File size: 6,127 Bytes
4fc79a4
12ce912
 
 
72c5969
bca92aa
ec365ce
3c50a2d
4fc79a4
6ac004d
9a4fc1b
ec365ce
 
422964b
ec365ce
9a4fc1b
bca92aa
 
9a4fc1b
72c5969
 
a5f2a3b
 
72c5969
2e5c04a
a5f2a3b
 
6ac004d
 
d3510d0
2e5c04a
 
a5f2a3b
2e5c04a
d3510d0
2e5c04a
a5f2a3b
 
6ac004d
 
 
a5f2a3b
72c5969
601022d
72c5969
 
 
 
 
 
 
 
 
3c50a2d
72c5969
9a4fc1b
bca92aa
ec365ce
72c5969
1b2886c
ec365ce
2e5c04a
bf5218c
2e5c04a
 
 
 
 
 
 
 
 
a5f2a3b
6ac004d
bf5218c
6ac004d
bf5218c
6ac004d
2e5c04a
 
6ac004d
2e5c04a
6ac004d
2e5c04a
6ac004d
2e5c04a
 
 
 
 
 
1b2886c
a5f2a3b
6ac004d
2e5c04a
 
1b2886c
ec365ce
9a4fc1b
1b2886c
9a4fc1b
1b2886c
b06a85b
1b2886c
12ce912
b06a85b
12ce912
9a4fc1b
3c50a2d
 
 
ec365ce
3c50a2d
b06a85b
9a4fc1b
05370c5
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac004d
05370c5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import io
import ast
from PIL import Image, ImageDraw
import google.generativeai as genai
import traceback

def process_file(file, instructions, api_key):
    try:
        # Initialize Gemini
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
        
        # Read uploaded file
        file_path = file.name
        df = pd.read_csv(file_path) if file_path.endswith('.csv') else pd.read_excel(file_path)
        
        # Generate visualization code
        response = model.generate_content(f"""
            Analyze the following dataset and instructions:
            
            Data columns: {list(df.columns)}
            Data shape: {df.shape}
            Instructions: {instructions}
            
            Based on this, create 3 appropriate visualizations that provide meaningful insights. For each visualization:
            1. Choose the most suitable plot type (bar, line, scatter, hist, pie, heatmap)
            2. Determine appropriate data aggregation (e.g., top 5 categories, yearly averages)
            3. Select relevant columns for x-axis, y-axis, and any additional dimensions (color, size)
            4. Provide a clear, concise title that explains the insight

            Consider data density and choose visualizations that simplify and clarify the information.
            Limit the number of data points displayed to ensure readability (e.g., top 5, top 10, yearly).
            
            Return your response as a Python list of dictionaries:
            [
                {{"title": "...", "plot_type": "...", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}},
                {{"title": "...", "plot_type": "...", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}},
                {{"title": "...", "plot_type": "...", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}}
            ]
        """)

        # Extract code block safely
        code_block = response.text
        if '```python' in code_block:
            code_block = code_block.split('```python')[1].split('```')[0].strip()
        elif '```' in code_block:
            code_block = code_block.split('```')[1].strip()
        
        print("Generated code block:")
        print(code_block)
        
        plots = ast.literal_eval(code_block)
        
        # Generate visualizations
        images = []
        for plot in plots[:3]:  # Ensure max 3 plots
            fig, ax = plt.subplots(figsize=(10, 6))
            
            # Apply preprocessing and aggregation
            plot_df = df.copy()
            if plot['agg_func'] == 'sum':
                plot_df = plot_df.groupby(plot['x'])[plot['y']].sum().reset_index()
            elif plot['agg_func'] == 'mean':
                plot_df = plot_df.groupby(plot['x'])[plot['y']].mean().reset_index()
            elif plot['agg_func'] == 'count':
                plot_df = plot_df.groupby(plot['x']).size().reset_index(name=plot['y'])
            
            if 'top_n' in plot and plot['top_n']:
                plot_df = plot_df.nlargest(plot['top_n'], plot['y'])
            
            if plot['plot_type'] == 'bar':
                plot_df.plot(kind='bar', x=plot['x'], y=plot['y'], ax=ax)
            elif plot['plot_type'] == 'line':
                plot_df.plot(kind='line', x=plot['x'], y=plot['y'], ax=ax)
            elif plot['plot_type'] == 'scatter':
                plot_df.plot(kind='scatter', x=plot['x'], y=plot['y'], ax=ax, 
                             c=plot['additional'].get('color'), s=plot_df[plot['additional'].get('size', 'y')])
            elif plot['plot_type'] == 'hist':
                plot_df[plot['x']].hist(ax=ax, bins=20)
            elif plot['plot_type'] == 'pie':
                plot_df.plot(kind='pie', y=plot['y'], labels=plot_df[plot['x']], ax=ax, autopct='%1.1f%%')
            elif plot['plot_type'] == 'heatmap':
                pivot_df = plot_df.pivot(index=plot['x'], columns=plot['additional']['color'], values=plot['y'])
                ax.imshow(pivot_df, cmap='YlOrRd')
                ax.set_xticks(range(len(pivot_df.columns)))
                ax.set_yticks(range(len(pivot_df.index)))
                ax.set_xticklabels(pivot_df.columns)
                ax.set_yticklabels(pivot_df.index)
            
            ax.set_title(plot['title'])
            if plot['plot_type'] != 'pie':
                ax.set_xlabel(plot['x'])
                ax.set_ylabel(plot['y'])
            plt.tight_layout()
            
            buf = io.BytesIO()
            plt.savefig(buf, format='png')
            buf.seek(0)
            img = Image.open(buf)
            images.append(img)
            plt.close(fig)

        return images if len(images) == 3 else images + [Image.new('RGB', (800, 600), (255,255,255))]*(3-len(images))

    except Exception as e:
        error_message = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        print(error_message)  # Print to console for debugging
        error_image = Image.new('RGB', (800, 400), (255, 255, 255))
        draw = ImageDraw.Draw(error_image)
        draw.text((10, 10), error_message, fill=(255, 0, 0))
        return [error_image] * 3

with gr.Blocks(theme=gr.themes.Default()) as demo:
    gr.Markdown("# Data Analysis Dashboard")
    
    with gr.Row():
        file = gr.File(label="Upload Dataset", file_types=[".csv", ".xlsx"])
        instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...")
    
    api_key = gr.Textbox(label="Gemini API Key", type="password")
    submit = gr.Button("Generate Insights", variant="primary")
    
    output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)]

    submit.click(
        process_file,
        inputs=[file, instructions, api_key],
        outputs=output_images
    )

if __name__ == "__main__":
    demo.launch()