Spaces:
Running
Running
File size: 102,605 Bytes
51b7bbd 58cb6bc a6bed2c cfca8a4 976f8d8 69fc6d0 0a0cfdc 976f8d8 0683428 976f8d8 501ebd3 976f8d8 cd925dd 976f8d8 7909e90 976f8d8 ad1c492 7909e90 6baa534 12e6d5e d16abb4 b2d7f41 dafd19b b2d7f41 c822df8 e9b2ee8 4037c2d 70b842a 4037c2d a4bb529 70b842a 4037c2d e957e34 09a7186 7113eed 09a7186 b3fd9db 97f43e5 e1ac1c9 7d4300a 358f0ab 181a454 ca6e959 181a454 eb96ede 181a454 ad1c492 7d4300a eb96ede 181a454 61138f4 7d4300a 358f0ab 181a454 bbec288 358f0ab 181a454 62d539c 7d4300a 181a454 68ea1be 181a454 69fc6d0 181a454 69fc6d0 ad1c492 69fc6d0 d85ddfd 2621d76 bbec288 0cf6092 bbec288 181a454 358f0ab 181a454 7d4300a 42005bd 7d4300a 0dfd8e3 b5b74c3 0dfd8e3 b5b74c3 0dfd8e3 e29a6da f340c5b 117b2c3 f340c5b b2d7f41 42005bd 0dfd8e3 7d4300a 3ef5500 a812e16 3ef5500 3e8d44d 32a2de6 0d37390 5a01e6f 2fbf19c 32a2de6 0f3521d fe3d590 0f3521d 32a2de6 408a63c 8575fba 408a63c 21309c3 408a63c 21309c3 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 0cf6092 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 494a3ba 408a63c 32a2de6 408a63c d16abb4 eccee44 32a2de6 f82dcf5 32a2de6 408a63c d16abb4 eccee44 d16abb4 eccee44 9738395 eccee44 2312011 eccee44 9738395 eccee44 aa8371c 4ca54a5 eccee44 408a63c 32a2de6 408a63c 32a2de6 bf87ffb af0be92 fe186d6 408a63c 32a2de6 408a63c 32a2de6 408a63c f041de4 408a63c 32a2de6 0cf6092 408a63c 44dcbea 408a63c 87880d1 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 19ef535 9490776 408a63c 32a2de6 408a63c 79398c3 564993f 408a63c 19ef535 9490776 408a63c 32a2de6 408a63c f041de4 87880d1 f041de4 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 5abd46e 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c 32a2de6 408a63c bd4f864 408a63c 32a2de6 408a63c 32a2de6 408a63c c526fa1 7191bc9 496cedf 502e3ec 408a63c b2fc69c 408a63c c0ffbd2 408a63c 3ef5500 408a63c 25e0721 0cf6092 408a63c 3e8d44d 408a63c 32a2de6 ae0282b 408a63c 32a2de6 0cf6092 408a63c af0be92 408a63c 32a2de6 408a63c 9351408 408a63c 32a2de6 0cf6092 32a2de6 408a63c 32a2de6 408a63c 9d099ff 92819c3 408a63c 32a2de6 408a63c 32a2de6 408a63c 0cf6092 32a2de6 0cf6092 32a2de6 408a63c 0cf6092 32a2de6 408a63c 0cf6092 32a2de6 408a63c 32a2de6 408a63c 69bfcd2 408a63c 32a2de6 24f5dee 3c4243b 32a2de6 ae0282b e5a9067 42005bd 32a2de6 7909e90 6881818 7909e90 6881818 70b842a eb10c90 70b842a 03d5a42 dde0ef7 32a2de6 4998582 32a2de6 f07f6e6 32a2de6 cfa9a72 d16abb4 cfa9a72 32a2de6 cfa9a72 3c8d9b9 32a2de6 4998582 32a2de6 810bea9 04aa23c 810bea9 04aa23c 810bea9 04aa23c 810bea9 04aa23c 66b15fc 0ddc60f c2b20b6 0ddc60f d16abb4 0ddc60f fe186d6 0ddc60f 87880d1 0ddc60f 53c6b2a 0ddc60f a812e16 0ddc60f 502e3ec 0ddc60f f2294b3 0ddc60f 1443fba 66b15fc 32a2de6 9490776 32a2de6 87880d1 494a3ba 32a2de6 494a3ba 5abd46e 494a3ba 9490776 d16abb4 32a2de6 494a3ba af0be92 fe186d6 32a2de6 f041de4 32a2de6 9490776 32a2de6 79398c3 32a2de6 f041de4 32a2de6 9490776 32a2de6 494a3ba 32a2de6 9490776 32a2de6 9490776 32a2de6 bd4f864 32a2de6 bd4f864 32a2de6 c526fa1 502e3ec 32a2de6 c0ffbd2 3ef5500 25e0721 3e8d44d 32a2de6 9490776 32a2de6 af0be92 32a2de6 9490776 32a2de6 1443fba 32a2de6 d16abb4 32a2de6 ad1c492 32a2de6 31ecc71 eaaccb0 8f60615 31ecc71 5a99aa3 8f60615 5a99aa3 1443fba ad1c492 1443fba 34f4e3f fd4c500 9854909 fd4c500 34f4e3f 9854909 7909e90 34f4e3f 408a63c 34f4e3f 408a63c 51b7bbd 34f4e3f 09a7186 34f4e3f e8478b2 34f4e3f 2c97b85 34f4e3f 2621e9c 34f4e3f ad6d652 ae0282b ad6d652 34f4e3f ae0282b 34f4e3f 9854909 34f4e3f 66b15fc 4173a8b 874bbe6 70a6907 b7e75e1 32a2de6 66b15fc 32a2de6 ec8124e 32a2de6 ec8124e 66b15fc ec8124e 7113eed 9351408 ec8124e 66b15fc ec8124e 66b15fc bd90cfc 874bbe6 bd90cfc fa9d281 bd90cfc 6b61b25 dde0ef7 d72c643 bd90cfc dde0ef7 bd90cfc 85371bb bd90cfc 3da0df5 bd90cfc 6501ca0 874bbe6 b53e7fa 874bbe6 6501ca0 b8a97f1 6501ca0 be87321 780b3a0 be87321 70b842a 7909e90 70b842a d72c643 9f65133 7909e90 70b842a d72c643 70b842a d72c643 83ef326 d72c643 7909e90 fbbe578 32a2de6 408a63c 32a2de6 0cf6092 022f0e5 32a2de6 9750ff9 fbbe578 518eb85 32a2de6 022f0e5 32a2de6 526d334 fd4c500 526d334 fbbe578 9351408 fd4c500 9351408 526d334 fd4c500 526d334 66b15fc f06ee71 874bbe6 c0f4a2f 0cf6092 f06ee71 3c469fe 3e8d44d f06ee71 03d5a42 f06ee71 623e6f0 874bbe6 623e6f0 6881818 d425a5f 6881818 ad1c492 d425a5f 6881818 ad1c492 15105ad ad1c492 af8ab17 ad1c492 af8ab17 d16abb4 eccee44 6881818 f7b43ed 6881818 f7b43ed 32d0b3a 6881818 3ff33b4 f7b43ed 6881818 32d0b3a 6881818 4819728 6881818 0cf6092 6881818 f7b43ed 6881818 ad1c492 6881818 69bfcd2 6881818 42005bd 7909e90 fd4c500 7909e90 32a2de6 874bbe6 e47833c db9848f 66b15fc 32a2de6 24f5dee 408a63c 24f5dee 4819728 7909e90 32a2de6 42005bd 66b15fc 32a2de6 19ef535 32a2de6 42005bd 66b15fc 32a2de6 83d8e67 0cf6092 32d0b3a 83d8e67 c7187a6 13d5805 32a2de6 338c00b 9490776 32a2de6 11f524f 4819728 00875eb c51257e 7909e90 c7cea75 e5a9067 ad6d652 ae0282b ad6d652 7909e90 117b2c3 ae0282b 7909e90 32a2de6 66b15fc 32a2de6 66b15fc 42005bd 32a2de6 7909e90 fd4c500 7909e90 fd4c500 7909e90 3ef5500 fd4c500 3ef5500 32a2de6 874bbe6 32a2de6 fd4c500 24f5dee fd4c500 24f5dee fd4c500 24f5dee 32a2de6 24f5dee 42005bd 408a63c 3ef5500 408a63c 3ef5500 32a2de6 0cf6092 db9848f 32a2de6 0cf6092 32a2de6 42005bd 32a2de6 fd4c500 3ef5500 fd4c500 32a2de6 66b15fc fd4c500 32a2de6 fd4c500 9854909 fd4c500 32a2de6 42005bd 9854909 42005bd 32a2de6 7909e90 32a2de6 fd4c500 32a2de6 ae0282b 9490776 32a2de6 12e6d5e 66b15fc 12e6d5e 66b15fc 42005bd 66b15fc 7909e90 32a2de6 66b15fc 32a2de6 24f5dee 6881818 24f5dee 32a2de6 6881818 32a2de6 19ef535 9490776 32a2de6 66b15fc 3dff82f 6881818 3dff82f 6881818 3dff82f 6881818 3dff82f 32a2de6 44e383a 3dff82f 68ea1be 50f37a0 358f0ab bbec288 32a2de6 358f0ab 3dff82f 32a2de6 358f0ab 32a2de6 c8dffac 3dff82f df48549 3dff82f df48549 68ea1be df48549 c8dffac 3dff82f c8dffac 3dff82f c8dffac 68ea1be b113ee4 d16abb4 68ea1be d16abb4 68ea1be eccee44 68ea1be b2f8a6f 66b15fc e9b2ee8 94dbab3 502e3ec 94dbab3 1413838 e9b2ee8 0a9f0c4 79398c3 0a9f0c4 f041de4 7a5a9a0 66b15fc f87c7e9 3ef5500 b846feb 68ea1be a4bb529 40f498c 32a2de6 40f498c f39bca3 eccee44 32a2de6 0a9f0c4 32a2de6 0a9f0c4 66b15fc 32a2de6 af0be92 fe186d6 32a2de6 3dff82f 32a2de6 c526fa1 502e3ec c0ffbd2 32a2de6 0a9f0c4 5abd46e 0a9f0c4 58cb6bc 0a9f0c4 f041de4 32a2de6 87880d1 0a9f0c4 32a2de6 af0be92 32a2de6 0a9f0c4 32a2de6 0a9f0c4 32a2de6 0a9f0c4 32a2de6 0a9f0c4 3ef5500 25e0721 551b15e 66b15fc 70b842a 32a2de6 b2fc69c 0857108 b2fc69c 0857108 66b15fc 3dff82f a4bb529 66b15fc a4bb529 66b15fc a4bb529 66b15fc a4bb529 66b15fc a4bb529 66b15fc e530637 66b15fc 0a9f0c4 abd0cfa db8bfce a4bb529 e530637 70b842a 8d0381b e530637 32a2de6 4803d41 e530637 a4bb529 58cb6bc 66b15fc 0a9f0c4 488c798 83ef326 c19c964 40f498c bd4f864 f991f4f 3ff33b4 66b15fc 70b842a 8d0381b 70b842a 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 7909e90 b896bd3 32a2de6 24f5dee 408a63c 24f5dee 32d0b3a 408a63c 24f5dee 32a2de6 32d0b3a 408a63c 0387e10 0cf6092 32d0b3a 42005bd 32a2de6 32d0b3a 32a2de6 70b842a 3e8d44d 70b842a 9049df4 3e8d44d 70b842a 42005bd 32a2de6 f06ee71 623e6f0 6881818 42005bd 43b3838 e7b4ea9 bad0567 fe3d590 bad0567 dca10d6 96e5a0f dca10d6 32a2de6 42005bd 32a2de6 19ef535 9490776 32a2de6 6db5312 32a2de6 42005bd 32a2de6 6501ca0 b8a97f1 6501ca0 b8a97f1 6501ca0 32a2de6 96e5a0f 32a2de6 874bbe6 c0f4a2f 0cf6092 874bbe6 fbb7cf7 408a63c fbb7cf7 408a63c 32a2de6 fbb7cf7 03d5a42 1f01976 32a2de6 3e8d44d 32a2de6 3e8d44d 32a2de6 24f5dee 408a63c 3e8d44d 022f0e5 32a2de6 3e8d44d 32a2de6 9750ff9 3e8d44d 83d8e67 3e8d44d 83d8e67 e790ec3 83d8e67 505af8d 83d8e67 7909e90 83d8e67 32a2de6 2bd7782 32a2de6 2bd7782 32a2de6 0cf6092 bbec288 32a2de6 4173a8b 32a2de6 408a63c 32a2de6 022f0e5 32a2de6 9490776 2bd7782 9490776 2bd7782 32a2de6 6210be0 4173a8b 32a2de6 408a63c 32a2de6 022f0e5 408a63c 6210be0 408a63c 32a2de6 6210be0 b2d7f41 9a5df63 6210be0 b2d7f41 32a2de6 4173a8b 32a2de6 408a63c 32a2de6 022f0e5 32a2de6 9490776 2bd7782 9490776 2bd7782 32a2de6 4173a8b 32a2de6 408a63c 32a2de6 022f0e5 32a2de6 9490776 a5eaab9 9490776 a5eaab9 66b15fc 03d5a42 874bbe6 8d1ba7d 66b15fc 32a2de6 af14165 32a2de6 f1ac704 9437ef6 f4c2ae8 117b2c3 af14165 66b15fc f1ac704 9437ef6 f4c2ae8 e5a9067 8d1ba7d 66b15fc ad1c492 66b15fc 03d5a42 117b2c3 03d5a42 874bbe6 03d5a42 66b15fc 6881818 19d80b0 6881818 ad1c492 6881818 fad18e8 6881818 ad1c492 6881818 66b15fc a6bed2c 66b15fc 2bd7782 66b15fc b2d7f41 fb5f0a1 b2d7f41 66b15fc b2d7f41 66b15fc b2d7f41 66b15fc b4cb407 b2d7f41 66b15fc 7602382 b2d7f41 66b15fc af14165 66b15fc 32d0b3a 66b15fc af14165 66b15fc af14165 66b15fc 32a2de6 66b15fc ec8124e 215a692 3dbb2ea 408a63c 3dbb2ea 38bbf68 408a63c b2ffe3b 408a63c 215a692 408a63c 3dbb2ea b2ffe3b 3dbb2ea 38bbf68 8f218cc 2bd7782 c5cd4bb a4ab4f4 38bbf68 b2d7f41 2bd7782 be72c13 b2d7f41 2bd7782 c6b30e7 dafd19b 3dbb2ea 32a2de6 b896bd3 874bbe6 9351408 ed5b70a 9351408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 |
"""Define the PySRRegressor scikit-learn interface."""
