tttc3 commited on
Commit
4173a8b
·
1 Parent(s): 9490776

additional fixes

Browse files
Files changed (1) hide show
  1. pysr/sr.py +16 -8
pysr/sr.py CHANGED
@@ -779,7 +779,8 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
779
  )
780
 
781
  def __repr__(self):
782
- """Prints all current equations fitted by the model.
 
783
 
784
  The string `>>>>` denotes which equation is selected by the
785
  `model_selection`.
@@ -1512,7 +1513,8 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
1512
  ) from error
1513
 
1514
  def predict(self, X, index=None):
1515
- """Predict y from input X using the equation chosen by `model_selection`.
 
1516
 
1517
  You may see what equation is used by printing this object. X should
1518
  have the same columns as the training data.
@@ -1537,7 +1539,8 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
1537
  return self._decision_function(X, best_equation)
1538
 
1539
  def sympy(self, index=None):
1540
- """Return sympy representation of the equation(s) chosen by `model_selection`.
 
1541
 
1542
  Parameters
1543
  ----------
@@ -1558,7 +1561,8 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
1558
  return best_equation["sympy_format"]
1559
 
1560
  def latex(self, index=None):
1561
- """Return latex representation of the equation(s) chosen by `model_selection`.
 
1562
 
1563
  Parameters
1564
  ----------
@@ -1579,7 +1583,8 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
1579
  return sympy.latex(sympy_representation)
1580
 
1581
  def jax(self, index=None):
1582
- """Return jax representation of the equation(s) chosen by `model_selection`.
 
1583
 
1584
  Each equation (multiple given if there are multiple outputs) is a dictionary
1585
  containing {"callable": func, "parameters": params}. To call `func`, pass
@@ -1606,7 +1611,8 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
1606
  return best_equation["jax_format"]
1607
 
1608
  def pytorch(self, index=None):
1609
- """Return pytorch representation of the equation(s) chosen by `model_selection`.
 
1610
 
1611
  Each equation (multiple given if there are multiple outputs) is a PyTorch module
1612
  containing the parameters as trainable attributes. You can use the module like
@@ -1794,9 +1800,11 @@ def _handle_feature_selection(X, select_k_features, y, variable_names):
1794
 
1795
 
1796
  def run_feature_selection(X, y, select_k_features):
1797
- """Use a gradient boosting tree regressor as a proxy for finding
 
1798
  the k most important features in X, returning indices for those
1799
- features as output."""
 
1800
  from sklearn.ensemble import RandomForestRegressor
1801
  from sklearn.feature_selection import SelectFromModel
1802
 
 
779
  )
780
 
781
  def __repr__(self):
782
+ """
783
+ Prints all current equations fitted by the model.
784
 
785
  The string `>>>>` denotes which equation is selected by the
786
  `model_selection`.
 
1513
  ) from error
1514
 
1515
  def predict(self, X, index=None):
1516
+ """
1517
+ Predict y from input X using the equation chosen by `model_selection`.
1518
 
1519
  You may see what equation is used by printing this object. X should
1520
  have the same columns as the training data.
 
1539
  return self._decision_function(X, best_equation)
1540
 
1541
  def sympy(self, index=None):
1542
+ """
1543
+ Return sympy representation of the equation(s) chosen by `model_selection`.
1544
 
1545
  Parameters
1546
  ----------
 
1561
  return best_equation["sympy_format"]
1562
 
1563
  def latex(self, index=None):
1564
+ """
1565
+ Return latex representation of the equation(s) chosen by `model_selection`.
1566
 
1567
  Parameters
1568
  ----------
 
1583
  return sympy.latex(sympy_representation)
1584
 
1585
  def jax(self, index=None):
1586
+ """
1587
+ Return jax representation of the equation(s) chosen by `model_selection`.
1588
 
1589
  Each equation (multiple given if there are multiple outputs) is a dictionary
1590
  containing {"callable": func, "parameters": params}. To call `func`, pass
 
1611
  return best_equation["jax_format"]
1612
 
1613
  def pytorch(self, index=None):
1614
+ """
1615
+ Return pytorch representation of the equation(s) chosen by `model_selection`.
1616
 
1617
  Each equation (multiple given if there are multiple outputs) is a PyTorch module
1618
  containing the parameters as trainable attributes. You can use the module like
 
1800
 
1801
 
1802
  def run_feature_selection(X, y, select_k_features):
1803
+ """
1804
+ Use a gradient boosting tree regressor as a proxy for finding
1805
  the k most important features in X, returning indices for those
1806
+ features as output.
1807
+ """
1808
  from sklearn.ensemble import RandomForestRegressor
1809
  from sklearn.feature_selection import SelectFromModel
1810