = input_image
|
88 |
|
89 |
-
steps=steps*
|
90 |
generator = torch.manual_seed(seed)
|
91 |
-
output_image =
|
92 |
instruction, image=input_image,
|
93 |
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
|
94 |
num_inference_steps=steps, generator=generator).images[0]
|
95 |
return seed, output_image
|
96 |
-
|
97 |
def response(instruction, input_image=None):
|
98 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
99 |
|
@@ -131,28 +155,28 @@ def get_example():
|
|
131 |
case = [
|
132 |
[
|
133 |
"Image Generation",
|
134 |
-
None,
|
135 |
"A Super Car",
|
|
|
136 |
],
|
137 |
[
|
138 |
"Image Editing",
|
139 |
-
"./supercar.png",
|
140 |
"make it red",
|
|
|
141 |
],
|
142 |
[
|
143 |
"Image Editing",
|
144 |
-
"./red_car.png",
|
145 |
"add some snow",
|
|
|
146 |
],
|
147 |
[
|
148 |
"Image Generation",
|
149 |
-
None,
|
150 |
"Ironman flying in front of Ststue of liberty",
|
|
|
151 |
],
|
152 |
[
|
153 |
"Image Generation",
|
154 |
-
None,
|
155 |
"Beautiful Eiffel Tower at Night",
|
|
|
156 |
],
|
157 |
]
|
158 |
return case
|
@@ -195,7 +219,10 @@ with gr.Blocks(css=css) as demo:
|
|
195 |
|
196 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
197 |
|
198 |
-
|
|
|
|
|
|
|
199 |
fn=king,
|
200 |
inputs=[type,
|
201 |
input_image,
|
|
|
1 |
from __future__ import annotations
|
|
|
|
|
2 |
import math
|
3 |
import random
|
4 |
import spaces
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
+
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
|
10 |
+
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
13 |
|
14 |
+
|
15 |
help_text = """
|
16 |
To optimize image editing results:
|
17 |
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
|
|
|
22 |
- For better facial details, especially if they're small, **crop the image** to enlarge the face's presence.
|
23 |
"""
|
24 |
|
25 |
+
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
26 |
+
self.num_inference_steps = num_inference_steps
|
27 |
+
|
28 |
+
ramp = np.linspace(0, 1, self.num_inference_steps)
|
29 |
+
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
30 |
+
|
31 |
+
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
32 |
+
self.timesteps = self.precondition_noise(sigmas)
|
33 |
+
|
34 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
35 |
+
self._step_index = None
|
36 |
+
self._begin_index = None
|
37 |
+
self.sigmas = self.sigmas.to("cpu")
|
38 |
+
|
39 |
+
|
40 |
+
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
41 |
+
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
|
42 |
+
|
43 |
+
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
44 |
+
|
45 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
46 |
+
|
47 |
+
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
48 |
+
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
49 |
+
)
|
50 |
+
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
51 |
+
pipe_edit.to("cuda")
|
52 |
|
53 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
54 |
|
55 |
if not torch.cuda.is_available():
|
56 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
|
|
|
|
57 |
|
58 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
59 |
|
|
|
71 |
seed = random.randint(0, 999999)
|
72 |
return seed
|
73 |
|
|
|
|
|
74 |
@spaces.GPU(duration=30, queue=False)
|
75 |
def king(type = "Image Editing",
|
76 |
input_image = None,
|
|
|
110 |
image_cfg_scale = image_cfg_scale
|
111 |
input_image = input_image
|
112 |
|
113 |
+
steps=steps*3
|
114 |
generator = torch.manual_seed(seed)
|
115 |
+
output_image = pipe_edit(
|
116 |
instruction, image=input_image,
|
117 |
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
|
118 |
num_inference_steps=steps, generator=generator).images[0]
|
119 |
return seed, output_image
|
120 |
+
|
121 |
def response(instruction, input_image=None):
|
122 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
123 |
|
|
|
155 |
case = [
|
156 |
[
|
157 |
"Image Generation",
|
|
|
158 |
"A Super Car",
|
159 |
+
None,
|
160 |
],
|
161 |
[
|
162 |
"Image Editing",
|
|
|
163 |
"make it red",
|
164 |
+
"./supercar.png",
|
165 |
],
|
166 |
[
|
167 |
"Image Editing",
|
|
|
168 |
"add some snow",
|
169 |
+
"./red_car.png",
|
170 |
],
|
171 |
[
|
172 |
"Image Generation",
|
|
|
173 |
"Ironman flying in front of Ststue of liberty",
|
174 |
+
None,
|
175 |
],
|
176 |
[
|
177 |
"Image Generation",
|
|
|
178 |
"Beautiful Eiffel Tower at Night",
|
179 |
+
None,
|
180 |
],
|
181 |
]
|
182 |
return case
|
|
|
219 |
|
220 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
221 |
|
222 |
+
gr.on(triggers=[
|
223 |
+
generate_button.click,
|
224 |
+
instruction.submit
|
225 |
+
],
|
226 |
fn=king,
|
227 |
inputs=[type,
|
228 |
input_image,
|