import copy
import os
import pickle as pkl
import re
import shutil
import sys
import tempfile
import warnings
from datetime import datetime
from io import StringIO
from multiprocessing import cpu_count
from pathlib import Path
from typing import Callable, Dict, List, Literal, Optional, Tuple, Union, cast
import numpy as np
import pandas as pd
from numpy import ndarray
from numpy.typing import NDArray
from sklearn.base import BaseEstimator, MultiOutputMixin, RegressorMixin
from sklearn.utils import check_array, check_consistent_length, check_random_state
from sklearn.utils.validation import _check_feature_names_in # type: ignore
from sklearn.utils.validation import check_is_fitted
from .denoising import denoise, multi_denoise
from .deprecated import DEPRECATED_KWARGS
from .export_jax import sympy2jax
from .export_latex import (
sympy2latex,
sympy2latextable,
sympy2multilatextable,
with_preamble,
)
from .export_numpy import sympy2numpy
from .export_sympy import assert_valid_sympy_symbol, create_sympy_symbols, pysr2sympy
from .export_torch import sympy2torch
from .feature_selection import run_feature_selection
from .julia_extensions import load_required_packages
from .julia_helpers import (
PythonCall,
_escape_filename,
_load_cluster_manager,
jl_array,
jl_deserialize,
jl_serialize,
)
from .julia_import import SymbolicRegression, jl
from .utils import (
ArrayLike,
_csv_filename_to_pkl_filename,
_preprocess_julia_floats,
_safe_check_feature_names_in,
_subscriptify,
)
already_ran = False
def _process_constraints(binary_operators, unary_operators, constraints):
constraints = constraints.copy()
for op in unary_operators:
if op not in constraints:
constraints[op] = -1
for op in binary_operators:
if op not in constraints:
if op in ["^", "pow"]:
# Warn user that they should set up constraints
warnings.warn(
"You are using the `^` operator, but have not set up `constraints` for it. "
"This may lead to overly complex expressions. "
"One typical constraint is to use `constraints={..., '^': (-1, 1)}`, which "
"will allow arbitrary-complexity base (-1) but only powers such as "
"a constant or variable (1). "
"For more tips, please see https://astroautomata.com/PySR/tuning/"
)
constraints[op] = (-1, -1)
if op in ["plus", "sub", "+", "-"]:
if constraints[op][0] != constraints[op][1]:
raise NotImplementedError(
"You need equal constraints on both sides for - and +, "
"due to simplification strategies."
)
elif op in ["mult", "*"]:
# Make sure the complex expression is in the left side.
if constraints[op][0] == -1:
continue
if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
constraints[op][0], constraints[op][1] = (
constraints[op][1],
constraints[op][0],
)
return constraints
def _maybe_create_inline_operators(
binary_operators, unary_operators, extra_sympy_mappings
):
binary_operators = binary_operators.copy()
unary_operators = unary_operators.copy()
for op_list in [binary_operators, unary_operators]:
for i, op in enumerate(op_list):
is_user_defined_operator = "(" in op
if is_user_defined_operator:
jl.seval(op)
# Cut off from the first non-alphanumeric char:
first_non_char = [j for j, char in enumerate(op) if char == "("][0]
function_name = op[:first_non_char]
# Assert that function_name only contains
# alphabetical characters, numbers,
# and underscores:
if not re.match(r"^[a-zA-Z0-9_]+$", function_name):
raise ValueError(
f"Invalid function name {function_name}. "
"Only alphanumeric characters, numbers, "
"and underscores are allowed."
)
if (extra_sympy_mappings is None) or (
not function_name in extra_sympy_mappings
):
raise ValueError(
f"Custom function {function_name} is not defined in `extra_sympy_mappings`. "
"You can define it with, "
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1/x})`, where "
"`lambda x: 1/x` is a valid SymPy function defining the operator. "
"You can also define these at initialization time."
)
op_list[i] = function_name
return binary_operators, unary_operators
def _check_assertions(
X,
use_custom_variable_names,
variable_names,
weights,
y,
X_units,
y_units,
):
# Check for potential errors before they happen
assert len(X.shape) == 2
assert len(y.shape) in [1, 2]
assert X.shape[0] == y.shape[0]
if weights is not None:
assert weights.shape == y.shape
assert X.shape[0] == weights.shape[0]
if use_custom_variable_names:
assert len(variable_names) == X.shape[1]
# Check none of the variable names are function names:
for var_name in variable_names:
# Check if alphanumeric only:
if not re.match(r"^[₀₁₂₃₄₅₆₇₈₉a-zA-Z0-9_]+$", var_name):
raise ValueError(
f"Invalid variable name {var_name}. "
"Only alphanumeric characters, numbers, "
"and underscores are allowed."
)
assert_valid_sympy_symbol(var_name)
if X_units is not None and len(X_units) != X.shape[1]:
raise ValueError(
"The number of units in `X_units` must equal the number of features in `X`."
)
if y_units is not None:
good_y_units = False
if isinstance(y_units, list):
if len(y.shape) == 1:
good_y_units = len(y_units) == 1
else:
good_y_units = len(y_units) == y.shape[1]
else:
good_y_units = len(y.shape) == 1 or y.shape[1] == 1
if not good_y_units:
raise ValueError(
"The number of units in `y_units` must equal the number of output features in `y`."
)
# Class validation constants
VALID_OPTIMIZER_ALGORITHMS = ["BFGS", "NelderMead"]
class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
"""
High-performance symbolic regression algorithm.
This is the scikit-learn interface for SymbolicRegression.jl.
This model will automatically search for equations which fit
a given dataset subject to a particular loss and set of
constraints.
Most default parameters have been tuned over several example equations,
but you should adjust `niterations`, `binary_operators`, `unary_operators`
to your requirements. You can view more detailed explanations of the options
on the [options page](https://astroautomata.com/PySR/options) of the
documentation.
Parameters
----------
model_selection : str
Model selection criterion when selecting a final expression from
the list of best expression at each complexity.
Can be `'accuracy'`, `'best'`, or `'score'`. Default is `'best'`.
`'accuracy'` selects the candidate model with the lowest loss
(highest accuracy).
`'score'` selects the candidate model with the highest score.
Score is defined as the negated derivative of the log-loss with
respect to complexity - if an expression has a much better
loss at a slightly higher complexity, it is preferred.
`'best'` selects the candidate model with the highest score
among expressions with a loss better than at least 1.5x the
most accurate model.
binary_operators : list[str]
List of strings for binary operators used in the search.
See the [operators page](https://astroautomata.com/PySR/operators/)
for more details.
Default is `["+", "-", "*", "/"]`.
unary_operators : list[str]
Operators which only take a single scalar as input.
For example, `"cos"` or `"exp"`.
Default is `None`.
niterations : int
Number of iterations of the algorithm to run. The best
equations are printed and migrate between populations at the
end of each iteration.
Default is `40`.
populations : int
Number of populations running.
Default is `15`.
population_size : int
Number of individuals in each population.
Default is `33`.
max_evals : int
Limits the total number of evaluations of expressions to
this number. Default is `None`.
maxsize : int
Max complexity of an equation. Default is `20`.
maxdepth : int
Max depth of an equation. You can use both `maxsize` and
`maxdepth`. `maxdepth` is by default not used.
Default is `None`.
warmup_maxsize_by : float
Whether to slowly increase max size from a small number up to
the maxsize (if greater than 0). If greater than 0, says the
fraction of training time at which the current maxsize will
reach the user-passed maxsize.
Default is `0.0`.
timeout_in_seconds : float
Make the search return early once this many seconds have passed.
Default is `None`.
constraints : dict[str, int | tuple[int,int]]
Dictionary of int (unary) or 2-tuples (binary), this enforces
maxsize constraints on the individual arguments of operators.
E.g., `'pow': (-1, 1)` says that power laws can have any
complexity left argument, but only 1 complexity in the right
argument. Use this to force more interpretable solutions.
Default is `None`.
nested_constraints : dict[str, dict]
Specifies how many times a combination of operators can be
nested. For example, `{"sin": {"cos": 0}}, "cos": {"cos": 2}}`
specifies that `cos` may never appear within a `sin`, but `sin`
can be nested with itself an unlimited number of times. The
second term specifies that `cos` can be nested up to 2 times
within a `cos`, so that `cos(cos(cos(x)))` is allowed
(as well as any combination of `+` or `-` within it), but
`cos(cos(cos(cos(x))))` is not allowed. When an operator is not
specified, it is assumed that it can be nested an unlimited
number of times. This requires that there is no operator which
is used both in the unary operators and the binary operators
(e.g., `-` could be both subtract, and negation). For binary
operators, you only need to provide a single number: both
arguments are treated the same way, and the max of each
argument is constrained.
Default is `None`.
elementwise_loss : str
String of Julia code specifying an elementwise loss function.
Can either be a loss from LossFunctions.jl, or your own loss
written as a function. Examples of custom written losses include:
`myloss(x, y) = abs(x-y)` for non-weighted, or
`myloss(x, y, w) = w*abs(x-y)` for weighted.
The included losses include:
Regression: `LPDistLoss{P}()`, `L1DistLoss()`,
`L2DistLoss()` (mean square), `LogitDistLoss()`,
`HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`,
`PeriodicLoss(c)`, `QuantileLoss(τ)`.
Classification: `ZeroOneLoss()`, `PerceptronLoss()`,
`L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`,
`ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
`SigmoidLoss()`, `DWDMarginLoss(q)`.
Default is `"L2DistLoss()"`.
loss_function : str
Alternatively, you can specify the full objective function as
a snippet of Julia code, including any sort of custom evaluation
(including symbolic manipulations beforehand), and any sort
of loss function or regularizations. The default `loss_function`
used in SymbolicRegression.jl is roughly equal to:
```julia
function eval_loss(tree, dataset::Dataset{T,L}, options)::L where {T,L}
prediction, flag = eval_tree_array(tree, dataset.X, options)
if !flag
return L(Inf)
end
return sum((prediction .- dataset.y) .^ 2) / dataset.n
end
```
where the example elementwise loss is mean-squared error.
You may pass a function with the same arguments as this (note
that the name of the function doesn't matter). Here,
both `prediction` and `dataset.y` are 1D arrays of length `dataset.n`.
If using `batching`, then you should add an
`idx` argument to the function, which is `nothing`
for non-batched, and a 1D array of indices for batched.
Default is `None`.
complexity_of_operators : dict[str, float]
If you would like to use a complexity other than 1 for an
operator, specify the complexity here. For example,
`{"sin": 2, "+": 1}` would give a complexity of 2 for each use
of the `sin` operator, and a complexity of 1 for each use of
the `+` operator (which is the default). You may specify real
numbers for a complexity, and the total complexity of a tree
will be rounded to the nearest integer after computing.
Default is `None`.
complexity_of_constants : float
Complexity of constants. Default is `1`.
complexity_of_variables : float
Complexity of variables. Default is `1`.
parsimony : float
Multiplicative factor for how much to punish complexity.
Default is `0.0032`.
dimensional_constraint_penalty : float
Additive penalty for if dimensional analysis of an expression fails.
By default, this is `1000.0`.
dimensionless_constants_only : bool
Whether to only search for dimensionless constants, if using units.
Default is `False`.
use_frequency : bool
Whether to measure the frequency of complexities, and use that
instead of parsimony to explore equation space. Will naturally
find equations of all complexities.
Default is `True`.
use_frequency_in_tournament : bool
Whether to use the frequency mentioned above in the tournament,
rather than just the simulated annealing.
Default is `True`.
adaptive_parsimony_scaling : float
If the adaptive parsimony strategy (`use_frequency` and
`use_frequency_in_tournament`), this is how much to (exponentially)
weight the contribution. If you find that the search is only optimizing
the most complex expressions while the simpler expressions remain stagnant,
you should increase this value.
Default is `20.0`.
alpha : float
Initial temperature for simulated annealing
(requires `annealing` to be `True`).
Default is `0.1`.
annealing : bool
Whether to use annealing. Default is `False`.
early_stop_condition : float | str
Stop the search early if this loss is reached. You may also
pass a string containing a Julia function which
takes a loss and complexity as input, for example:
`"f(loss, complexity) = (loss < 0.1) && (complexity < 10)"`.
Default is `None`.
ncycles_per_iteration : int
Number of total mutations to run, per 10 samples of the
population, per iteration.
Default is `550`.
fraction_replaced : float
How much of population to replace with migrating equations from
other populations.
Default is `0.000364`.
fraction_replaced_hof : float
How much of population to replace with migrating equations from
hall of fame. Default is `0.035`.
weight_add_node : float
Relative likelihood for mutation to add a node.
Default is `0.79`.
weight_insert_node : float
Relative likelihood for mutation to insert a node.
Default is `5.1`.
weight_delete_node : float
Relative likelihood for mutation to delete a node.
Default is `1.7`.
weight_do_nothing : float
Relative likelihood for mutation to leave the individual.
Default is `0.21`.
weight_mutate_constant : float
Relative likelihood for mutation to change the constant slightly
in a random direction.
Default is `0.048`.
weight_mutate_operator : float
Relative likelihood for mutation to swap an operator.
Default is `0.47`.
weight_swap_operands : float
Relative likehood for swapping operands in binary operators.
Default is `0.1`.
weight_randomize : float
Relative likelihood for mutation to completely delete and then
randomly generate the equation
Default is `0.00023`.
weight_simplify : float
Relative likelihood for mutation to simplify constant parts by evaluation
Default is `0.0020`.
weight_optimize: float
Constant optimization can also be performed as a mutation, in addition to
the normal strategy controlled by `optimize_probability` which happens
every iteration. Using it as a mutation is useful if you want to use
a large `ncycles_periteration`, and may not optimize very often.
Default is `0.0`.
crossover_probability : float
Absolute probability of crossover-type genetic operation, instead of a mutation.
Default is `0.066`.
skip_mutation_failures : bool
Whether to skip mutation and crossover failures, rather than
simply re-sampling the current member.
Default is `True`.
migration : bool
Whether to migrate. Default is `True`.
hof_migration : bool
Whether to have the hall of fame migrate. Default is `True`.
topn : int
How many top individuals migrate from each population.
Default is `12`.
should_simplify : bool
Whether to use algebraic simplification in the search. Note that only
a few simple rules are implemented. Default is `True`.
should_optimize_constants : bool
Whether to numerically optimize constants (Nelder-Mead/Newton)
at the end of each iteration. Default is `True`.
optimizer_algorithm : str
Optimization scheme to use for optimizing constants. Can currently
be `NelderMead` or `BFGS`.
Default is `"BFGS"`.
optimizer_nrestarts : int
Number of time to restart the constants optimization process with
different initial conditions.
Default is `2`.
optimize_probability : float
Probability of optimizing the constants during a single iteration of
the evolutionary algorithm.
Default is `0.14`.
optimizer_iterations : int
Number of iterations that the constants optimizer can take.
Default is `8`.
perturbation_factor : float
Constants are perturbed by a max factor of
(perturbation_factor*T + 1). Either multiplied by this or
divided by this.
Default is `0.076`.
tournament_selection_n : int
Number of expressions to consider in each tournament.
Default is `10`.
tournament_selection_p : float
Probability of selecting the best expression in each
tournament. The probability will decay as p*(1-p)^n for other
expressions, sorted by loss.
Default is `0.86`.
procs : int
Number of processes (=number of populations running).
Default is `cpu_count()`.
multithreading : bool
Use multithreading instead of distributed backend.
Using procs=0 will turn off both. Default is `True`.
cluster_manager : str
For distributed computing, this sets the job queue system. Set
to one of "slurm", "pbs", "lsf", "sge", "qrsh", "scyld", or
"htc". If set to one of these, PySR will run in distributed
mode, and use `procs` to figure out how many processes to launch.
Default is `None`.
heap_size_hint_in_bytes : int
For multiprocessing, this sets the `--heap-size-hint` parameter
for new Julia processes. This can be configured when using
multi-node distributed compute, to give a hint to each process
about how much memory they can use before aggressive garbage
collection.
batching : bool
Whether to compare population members on small batches during
evolution. Still uses full dataset for comparing against hall
of fame. Default is `False`.
batch_size : int
The amount of data to use if doing batching. Default is `50`.
fast_cycle : bool
Batch over population subsamples. This is a slightly different
algorithm than regularized evolution, but does cycles 15%
faster. May be algorithmically less efficient.
Default is `False`.
turbo: bool
(Experimental) Whether to use LoopVectorization.jl to speed up the
search evaluation. Certain operators may not be supported.
Does not support 16-bit precision floats.
Default is `False`.
bumper: bool
(Experimental) Whether to use Bumper.jl to speed up the search
evaluation. Does not support 16-bit precision floats.
Default is `False`.
precision : int
What precision to use for the data. By default this is `32`
(float32), but you can select `64` or `16` as well, giving
you 64 or 16 bits of floating point precision, respectively.
If you pass complex data, the corresponding complex precision
will be used (i.e., `64` for complex128, `32` for complex64).
Default is `32`.
enable_autodiff : bool
Whether to create derivative versions of operators for automatic
differentiation. This is only necessary if you wish to compute
the gradients of an expression within a custom loss function.
Default is `False`.
random_state : int, Numpy RandomState instance or None
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
Default is `None`.
deterministic : bool
Make a PySR search give the same result every run.
To use this, you must turn off parallelism
(with `procs`=0, `multithreading`=False),
and set `random_state` to a fixed seed.
Default is `False`.
warm_start : bool
Tells fit to continue from where the last call to fit finished.
If false, each call to fit will be fresh, overwriting previous results.
Default is `False`.
verbosity : int
What verbosity level to use. 0 means minimal print statements.
Default is `1`.
update_verbosity : int
What verbosity level to use for package updates.
Will take value of `verbosity` if not given.
Default is `None`.
print_precision : int
How many significant digits to print for floats. Default is `5`.
progress : bool
Whether to use a progress bar instead of printing to stdout.
Default is `True`.
equation_file : str
Where to save the files (.csv extension).
Default is `None`.
temp_equation_file : bool
Whether to put the hall of fame file in the temp directory.
Deletion is then controlled with the `delete_tempfiles`
parameter.
Default is `False`.
tempdir : str
directory for the temporary files. Default is `None`.
delete_tempfiles : bool
Whether to delete the temporary files after finishing.
Default is `True`.
update: bool
Whether to automatically update Julia packages when `fit` is called.
You should make sure that PySR is up-to-date itself first, as
the packaged Julia packages may not necessarily include all
updated dependencies.
Default is `False`.
output_jax_format : bool
Whether to create a 'jax_format' column in the output,
containing jax-callable functions and the default parameters in
a jax array.
Default is `False`.
output_torch_format : bool
Whether to create a 'torch_format' column in the output,
containing a torch module with trainable parameters.
Default is `False`.
extra_sympy_mappings : dict[str, Callable]
Provides mappings between custom `binary_operators` or
`unary_operators` defined in julia strings, to those same
operators defined in sympy.
E.G if `unary_operators=["inv(x)=1/x"]`, then for the fitted
model to be export to sympy, `extra_sympy_mappings`
would be `{"inv": lambda x: 1/x}`.
Default is `None`.
extra_jax_mappings : dict[Callable, str]
Similar to `extra_sympy_mappings` but for model export
to jax. The dictionary maps sympy functions to jax functions.
For example: `extra_jax_mappings={sympy.sin: "jnp.sin"}` maps
the `sympy.sin` function to the equivalent jax expression `jnp.sin`.
Default is `None`.
extra_torch_mappings : dict[Callable, Callable]
The same as `extra_jax_mappings` but for model export
to pytorch. Note that the dictionary keys should be callable
pytorch expressions.
For example: `extra_torch_mappings={sympy.sin: torch.sin}`.
Default is `None`.
denoise : bool
Whether to use a Gaussian Process to denoise the data before
inputting to PySR. Can help PySR fit noisy data.
Default is `False`.
select_k_features : int
Whether to run feature selection in Python using random forests,
before passing to the symbolic regression code. None means no
feature selection; an int means select that many features.
Default is `None`.
**kwargs : dict
Supports deprecated keyword arguments. Other arguments will
result in an error.
Attributes
----------
equations_ : pandas.DataFrame | list[pandas.DataFrame]
Processed DataFrame containing the results of model fitting.
n_features_in_ : int
Number of features seen during :term:`fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
display_feature_names_in_ : ndarray of shape (`n_features_in_`,)
Pretty names of features, used only during printing.
X_units_ : list[str] of length n_features
Units of each variable in the training dataset, `X`.
y_units_ : str | list[str] of length n_out
Units of each variable in the training dataset, `y`.
nout_ : int
Number of output dimensions.
selection_mask_ : ndarray of shape (`n_features_in_`,)
Mask of which features of `X` to use when `select_k_features` is set.
tempdir_ : Path
Path to the temporary equations directory.
equation_file_ : Union[str, Path]
Output equation file name produced by the julia backend.
julia_state_stream_ : ndarray
The serialized state for the julia SymbolicRegression.jl backend (after fitting),
stored as an array of uint8, produced by Julia's Serialization.serialize function.
julia_options_stream_ : ndarray
The serialized julia options, stored as an array of uint8,
equation_file_contents_ : list[pandas.DataFrame]
Contents of the equation file output by the Julia backend.
show_pickle_warnings_ : bool
Whether to show warnings about what attributes can be pickled.
Examples
--------
```python
>>> import numpy as np
>>> from pysr import PySRRegressor
>>> randstate = np.random.RandomState(0)
>>> X = 2 * randstate.randn(100, 5)
>>> # y = 2.5382 * cos(x_3) + x_0 - 0.5
>>> y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5
>>> model = PySRRegressor(
... niterations=40,
... binary_operators=["+", "*"],
... unary_operators=[
... "cos",
... "exp",
... "sin",
... "inv(x) = 1/x", # Custom operator (julia syntax)
... ],
... model_selection="best",
... elementwise_loss="loss(x, y) = (x - y)^2", # Custom loss function (julia syntax)
... )
>>> model.fit(X, y)
>>> model
PySRRegressor.equations_ = [
0 0.000000 3.8552167 3.360272e+01 1
1 1.189847 (x0 * x0) 3.110905e+00 3
2 0.010626 ((x0 * x0) + -0.25573406) 3.045491e+00 5
3 0.896632 (cos(x3) + (x0 * x0)) 1.242382e+00 6
4 0.811362 ((x0 * x0) + (cos(x3) * 2.4384754)) 2.451971e-01 8
5 >>>> 13.733371 (((cos(x3) * 2.5382) + (x0 * x0)) + -0.5) 2.889755e-13 10
6 0.194695 ((x0 * x0) + (((cos(x3) + -0.063180044) * 2.53... 1.957723e-13 12
7 0.006988 ((x0 * x0) + (((cos(x3) + -0.32505524) * 1.538... 1.944089e-13 13
8 0.000955 (((((x0 * x0) + cos(x3)) + -0.8251649) + (cos(... 1.940381e-13 15
]
>>> model.score(X, y)
1.0
>>> model.predict(np.array([1,2,3,4,5]))
array([-1.15907818, -1.15907818, -1.15907818, -1.15907818, -1.15907818])
```
"""
equations_: Union[pd.DataFrame, List[pd.DataFrame], None]
n_features_in_: int
feature_names_in_: ArrayLike[str]
display_feature_names_in_: ArrayLike[str]
X_units_: Union[ArrayLike[str], None]
y_units_: Union[str, ArrayLike[str], None]
nout_: int
selection_mask_: Union[NDArray[np.bool_], None]
tempdir_: Path
equation_file_: Union[str, Path]
julia_state_stream_: Union[NDArray[np.uint8], None]
julia_options_stream_: Union[NDArray[np.uint8], None]
equation_file_contents_: Union[List[pd.DataFrame], None]
show_pickle_warnings_: bool
def __init__(
self,
model_selection: Literal["best", "accuracy", "score"] = "best",
*,
binary_operators: Optional[List[str]] = None,
unary_operators: Optional[List[str]] = None,
niterations: int = 40,
populations: int = 15,
population_size: int = 33,
max_evals: Optional[int] = None,
maxsize: int = 20,
maxdepth: Optional[int] = None,
warmup_maxsize_by: Optional[float] = None,
timeout_in_seconds: Optional[float] = None,
constraints: Optional[Dict[str, Union[int, Tuple[int, int]]]] = None,
nested_constraints: Optional[Dict[str, Dict[str, int]]] = None,
elementwise_loss: Optional[str] = None,
loss_function: Optional[str] = None,
complexity_of_operators: Optional[Dict[str, Union[int, float]]] = None,
complexity_of_constants: Union[int, float] = 1,
complexity_of_variables: Union[int, float] = 1,
parsimony: float = 0.0032,
dimensional_constraint_penalty: Optional[float] = None,
dimensionless_constants_only: bool = False,
use_frequency: bool = True,
use_frequency_in_tournament: bool = True,
adaptive_parsimony_scaling: float = 20.0,
alpha: float = 0.1,
annealing: bool = False,
early_stop_condition: Optional[Union[float, str]] = None,
ncycles_per_iteration: int = 550,
fraction_replaced: float = 0.000364,
fraction_replaced_hof: float = 0.035,
weight_add_node: float = 0.79,
weight_insert_node: float = 5.1,
weight_delete_node: float = 1.7,
weight_do_nothing: float = 0.21,
weight_mutate_constant: float = 0.048,
weight_mutate_operator: float = 0.47,
weight_swap_operands: float = 0.1,
weight_randomize: float = 0.00023,
weight_simplify: float = 0.0020,
weight_optimize: float = 0.0,
crossover_probability: float = 0.066,
skip_mutation_failures: bool = True,
migration: bool = True,
hof_migration: bool = True,
topn: int = 12,
should_simplify: Optional[bool] = None,
should_optimize_constants: bool = True,
optimizer_algorithm: Literal["BFGS", "NelderMead"] = "BFGS",
optimizer_nrestarts: int = 2,
optimize_probability: float = 0.14,
optimizer_iterations: int = 8,
perturbation_factor: float = 0.076,
tournament_selection_n: int = 10,
tournament_selection_p: float = 0.86,
procs: int = cpu_count(),
multithreading: Optional[bool] = None,
cluster_manager: Optional[
Literal["slurm", "pbs", "lsf", "sge", "qrsh", "scyld", "htc"]
] = None,
heap_size_hint_in_bytes: Optional[int] = None,
batching: bool = False,
batch_size: int = 50,
fast_cycle: bool = False,
turbo: bool = False,
bumper: bool = False,
precision: int = 32,
enable_autodiff: bool = False,
random_state=None,
deterministic: bool = False,
warm_start: bool = False,
verbosity: int = 1,
update_verbosity: Optional[int] = None,
print_precision: int = 5,
progress: bool = True,
equation_file: Optional[str] = None,
temp_equation_file: bool = False,
tempdir: Optional[str] = None,
delete_tempfiles: bool = True,
update: bool = False,
output_jax_format: bool = False,
output_torch_format: bool = False,
extra_sympy_mappings: Optional[Dict[str, Callable]] = None,
extra_torch_mappings: Optional[Dict[Callable, Callable]] = None,
extra_jax_mappings: Optional[Dict[Callable, str]] = None,
denoise: bool = False,
select_k_features: Optional[int] = None,
**kwargs,
):
# Hyperparameters
# - Model search parameters
self.model_selection = model_selection
self.binary_operators = binary_operators
self.unary_operators = unary_operators
self.niterations = niterations
self.populations = populations
self.population_size = population_size
self.ncycles_per_iteration = ncycles_per_iteration
# - Equation Constraints
self.maxsize = maxsize
self.maxdepth = maxdepth
self.constraints = constraints
self.nested_constraints = nested_constraints
self.warmup_maxsize_by = warmup_maxsize_by
self.should_simplify = should_simplify
# - Early exit conditions:
self.max_evals = max_evals
self.timeout_in_seconds = timeout_in_seconds
self.early_stop_condition = early_stop_condition
# - Loss parameters
self.elementwise_loss = elementwise_loss
self.loss_function = loss_function
self.complexity_of_operators = complexity_of_operators
self.complexity_of_constants = complexity_of_constants
self.complexity_of_variables = complexity_of_variables
self.parsimony = parsimony
self.dimensional_constraint_penalty = dimensional_constraint_penalty
self.dimensionless_constants_only = dimensionless_constants_only
self.use_frequency = use_frequency
self.use_frequency_in_tournament = use_frequency_in_tournament
self.adaptive_parsimony_scaling = adaptive_parsimony_scaling
self.alpha = alpha
self.annealing = annealing
# - Evolutionary search parameters
# -- Mutation parameters
self.weight_add_node = weight_add_node
self.weight_insert_node = weight_insert_node
self.weight_delete_node = weight_delete_node
self.weight_do_nothing = weight_do_nothing
self.weight_mutate_constant = weight_mutate_constant
self.weight_mutate_operator = weight_mutate_operator
self.weight_swap_operands = weight_swap_operands
self.weight_randomize = weight_randomize
self.weight_simplify = weight_simplify
self.weight_optimize = weight_optimize
self.crossover_probability = crossover_probability
self.skip_mutation_failures = skip_mutation_failures
# -- Migration parameters
self.migration = migration
self.hof_migration = hof_migration
self.fraction_replaced = fraction_replaced
self.fraction_replaced_hof = fraction_replaced_hof
self.topn = topn
# -- Constants parameters
self.should_optimize_constants = should_optimize_constants
self.optimizer_algorithm = optimizer_algorithm
self.optimizer_nrestarts = optimizer_nrestarts
self.optimize_probability = optimize_probability
self.optimizer_iterations = optimizer_iterations
self.perturbation_factor = perturbation_factor
# -- Selection parameters
self.tournament_selection_n = tournament_selection_n
self.tournament_selection_p = tournament_selection_p
# -- Performance parameters
self.procs = procs
self.multithreading = multithreading
self.cluster_manager = cluster_manager
self.heap_size_hint_in_bytes = heap_size_hint_in_bytes
self.batching = batching
self.batch_size = batch_size
self.fast_cycle = fast_cycle
self.turbo = turbo
self.bumper = bumper
self.precision = precision
self.enable_autodiff = enable_autodiff
self.random_state = random_state
self.deterministic = deterministic
self.warm_start = warm_start
# Additional runtime parameters
# - Runtime user interface
self.verbosity = verbosity
self.update_verbosity = update_verbosity
self.print_precision = print_precision
self.progress = progress
# - Project management
self.equation_file = equation_file
self.temp_equation_file = temp_equation_file
self.tempdir = tempdir
self.delete_tempfiles = delete_tempfiles
self.update = update
self.output_jax_format = output_jax_format
self.output_torch_format = output_torch_format
self.extra_sympy_mappings = extra_sympy_mappings
self.extra_jax_mappings = extra_jax_mappings
self.extra_torch_mappings = extra_torch_mappings
# Pre-modelling transformation
self.denoise = denoise
self.select_k_features = select_k_features
# Once all valid parameters have been assigned handle the
# deprecated kwargs
if len(kwargs) > 0: # pragma: no cover
for k, v in kwargs.items():
# Handle renamed kwargs
if k in DEPRECATED_KWARGS:
updated_kwarg_name = DEPRECATED_KWARGS[k]
setattr(self, updated_kwarg_name, v)
warnings.warn(
f"{k} has been renamed to {updated_kwarg_name} in PySRRegressor. "
"Please use that instead.",
FutureWarning,
)
# Handle kwargs that have been moved to the fit method
elif k in ["weights", "variable_names", "Xresampled"]:
warnings.warn(
f"{k} is a data dependant parameter so should be passed when fit is called. "
f"Ignoring parameter; please pass {k} during the call to fit instead.",
FutureWarning,
)
elif k == "julia_project":
warnings.warn(
"The `julia_project` parameter has been deprecated. To use a custom "
"julia project, please see `https://astroautomata.com/PySR/backend`.",
FutureWarning,
)
elif k == "julia_kwargs":
warnings.warn(
"The `julia_kwargs` parameter has been deprecated. To pass custom "
"keyword arguments to the julia backend, you should use environment variables. "
"See the Julia documentation for more information.",
FutureWarning,
)
else:
raise TypeError(
f"{k} is not a valid keyword argument for PySRRegressor."
)
@classmethod
def from_file(
cls,
equation_file,
*,
binary_operators: Optional[List[str]] = None,
unary_operators: Optional[List[str]] = None,
n_features_in: Optional[int] = None,
feature_names_in: Optional[ArrayLike[str]] = None,
selection_mask: Optional[NDArray[np.bool_]] = None,
nout: int = 1,
**pysr_kwargs,
):
"""
Create a model from a saved model checkpoint or equation file.
Parameters
----------
equation_file : str
Path to a pickle file containing a saved model, or a csv file
containing equations.
binary_operators : list[str]
The same binary operators used when creating the model.
Not needed if loading from a pickle file.
unary_operators : list[str]
The same unary operators used when creating the model.
Not needed if loading from a pickle file.
n_features_in : int
Number of features passed to the model.
Not needed if loading from a pickle file.
feature_names_in : list[str]
Names of the features passed to the model.
Not needed if loading from a pickle file.
selection_mask : NDArray[np.bool_]
If using `select_k_features`, you must pass `model.selection_mask_` here.
Not needed if loading from a pickle file.
nout : int
Number of outputs of the model.
Not needed if loading from a pickle file.
Default is `1`.
**pysr_kwargs : dict
Any other keyword arguments to initialize the PySRRegressor object.
These will overwrite those stored in the pickle file.
Not needed if loading from a pickle file.
Returns
-------
model : PySRRegressor
The model with fitted equations.
"""
pkl_filename = _csv_filename_to_pkl_filename(equation_file)
# Try to load model from <equation_file>.pkl
print(f"Checking if {pkl_filename} exists...")
if os.path.exists(pkl_filename):
print(f"Loading model from {pkl_filename}")
assert binary_operators is None
assert unary_operators is None
assert n_features_in is None
with open(pkl_filename, "rb") as f:
model = pkl.load(f)
# Change equation_file_ to be in the same dir as the pickle file
base_dir = os.path.dirname(pkl_filename)
base_equation_file = os.path.basename(model.equation_file_)
model.equation_file_ = os.path.join(base_dir, base_equation_file)
# Update any parameters if necessary, such as
# extra_sympy_mappings:
model.set_params(**pysr_kwargs)
if "equations_" not in model.__dict__ or model.equations_ is None:
model.refresh()
return model
# Else, we re-create it.
print(
f"{pkl_filename} does not exist, "
"so we must create the model from scratch."
)
assert binary_operators is not None or unary_operators is not None
assert n_features_in is not None
# TODO: copy .bkup file if exists.
model = cls(
equation_file=equation_file,
binary_operators=binary_operators,
unary_operators=unary_operators,
**pysr_kwargs,
)
model.nout_ = nout
model.n_features_in_ = n_features_in
if feature_names_in is None:
model.feature_names_in_ = np.array([f"x{i}" for i in range(n_features_in)])
model.display_feature_names_in_ = np.array(
[f"x{_subscriptify(i)}" for i in range(n_features_in)]
)
else:
assert len(feature_names_in) == n_features_in
model.feature_names_in_ = feature_names_in
model.display_feature_names_in_ = feature_names_in
if selection_mask is None:
model.selection_mask_ = np.ones(n_features_in, dtype=np.bool_)
else:
model.selection_mask_ = selection_mask
model.refresh(checkpoint_file=equation_file)
return model
def __repr__(self):
"""
Print all current equations fitted by the model.
The string `>>>>` denotes which equation is selected by the
`model_selection`.
"""
if not hasattr(self, "equations_") or self.equations_ is None:
return "PySRRegressor.equations_ = None"
output = "PySRRegressor.equations_ = [\n"
equations = self.equations_
if not isinstance(equations, list):
all_equations = [equations]
else:
all_equations = equations
for i, equations in enumerate(all_equations):
selected = pd.Series([""] * len(equations), index=equations.index)
chosen_row = idx_model_selection(equations, self.model_selection)
selected[chosen_row] = ">>>>"
repr_equations = pd.DataFrame(
dict(
pick=selected,
score=equations["score"],
equation=equations["equation"],
loss=equations["loss"],
complexity=equations["complexity"],
)
)
if len(all_equations) > 1:
output += "[\n"
for line in repr_equations.__repr__().split("\n"):
output += "\t" + line + "\n"
if len(all_equations) > 1:
output += "]"
if i < len(all_equations) - 1:
output += ", "
output += "]"
return output
def __getstate__(self):
"""
Handle pickle serialization for PySRRegressor.
The Scikit-learn standard requires estimators to be serializable via
`pickle.dumps()`. However, some attributes do not support pickling
and need to be hidden, such as the JAX and Torch representations.
"""
state = self.__dict__
show_pickle_warning = not (
"show_pickle_warnings_" in state and not state["show_pickle_warnings_"]
)
state_keys_containing_lambdas = ["extra_sympy_mappings", "extra_torch_mappings"]
for state_key in state_keys_containing_lambdas:
if state[state_key] is not None and show_pickle_warning:
warnings.warn(
f"`{state_key}` cannot be pickled and will be removed from the "
"serialized instance. When loading the model, please redefine "
f"`{state_key}` at runtime."
)
state_keys_to_clear = state_keys_containing_lambdas
pickled_state = {
key: (None if key in state_keys_to_clear else value)
for key, value in state.items()
}
if ("equations_" in pickled_state) and (
pickled_state["equations_"] is not None
):
pickled_state["output_torch_format"] = False
pickled_state["output_jax_format"] = False
if self.nout_ == 1:
pickled_columns = ~pickled_state["equations_"].columns.isin(
["jax_format", "torch_format"]
)
pickled_state["equations_"] = (
pickled_state["equations_"].loc[:, pickled_columns].copy()
)
else:
pickled_columns = [
~dataframe.columns.isin(["jax_format", "torch_format"])
for dataframe in pickled_state["equations_"]
]
pickled_state["equations_"] = [
dataframe.loc[:, signle_pickled_columns]
for dataframe, signle_pickled_columns in zip(
pickled_state["equations_"], pickled_columns
)
]
return pickled_state
def _checkpoint(self):
"""Save the model's current state to a checkpoint file.
This should only be used internally by PySRRegressor.
"""
# Save model state:
self.show_pickle_warnings_ = False
with open(_csv_filename_to_pkl_filename(self.equation_file_), "wb") as f:
pkl.dump(self, f)
self.show_pickle_warnings_ = True
@property
def equations(self): # pragma: no cover
warnings.warn(
"PySRRegressor.equations is now deprecated. "
"Please use PySRRegressor.equations_ instead.",
FutureWarning,
)
return self.equations_
@property
def julia_options_(self):
"""The deserialized julia options."""
return jl_deserialize(self.julia_options_stream_)
@property
def julia_state_(self):
"""The deserialized state."""
return jl_deserialize(self.julia_state_stream_)
@property
def raw_julia_state_(self):
warnings.warn(
"PySRRegressor.raw_julia_state_ is now deprecated. "
"Please use PySRRegressor.julia_state_ instead, or julia_state_stream_ "
"for the raw stream of bytes.",
FutureWarning,
)
return self.julia_state_
def get_best(self, index=None) -> Union[pd.Series, List[pd.Series]]:
"""
Get best equation using `model_selection`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from `self.equations_`,
give the row number here. This overrides the `model_selection`
parameter. If there are multiple output features, then pass
a list of indices with the order the same as the output feature.
Returns
-------
best_equation : pandas.Series
Dictionary representing the best expression found.
Raises
------
NotImplementedError
Raised when an invalid model selection strategy is provided.
"""
check_is_fitted(self, attributes=["equations_"])
if index is not None:
if isinstance(self.equations_, list):
assert isinstance(
index, list
), "With multiple output features, index must be a list."
return [eq.iloc[i] for eq, i in zip(self.equations_, index)]
elif isinstance(self.equations_, pd.DataFrame):
return cast(pd.Series, self.equations_.iloc[index])
else:
raise ValueError("No equations have been generated yet.")
if isinstance(self.equations_, list):
return [
cast(pd.Series, eq.loc[idx_model_selection(eq, self.model_selection)])
for eq in self.equations_
]
elif isinstance(self.equations_, pd.DataFrame):
return cast(
pd.Series,
self.equations_.loc[
idx_model_selection(self.equations_, self.model_selection)
],
)
else:
raise ValueError("No equations have been generated yet.")
def _setup_equation_file(self):
"""
Set the full pathname of the equation file.
This is performed using `tempdir` and
`equation_file`.
"""
# Cast tempdir string as a Path object
self.tempdir_ = Path(tempfile.mkdtemp(dir=self.tempdir))
if self.temp_equation_file:
self.equation_file_ = self.tempdir_ / "hall_of_fame.csv"
elif self.equation_file is None:
if self.warm_start and (
hasattr(self, "equation_file_") and self.equation_file_
):
pass
else:
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
self.equation_file_ = "hall_of_fame_" + date_time + ".csv"
else:
self.equation_file_ = self.equation_file
self.equation_file_contents_ = None
def _validate_and_set_init_params(self):
"""
Ensure parameters passed at initialization are valid.
Also returns a dictionary of parameters to update from their
values given at initialization.
Returns
-------
packed_modified_params : dict
Dictionary of parameters to modify from their initialized
values. For example, default parameters are set here
when a parameter is left set to `None`.
"""
# Immutable parameter validation
# Ensure instance parameters are allowable values:
if self.tournament_selection_n > self.population_size:
raise ValueError(
"`tournament_selection_n` parameter must be smaller than `population_size`."
)
if self.maxsize > 40:
warnings.warn(
"Note: Using a large maxsize for the equation search will be "
"exponentially slower and use significant memory."
)
elif self.maxsize < 7:
raise ValueError("PySR requires a maxsize of at least 7")
if self.deterministic and not (
self.multithreading in [False, None]
and self.procs == 0
and self.random_state is not None
):
raise ValueError(
"To ensure deterministic searches, you must set `random_state` to a seed, "
"`procs` to `0`, and `multithreading` to `False` or `None`."
)
if self.random_state is not None and (
not self.deterministic or self.procs != 0
):
warnings.warn(
"Note: Setting `random_state` without also setting `deterministic` "
"to True and `procs` to 0 will result in non-deterministic searches. "
)
if self.elementwise_loss is not None and self.loss_function is not None:
raise ValueError(
"You cannot set both `elementwise_loss` and `loss_function`."
)
# NotImplementedError - Values that could be supported at a later time
if self.optimizer_algorithm not in VALID_OPTIMIZER_ALGORITHMS:
raise NotImplementedError(
f"PySR currently only supports the following optimizer algorithms: {VALID_OPTIMIZER_ALGORITHMS}"
)
progress = self.progress
# 'Mutable' parameter validation
# (Params and their default values, if None is given:)
default_param_mapping = {
"binary_operators": "+ * - /".split(" "),
"unary_operators": [],
"maxdepth": self.maxsize,
"constraints": {},
"multithreading": self.procs != 0 and self.cluster_manager is None,
"batch_size": 1,
"update_verbosity": int(self.verbosity),
"progress": progress,
}
packed_modified_params = {}
for parameter, default_value in default_param_mapping.items():
parameter_value = getattr(self, parameter)
if parameter_value is None:
parameter_value = default_value
else:
# Special cases such as when binary_operators is a string
if parameter in ["binary_operators", "unary_operators"] and isinstance(
parameter_value, str
):
parameter_value = [parameter_value]
elif parameter == "batch_size" and parameter_value < 1:
warnings.warn(
"Given `batch_size` must be greater than or equal to one. "
"`batch_size` has been increased to equal one."
)
parameter_value = 1
elif (
parameter == "progress"
and parameter_value
and "buffer" not in sys.stdout.__dir__()
):
warnings.warn(
"Note: it looks like you are running in Jupyter. "
"The progress bar will be turned off."
)
parameter_value = False
packed_modified_params[parameter] = parameter_value
assert (
len(packed_modified_params["binary_operators"])
+ len(packed_modified_params["unary_operators"])
> 0
)
return packed_modified_params
def _validate_and_set_fit_params(
self, X, y, Xresampled, weights, variable_names, X_units, y_units
) -> Tuple[
ndarray,
ndarray,
Optional[ndarray],
Optional[ndarray],
ArrayLike[str],
Optional[ArrayLike[str]],
Optional[Union[str, ArrayLike[str]]],
]:
"""
Validate the parameters passed to the :term`fit` method.
This method also sets the `nout_` attribute.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape `(n_samples, n_features)`.
y : ndarray | pandas.DataFrame}
Target values of shape `(n_samples,)` or `(n_samples, n_targets)`.
Will be cast to `X`'s dtype if necessary.
Xresampled : ndarray | pandas.DataFrame
Resampled training data used for denoising,
of shape `(n_resampled, n_features)`.
weights : ndarray | pandas.DataFrame
Weight array of the same shape as `y`.
Each element is how to weight the mean-square-error loss
for that particular element of y.
variable_names : ndarray of length n_features
Names of each variable in the training dataset, `X`.
X_units : list[str] of length n_features
Units of each variable in the training dataset, `X`.
y_units : str | list[str] of length n_out
Units of each variable in the training dataset, `y`.
Returns
-------
X_validated : ndarray of shape (n_samples, n_features)
Validated training data.
y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
Validated target data.
Xresampled : ndarray of shape (n_resampled, n_features)
Validated resampled training data used for denoising.
variable_names_validated : list[str] of length n_features
Validated list of variable names for each feature in `X`.
X_units : list[str] of length n_features
Validated units for `X`.
y_units : str | list[str] of length n_out
Validated units for `y`.
"""
if isinstance(X, pd.DataFrame):
if variable_names:
variable_names = None
warnings.warn(
"`variable_names` has been reset to `None` as `X` is a DataFrame. "
"Using DataFrame column names instead."
)
if (
pd.api.types.is_object_dtype(X.columns)
and X.columns.str.contains(" ").any()
):
X.columns = X.columns.str.replace(" ", "_")
warnings.warn(
"Spaces in DataFrame column names are not supported. "
"Spaces have been replaced with underscores. \n"
"Please rename the columns to valid names."
)
elif variable_names and any([" " in name for name in variable_names]):
variable_names = [name.replace(" ", "_") for name in variable_names]
warnings.warn(
"Spaces in `variable_names` are not supported. "
"Spaces have been replaced with underscores. \n"
"Please use valid names instead."
)
# Data validation and feature name fetching via sklearn
# This method sets the n_features_in_ attribute
if Xresampled is not None:
Xresampled = check_array(Xresampled)
if weights is not None:
weights = check_array(weights, ensure_2d=False)
check_consistent_length(weights, y)
X, y = self._validate_data_X_y(X, y)
self.feature_names_in_ = _safe_check_feature_names_in(
self, variable_names, generate_names=False
)
if self.feature_names_in_ is None:
self.feature_names_in_ = np.array([f"x{i}" for i in range(X.shape[1])])
self.display_feature_names_in_ = np.array(
[f"x{_subscriptify(i)}" for i in range(X.shape[1])]
)
variable_names = self.feature_names_in_
else:
self.display_feature_names_in_ = self.feature_names_in_
variable_names = self.feature_names_in_
# Handle multioutput data
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
y = y.reshape(-1)
elif len(y.shape) == 2:
self.nout_ = y.shape[1]
else:
raise NotImplementedError("y shape not supported!")
self.X_units_ = copy.deepcopy(X_units)
self.y_units_ = copy.deepcopy(y_units)
return X, y, Xresampled, weights, variable_names, X_units, y_units
def _validate_data_X_y(self, X, y) -> Tuple[ndarray, ndarray]:
raw_out = self._validate_data(X=X, y=y, reset=True, multi_output=True) # type: ignore
return cast(Tuple[ndarray, ndarray], raw_out)
def _validate_data_X(self, X) -> Tuple[ndarray]:
raw_out = self._validate_data(X=X, reset=False) # type: ignore
return cast(Tuple[ndarray], raw_out)
def _pre_transform_training_data(
self,
X: ndarray,
y: ndarray,
Xresampled: Union[ndarray, None],
variable_names: ArrayLike[str],
X_units: Union[ArrayLike[str], None],
y_units: Union[ArrayLike[str], str, None],
random_state: np.random.RandomState,
):
"""
Transform the training data before fitting the symbolic regressor.
This method also updates/sets the `selection_mask_` attribute.
Parameters
----------
X : ndarray
Training data of shape (n_samples, n_features).
y : ndarray
Target values of shape (n_samples,) or (n_samples, n_targets).
Will be cast to X's dtype if necessary.
Xresampled : ndarray | None
Resampled training data, of shape `(n_resampled, n_features)`,
used for denoising.
variable_names : list[str]
Names of each variable in the training dataset, `X`.
Of length `n_features`.
X_units : list[str]
Units of each variable in the training dataset, `X`.
y_units : str | list[str]
Units of each variable in the training dataset, `y`.
random_state : int | np.RandomState
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`. Default is `None`.
Returns
-------
X_transformed : ndarray of shape (n_samples, n_features)
Transformed training data. n_samples will be equal to
`Xresampled.shape[0]` if `self.denoise` is `True`,
and `Xresampled is not None`, otherwise it will be
equal to `X.shape[0]`. n_features will be equal to
`self.select_k_features` if `self.select_k_features is not None`,
otherwise it will be equal to `X.shape[1]`
y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
Transformed target data. n_samples will be equal to
`Xresampled.shape[0]` if `self.denoise` is `True`,
and `Xresampled is not None`, otherwise it will be
equal to `X.shape[0]`.
variable_names_transformed : list[str] of length n_features
Names of each variable in the transformed dataset,
`X_transformed`.
X_units_transformed : list[str] of length n_features
Units of each variable in the transformed dataset.
y_units_transformed : str | list[str] of length n_out
Units of each variable in the transformed dataset.
"""
# Feature selection transformation
if self.select_k_features:
selection_mask = run_feature_selection(
X, y, self.select_k_features, random_state=random_state
)
X = X[:, selection_mask]
if Xresampled is not None:
Xresampled = Xresampled[:, selection_mask]
# Reduce variable_names to selection
variable_names = cast(
ArrayLike[str],
[
variable_names[i]
for i in range(len(variable_names))
if selection_mask[i]
],
)
if X_units is not None:
X_units = cast(
ArrayLike[str],
[X_units[i] for i in range(len(X_units)) if selection_mask[i]],
)
self.X_units_ = copy.deepcopy(X_units)
# Re-perform data validation and feature name updating
X, y = self._validate_data_X_y(X, y)
# Update feature names with selected variable names
self.selection_mask_ = selection_mask
self.feature_names_in_ = _check_feature_names_in(self, variable_names)
self.display_feature_names_in_ = self.feature_names_in_
print(f"Using features {self.feature_names_in_}")
# Denoising transformation
if self.denoise:
if self.nout_ > 1:
X, y = multi_denoise(
X, y, Xresampled=Xresampled, random_state=random_state
)
else:
X, y = denoise(X, y, Xresampled=Xresampled, random_state=random_state)
return X, y, variable_names, X_units, y_units
def _run(self, X, y, mutated_params, weights, seed: int):
"""
Run the symbolic regression fitting process on the julia backend.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape `(n_samples, n_features)`.
y : ndarray | pandas.DataFrame
Target values of shape `(n_samples,)` or `(n_samples, n_targets)`.
Will be cast to `X`'s dtype if necessary.
mutated_params : dict[str, Any]
Dictionary of mutated versions of some parameters passed in __init__.
weights : ndarray | pandas.DataFrame
Weight array of the same shape as `y`.
Each element is how to weight the mean-square-error loss
for that particular element of y.
seed : int
Random seed for julia backend process.
Returns
-------
self : object
Reference to `self` with fitted attributes.
Raises
------
ImportError
Raised when the julia backend fails to import a package.
"""
# Need to be global as we don't want to recreate/reinstate julia for
# every new instance of PySRRegressor
global already_ran
# These are the parameters which may be modified from the ones
# specified in init, so we define them here locally:
binary_operators = mutated_params["binary_operators"]
unary_operators = mutated_params["unary_operators"]
maxdepth = mutated_params["maxdepth"]
constraints = mutated_params["constraints"]
nested_constraints = self.nested_constraints
complexity_of_operators = self.complexity_of_operators
multithreading = mutated_params["multithreading"]
cluster_manager = self.cluster_manager
batch_size = mutated_params["batch_size"]
update_verbosity = mutated_params["update_verbosity"]
progress = mutated_params["progress"]
# Start julia backend processes
if not already_ran and update_verbosity != 0:
print("Compiling Julia backend...")
if cluster_manager is not None:
cluster_manager = _load_cluster_manager(cluster_manager)
# TODO(mcranmer): These functions should be part of this class.
binary_operators, unary_operators = _maybe_create_inline_operators(
binary_operators=binary_operators,
unary_operators=unary_operators,
extra_sympy_mappings=self.extra_sympy_mappings,
)
constraints = _process_constraints(
binary_operators=binary_operators,
unary_operators=unary_operators,
constraints=constraints,
)
una_constraints = [constraints[op] for op in unary_operators]
bin_constraints = [constraints[op] for op in binary_operators]
# Parse dict into Julia Dict for nested constraints::
if nested_constraints is not None:
nested_constraints_str = "Dict("
for outer_k, outer_v in nested_constraints.items():
nested_constraints_str += f"({outer_k}) => Dict("
for inner_k, inner_v in outer_v.items():
nested_constraints_str += f"({inner_k}) => {inner_v}, "
nested_constraints_str += "), "
nested_constraints_str += ")"
nested_constraints = jl.seval(nested_constraints_str)
# Parse dict into Julia Dict for complexities:
if complexity_of_operators is not None:
complexity_of_operators_str = "Dict("
for k, v in complexity_of_operators.items():
complexity_of_operators_str += f"({k}) => {v}, "
complexity_of_operators_str += ")"
complexity_of_operators = jl.seval(complexity_of_operators_str)
custom_loss = jl.seval(
str(self.elementwise_loss)
if self.elementwise_loss is not None
else "nothing"
)
custom_full_objective = jl.seval(
str(self.loss_function) if self.loss_function is not None else "nothing"
)
early_stop_condition = jl.seval(
str(self.early_stop_condition)
if self.early_stop_condition is not None
else "nothing"
)
load_required_packages(
turbo=self.turbo,
bumper=self.bumper,
enable_autodiff=self.enable_autodiff,
cluster_manager=cluster_manager,
)
mutation_weights = SymbolicRegression.MutationWeights(
mutate_constant=self.weight_mutate_constant,
mutate_operator=self.weight_mutate_operator,
swap_operands=self.weight_swap_operands,
add_node=self.weight_add_node,
insert_node=self.weight_insert_node,
delete_node=self.weight_delete_node,
simplify=self.weight_simplify,
randomize=self.weight_randomize,
do_nothing=self.weight_do_nothing,
optimize=self.weight_optimize,
)
# Call to Julia backend.
# See https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/OptionsStruct.jl
options = SymbolicRegression.Options(
binary_operators=jl.seval(str(binary_operators).replace("'", "")),
unary_operators=jl.seval(str(unary_operators).replace("'", "")),
bin_constraints=jl_array(bin_constraints),
una_constraints=jl_array(una_constraints),
complexity_of_operators=complexity_of_operators,
complexity_of_constants=self.complexity_of_constants,
complexity_of_variables=self.complexity_of_variables,
nested_constraints=nested_constraints,
elementwise_loss=custom_loss,
loss_function=custom_full_objective,
maxsize=int(self.maxsize),
output_file=_escape_filename(self.equation_file_),
npopulations=int(self.populations),
batching=self.batching,
batch_size=int(min([batch_size, len(X)]) if self.batching else len(X)),
mutation_weights=mutation_weights,
tournament_selection_p=self.tournament_selection_p,
tournament_selection_n=self.tournament_selection_n,
# These have the same name:
parsimony=self.parsimony,
dimensional_constraint_penalty=self.dimensional_constraint_penalty,
dimensionless_constants_only=self.dimensionless_constants_only,
alpha=self.alpha,
maxdepth=maxdepth,
fast_cycle=self.fast_cycle,
turbo=self.turbo,
bumper=self.bumper,
enable_autodiff=self.enable_autodiff,
migration=self.migration,
hof_migration=self.hof_migration,
fraction_replaced_hof=self.fraction_replaced_hof,
should_simplify=self.should_simplify,
should_optimize_constants=self.should_optimize_constants,
warmup_maxsize_by=(
0.0 if self.warmup_maxsize_by is None else self.warmup_maxsize_by
),
use_frequency=self.use_frequency,
use_frequency_in_tournament=self.use_frequency_in_tournament,
adaptive_parsimony_scaling=self.adaptive_parsimony_scaling,
npop=self.population_size,
ncycles_per_iteration=self.ncycles_per_iteration,
fraction_replaced=self.fraction_replaced,
topn=self.topn,
print_precision=self.print_precision,
optimizer_algorithm=self.optimizer_algorithm,
optimizer_nrestarts=self.optimizer_nrestarts,
optimizer_probability=self.optimize_probability,
optimizer_iterations=self.optimizer_iterations,
perturbation_factor=self.perturbation_factor,
annealing=self.annealing,
timeout_in_seconds=self.timeout_in_seconds,
crossover_probability=self.crossover_probability,
skip_mutation_failures=self.skip_mutation_failures,
max_evals=self.max_evals,
early_stop_condition=early_stop_condition,
seed=seed,
deterministic=self.deterministic,
define_helper_functions=False,
)
self.julia_options_stream_ = jl_serialize(options)
# Convert data to desired precision
test_X = np.array(X)
is_complex = np.issubdtype(test_X.dtype, np.complexfloating)
is_real = not is_complex
if is_real:
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self.precision]
else:
np_dtype = {32: np.complex64, 64: np.complex128}[self.precision]
# This converts the data into a Julia array:
jl_X = jl_array(np.array(X, dtype=np_dtype).T)
if len(y.shape) == 1:
jl_y = jl_array(np.array(y, dtype=np_dtype))
else:
jl_y = jl_array(np.array(y, dtype=np_dtype).T)
if weights is not None:
if len(weights.shape) == 1:
jl_weights = jl_array(np.array(weights, dtype=np_dtype))
else:
jl_weights = jl_array(np.array(weights, dtype=np_dtype).T)
else:
jl_weights = None
if self.procs == 0 and not multithreading:
parallelism = "serial"
elif multithreading:
parallelism = "multithreading"
else:
parallelism = "multiprocessing"
cprocs = (
None if parallelism in ["serial", "multithreading"] else int(self.procs)
)
if len(y.shape) > 1:
# We set these manually so that they respect Python's 0 indexing
# (by default Julia will use y1, y2...)
jl_y_variable_names = jl_array(
[f"y{_subscriptify(i)}" for i in range(y.shape[1])]
)
else:
jl_y_variable_names = None
PythonCall.GC.disable()
out = SymbolicRegression.equation_search(
jl_X,
jl_y,
weights=jl_weights,
niterations=int(self.niterations),
variable_names=jl_array([str(v) for v in self.feature_names_in_]),
display_variable_names=jl_array(
[str(v) for v in self.display_feature_names_in_]
),
y_variable_names=jl_y_variable_names,
X_units=jl_array(self.X_units_),
y_units=(
jl_array(self.y_units_)
if isinstance(self.y_units_, list)
else self.y_units_
),
options=options,
numprocs=cprocs,
parallelism=parallelism,
saved_state=self.julia_state_,
return_state=True,
addprocs_function=cluster_manager,
heap_size_hint_in_bytes=self.heap_size_hint_in_bytes,
progress=progress and self.verbosity > 0 and len(y.shape) == 1,
verbosity=int(self.verbosity),
)
PythonCall.GC.enable()
self.julia_state_stream_ = jl_serialize(out)
# Set attributes
self.equations_ = self.get_hof()
if self.delete_tempfiles:
shutil.rmtree(self.tempdir_)
already_ran = True
return self
def fit(
self,
X,
y,
Xresampled=None,
weights=None,
variable_names: Optional[ArrayLike[str]] = None,
X_units: Optional[ArrayLike[str]] = None,
y_units: Optional[Union[str, ArrayLike[str]]] = None,
) -> "PySRRegressor":
"""
Search for equations to fit the dataset and store them in `self.equations_`.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape (n_samples, n_features).
y : ndarray | pandas.DataFrame
Target values of shape (n_samples,) or (n_samples, n_targets).
Will be cast to X's dtype if necessary.
Xresampled : ndarray | pandas.DataFrame
Resampled training data, of shape (n_resampled, n_features),
to generate a denoised data on. This
will be used as the training data, rather than `X`.
weights : ndarray | pandas.DataFrame
Weight array of the same shape as `y`.
Each element is how to weight the mean-square-error loss
for that particular element of `y`. Alternatively,
if a custom `loss` was set, it will can be used
in arbitrary ways.
variable_names : list[str]
A list of names for the variables, rather than "x0", "x1", etc.
If `X` is a pandas dataframe, the column names will be used
instead of `variable_names`. Cannot contain spaces or special
characters. Avoid variable names which are also
function names in `sympy`, such as "N".
X_units : list[str]
A list of units for each variable in `X`. Each unit should be
a string representing a Julia expression. See DynamicQuantities.jl
https://symbolicml.org/DynamicQuantities.jl/dev/units/ for more
information.
y_units : str | list[str]
Similar to `X_units`, but as a unit for the target variable, `y`.
If `y` is a matrix, a list of units should be passed. If `X_units`
is given but `y_units` is not, then `y_units` will be arbitrary.
Returns
-------
self : object
Fitted estimator.
"""
# Init attributes that are not specified in BaseEstimator
if self.warm_start and hasattr(self, "julia_state_stream_"):
pass
else:
if hasattr(self, "julia_state_stream_"):
warnings.warn(
"The discovered expressions are being reset. "
"Please set `warm_start=True` if you wish to continue "
"to start a search where you left off.",
)
self.equations_ = None
self.nout_ = 1
self.selection_mask_ = None
self.julia_state_stream_ = None
self.julia_options_stream_ = None
self.X_units_ = None
self.y_units_ = None
self._setup_equation_file()
mutated_params = self._validate_and_set_init_params()
(
X,
y,
Xresampled,
weights,
variable_names,
X_units,
y_units,
) = self._validate_and_set_fit_params(
X, y, Xresampled, weights, variable_names, X_units, y_units
)
if X.shape[0] > 10000 and not self.batching:
warnings.warn(
"Note: you are running with more than 10,000 datapoints. "
"You should consider turning on batching (https://astroautomata.com/PySR/options/#batching). "
"You should also reconsider if you need that many datapoints. "
"Unless you have a large amount of noise (in which case you "
"should smooth your dataset first), generally < 10,000 datapoints "
"is enough to find a functional form with symbolic regression. "
"More datapoints will lower the search speed."
)
random_state = check_random_state(self.random_state) # For np random
seed = random_state.randint(0, 2**31 - 1) # For julia random
# Pre transformations (feature selection and denoising)
X, y, variable_names, X_units, y_units = self._pre_transform_training_data(
X, y, Xresampled, variable_names, X_units, y_units, random_state
)
# Warn about large feature counts (still warn if feature count is large
# after running feature selection)
if self.n_features_in_ >= 10:
warnings.warn(
"Note: you are running with 10 features or more. "
"Genetic algorithms like used in PySR scale poorly with large numbers of features. "
"You should run PySR for more `niterations` to ensure it can find "
"the correct variables, "
"or, alternatively, do a dimensionality reduction beforehand. "
"For example, `X = PCA(n_components=6).fit_transform(X)`, "
"using scikit-learn's `PCA` class, "
"will reduce the number of features to 6 in an interpretable way, "
"as each resultant feature "
"will be a linear combination of the original features. "
)
# Assertion checks
use_custom_variable_names = variable_names is not None
# TODO: this is always true.
_check_assertions(
X,
use_custom_variable_names,
variable_names,
weights,
y,
X_units,
y_units,
)
# Initially, just save model parameters, so that
# it can be loaded from an early exit:
if not self.temp_equation_file:
self._checkpoint()
# Perform the search:
self._run(X, y, mutated_params, weights=weights, seed=seed)
# Then, after fit, we save again, so the pickle file contains
# the equations:
if not self.temp_equation_file:
self._checkpoint()
return self
def refresh(self, checkpoint_file=None) -> None:
"""
Update self.equations_ with any new options passed.
For example, updating `extra_sympy_mappings`
will require a `.refresh()` to update the equations.
Parameters
----------
checkpoint_file : str
Path to checkpoint hall of fame file to be loaded.
The default will use the set `equation_file_`.
"""
if checkpoint_file:
self.equation_file_ = checkpoint_file
self.equation_file_contents_ = None
check_is_fitted(self, attributes=["equation_file_"])
self.equations_ = self.get_hof()
def predict(self, X, index=None):
"""
Predict y from input X using the equation chosen by `model_selection`.
You may see what equation is used by printing this object. X should
have the same columns as the training data.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape `(n_samples, n_features)`.
index : int | list[int]
If you want to compute the output of an expression using a
particular row of `self.equations_`, you may specify the index here.
For multiple output equations, you must pass a list of indices
in the same order.
Returns
-------
y_predicted : ndarray of shape (n_samples, nout_)
Values predicted by substituting `X` into the fitted symbolic
regression model.
Raises
------
ValueError
Raises if the `best_equation` cannot be evaluated.
"""
check_is_fitted(
self, attributes=["selection_mask_", "feature_names_in_", "nout_"]
)
best_equation = self.get_best(index=index)
# When X is an numpy array or a pandas dataframe with a RangeIndex,
# the self.feature_names_in_ generated during fit, for the same X,
# will cause a warning to be thrown during _validate_data.
# To avoid this, convert X to a dataframe, apply the selection mask,
# and then set the column/feature_names of X to be equal to those
# generated during fit.
if not isinstance(X, pd.DataFrame):
X = check_array(X)
X = pd.DataFrame(X)
if isinstance(X.columns, pd.RangeIndex):
if self.selection_mask_ is not None:
# RangeIndex enforces column order allowing columns to
# be correctly filtered with self.selection_mask_
X = X[X.columns[self.selection_mask_]]
X.columns = self.feature_names_in_
# Without feature information, CallableEquation/lambda_format equations
# require that the column order of X matches that of the X used during
# the fitting process. _validate_data removes this feature information
# when it converts the dataframe to an np array. Thus, to ensure feature
# order is preserved after conversion, the dataframe columns must be
# reordered/reindexed to match those of the transformed (denoised and
# feature selected) X in fit.
X = X.reindex(columns=self.feature_names_in_)
X = self._validate_data_X(X)
try:
if isinstance(best_equation, list):
assert self.nout_ > 1
return np.stack(
[eq["lambda_format"](X) for eq in best_equation], axis=1
)
else:
return best_equation["lambda_format"](X)
except Exception as error:
raise ValueError(
"Failed to evaluate the expression. "
"If you are using a custom operator, make sure to define it in `extra_sympy_mappings`, "
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1/x})`, where "
"`lambda x: 1/x` is a valid SymPy function defining the operator. "
"You can then run `model.refresh()` to re-load the expressions."
) from error
def sympy(self, index=None):
"""
Return sympy representation of the equation(s) chosen by `model_selection`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
Returns
-------
best_equation : str, list[str] of length nout_
SymPy representation of the best equation.
"""
self.refresh()
best_equation = self.get_best(index=index)
if isinstance(best_equation, list):
assert self.nout_ > 1
return [eq["sympy_format"] for eq in best_equation]
else:
return best_equation["sympy_format"]
def latex(self, index=None, precision=3):
"""
Return latex representation of the equation(s) chosen by `model_selection`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
precision : int
The number of significant figures shown in the LaTeX
representation.
Default is `3`.
Returns
-------
best_equation : str or list[str] of length nout_
LaTeX expression of the best equation.
"""
self.refresh()
sympy_representation = self.sympy(index=index)
if self.nout_ > 1:
output = []
for s in sympy_representation:
latex = sympy2latex(s, prec=precision)
output.append(latex)
return output
return sympy2latex(sympy_representation, prec=precision)
def jax(self, index=None):
"""
Return jax representation of the equation(s) chosen by `model_selection`.
Each equation (multiple given if there are multiple outputs) is a dictionary
containing {"callable": func, "parameters": params}. To call `func`, pass
func(X, params). This function is differentiable using `jax.grad`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
Returns
-------
best_equation : dict[str, Any]
Dictionary of callable jax function in "callable" key,
and jax array of parameters as "parameters" key.
"""
self.set_params(output_jax_format=True)
self.refresh()
best_equation = self.get_best(index=index)
if isinstance(best_equation, list):
assert self.nout_ > 1
return [eq["jax_format"] for eq in best_equation]
else:
return best_equation["jax_format"]
def pytorch(self, index=None):
"""
Return pytorch representation of the equation(s) chosen by `model_selection`.
Each equation (multiple given if there are multiple outputs) is a PyTorch module
containing the parameters as trainable attributes. You can use the module like
any other PyTorch module: `module(X)`, where `X` is a tensor with the same
column ordering as trained with.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
Returns
-------
best_equation : torch.nn.Module
PyTorch module representing the expression.
"""
self.set_params(output_torch_format=True)
self.refresh()
best_equation = self.get_best(index=index)
if isinstance(best_equation, list):
return [eq["torch_format"] for eq in best_equation]
else:
return best_equation["torch_format"]
def _read_equation_file(self):
"""Read the hall of fame file created by `SymbolicRegression.jl`."""
try:
if self.nout_ > 1:
all_outputs = []
for i in range(1, self.nout_ + 1):
cur_filename = str(self.equation_file_) + f".out{i}" + ".bkup"
if not os.path.exists(cur_filename):
cur_filename = str(self.equation_file_) + f".out{i}"
with open(cur_filename, "r", encoding="utf-8") as f:
buf = f.read()
buf = _preprocess_julia_floats(buf)
df = self._postprocess_dataframe(pd.read_csv(StringIO(buf)))
all_outputs.append(df)
else:
filename = str(self.equation_file_) + ".bkup"
if not os.path.exists(filename):
filename = str(self.equation_file_)
with open(filename, "r", encoding="utf-8") as f:
buf = f.read()
buf = _preprocess_julia_floats(buf)
all_outputs = [self._postprocess_dataframe(pd.read_csv(StringIO(buf)))]
except FileNotFoundError:
raise RuntimeError(
"Couldn't find equation file! The equation search likely exited "
"before a single iteration completed."
)
return all_outputs
def _postprocess_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
df = df.rename(
columns={
"Complexity": "complexity",
"Loss": "loss",
"Equation": "equation",
},
)
return df
def get_hof(self):
"""Get the equations from a hall of fame file.
If no arguments entered, the ones used
previously from a call to PySR will be used.
"""
check_is_fitted(
self,
attributes=[
"nout_",
"equation_file_",
"selection_mask_",
"feature_names_in_",
],
)
if (
not hasattr(self, "equation_file_contents_")
) or self.equation_file_contents_ is None:
self.equation_file_contents_ = self._read_equation_file()
# It is expected extra_jax/torch_mappings will be updated after fit.
# Thus, validation is performed here instead of in _validate_init_params
extra_jax_mappings = self.extra_jax_mappings
extra_torch_mappings = self.extra_torch_mappings
if extra_jax_mappings is not None:
for value in extra_jax_mappings.values():
if not isinstance(value, str):
raise ValueError(
"extra_jax_mappings must have keys that are strings! "
"e.g., {sympy.sqrt: 'jnp.sqrt'}."
)
else:
extra_jax_mappings = {}
if extra_torch_mappings is not None:
for value in extra_torch_mappings.values():
if not callable(value):
raise ValueError(
"extra_torch_mappings must be callable functions! "
"e.g., {sympy.sqrt: torch.sqrt}."
)
else:
extra_torch_mappings = {}
ret_outputs = []
equation_file_contents = copy.deepcopy(self.equation_file_contents_)
for output in equation_file_contents:
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
jax_format = []
torch_format = []
for _, eqn_row in output.iterrows():
eqn = pysr2sympy(
eqn_row["equation"],
feature_names_in=self.feature_names_in_,
extra_sympy_mappings=self.extra_sympy_mappings,
)
sympy_format.append(eqn)
# NumPy:
sympy_symbols = create_sympy_symbols(self.feature_names_in_)
lambda_format.append(
sympy2numpy(
eqn,
sympy_symbols,
selection=self.selection_mask_,
)
)
# JAX:
if self.output_jax_format:
func, params = sympy2jax(
eqn,
sympy_symbols,
selection=self.selection_mask_,
extra_jax_mappings=self.extra_jax_mappings,
)
jax_format.append({"callable": func, "parameters": params})
# Torch:
if self.output_torch_format:
module = sympy2torch(
eqn,
sympy_symbols,
selection=self.selection_mask_,
extra_torch_mappings=self.extra_torch_mappings,
)
torch_format.append(module)
curMSE = eqn_row["loss"]
curComplexity = eqn_row["complexity"]
if lastMSE is None:
cur_score = 0.0
else:
if curMSE > 0.0:
# TODO Move this to more obvious function/file.
cur_score = -np.log(curMSE / lastMSE) / (
curComplexity - lastComplexity
)
else:
cur_score = np.inf
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output["score"] = np.array(scores)
output["sympy_format"] = sympy_format
output["lambda_format"] = lambda_format
output_cols = [
"complexity",
"loss",
"score",
"equation",
"sympy_format",
"lambda_format",
]
if self.output_jax_format:
output_cols += ["jax_format"]
output["jax_format"] = jax_format
if self.output_torch_format:
output_cols += ["torch_format"]
output["torch_format"] = torch_format
ret_outputs.append(output[output_cols])
if self.nout_ > 1:
return ret_outputs
return ret_outputs[0]
def latex_table(
self,
indices=None,
precision=3,
columns=["equation", "complexity", "loss", "score"],
):
"""Create a LaTeX/booktabs table for all, or some, of the equations.
Parameters
----------
indices : list[int] | list[list[int]]
If you wish to select a particular subset of equations from
`self.equations_`, give the row numbers here. By default,
all equations will be used. If there are multiple output
features, then pass a list of lists.
precision : int
The number of significant figures shown in the LaTeX
representations.
Default is `3`.
columns : list[str]
Which columns to include in the table.
Default is `["equation", "complexity", "loss", "score"]`.
Returns
-------
latex_table_str : str
A string that will render a table in LaTeX of the equations.
"""
self.refresh()
if isinstance(self.equations_, list):
if indices is not None:
assert isinstance(indices, list)
assert isinstance(indices[0], list)
assert len(indices) == self.nout_
table_string = sympy2multilatextable(
self.equations_, indices=indices, precision=precision, columns=columns
)
elif isinstance(self.equations_, pd.DataFrame):
if indices is not None:
assert isinstance(indices, list)
assert isinstance(indices[0], int)
table_string = sympy2latextable(
self.equations_, indices=indices, precision=precision, columns=columns
)
else:
raise ValueError(
"Invalid type for equations_ to pass to `latex_table`. "
"Expected a DataFrame or a list of DataFrames."
)
return with_preamble(table_string)
def idx_model_selection(equations: pd.DataFrame, model_selection: str):
"""Select an expression and return its index."""
if model_selection == "accuracy":
chosen_idx = equations["loss"].idxmin()
elif model_selection == "best":
threshold = 1.5 * equations["loss"].min()
filtered_equations = equations.query(f"loss <= {threshold}")
chosen_idx = filtered_equations["score"].idxmax()
elif model_selection == "score":
chosen_idx = equations["score"].idxmax()
else:
raise NotImplementedError(
f"{model_selection} is not a valid model selection strategy."
)
return chosen_idx
|