Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
import io
|
5 |
-
import
|
6 |
from PIL import Image, ImageDraw
|
7 |
import google.generativeai as genai
|
8 |
import traceback
|
9 |
|
10 |
-
def process_file(
|
11 |
try:
|
12 |
# Initialize Gemini
|
13 |
genai.configure(api_key=api_key)
|
@@ -17,29 +17,36 @@ def process_file(api_key, file, instructions):
|
|
17 |
file_path = file.name
|
18 |
df = pd.read_csv(file_path) if file_path.endswith('.csv') else pd.read_excel(file_path)
|
19 |
|
20 |
-
# Generate visualization code
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
Use only DataFrame 'df' and these exact variable names.
|
27 |
-
""")
|
28 |
-
|
29 |
-
# Extract code block safely
|
30 |
-
code_block = response.text.split('```python')[1].split('```')[0].strip()
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
# Generate visualizations
|
39 |
images = []
|
40 |
-
for plot in plots
|
41 |
fig, ax = plt.subplots(figsize=(10, 6))
|
42 |
-
title, plot_type, x, y = plot
|
43 |
|
44 |
if plot_type == 'bar':
|
45 |
df.plot(kind='bar', x=x, y=y, ax=ax)
|
@@ -48,21 +55,21 @@ def process_file(api_key, file, instructions):
|
|
48 |
elif plot_type == 'scatter':
|
49 |
df.plot(kind='scatter', x=x, y=y, ax=ax)
|
50 |
elif plot_type == 'hist':
|
51 |
-
df[
|
52 |
|
53 |
ax.set_title(title)
|
54 |
ax.set_xlabel(x)
|
55 |
-
ax.set_ylabel(y)
|
56 |
plt.tight_layout()
|
57 |
|
58 |
buf = io.BytesIO()
|
59 |
plt.savefig(buf, format='png')
|
60 |
buf.seek(0)
|
61 |
img = Image.open(buf)
|
62 |
-
images.append(img)
|
63 |
plt.close(fig)
|
64 |
|
65 |
-
return images if len(images) == 3 else images + [Image.new('RGB', (800, 600), (255,255,255))]*(3-len(images))
|
66 |
|
67 |
except Exception as e:
|
68 |
error_message = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
@@ -70,25 +77,25 @@ def process_file(api_key, file, instructions):
|
|
70 |
error_image = Image.new('RGB', (800, 400), (255, 255, 255))
|
71 |
draw = ImageDraw.Draw(error_image)
|
72 |
draw.text((10, 10), error_message, fill=(255, 0, 0))
|
73 |
-
return [error_image] * 3
|
74 |
|
75 |
-
with gr.Blocks(theme=gr.themes.Default(
|
76 |
gr.Markdown("# Data Analysis Dashboard")
|
77 |
|
78 |
with gr.Row():
|
79 |
-
api_key = gr.Textbox(label="Gemini API Key", type="password")
|
80 |
file = gr.File(label="Upload Dataset", file_types=[".csv", ".xlsx"])
|
|
|
81 |
|
82 |
-
|
83 |
submit = gr.Button("Generate Insights", variant="primary")
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
88 |
submit.click(
|
89 |
process_file,
|
90 |
-
inputs=[
|
91 |
-
outputs=
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|
|
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
import io
|
5 |
+
import json
|
6 |
from PIL import Image, ImageDraw
|
7 |
import google.generativeai as genai
|
8 |
import traceback
|
9 |
|
10 |
+
def process_file(file, instructions, api_key):
|
11 |
try:
|
12 |
# Initialize Gemini
|
13 |
genai.configure(api_key=api_key)
|
|
|
17 |
file_path = file.name
|
18 |
df = pd.read_csv(file_path) if file_path.endswith('.csv') else pd.read_excel(file_path)
|
19 |
|
20 |
+
# Generate visualization code using Gemini
|
21 |
+
prompt = f"""
|
22 |
+
Analyze the following dataset and instructions:
|
23 |
+
|
24 |
+
Data columns: {list(df.columns)}
|
25 |
+
Instructions: {instructions}
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
Based on this, create 3 appropriate visualizations. For each visualization, provide:
|
28 |
+
1. A title
|
29 |
+
2. The most suitable plot type (choose from: bar, line, scatter, hist)
|
30 |
+
3. The column to use for the x-axis
|
31 |
+
4. The column to use for the y-axis (use None for histograms)
|
32 |
+
5. A brief explanation of why this visualization is appropriate
|
33 |
+
|
34 |
+
Return your response as a JSON string in this format:
|
35 |
+
[
|
36 |
+
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "explanation": "..."}},
|
37 |
+
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "explanation": "..."}},
|
38 |
+
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "explanation": "..."}}
|
39 |
+
]
|
40 |
+
"""
|
41 |
|
42 |
+
response = model.generate_content(prompt)
|
43 |
+
plots = json.loads(response.text)
|
44 |
|
45 |
# Generate visualizations
|
46 |
images = []
|
47 |
+
for plot in plots:
|
48 |
fig, ax = plt.subplots(figsize=(10, 6))
|
49 |
+
title, plot_type, x, y = plot['title'], plot['plot_type'], plot['x'], plot['y']
|
50 |
|
51 |
if plot_type == 'bar':
|
52 |
df.plot(kind='bar', x=x, y=y, ax=ax)
|
|
|
55 |
elif plot_type == 'scatter':
|
56 |
df.plot(kind='scatter', x=x, y=y, ax=ax)
|
57 |
elif plot_type == 'hist':
|
58 |
+
df[x].hist(ax=ax)
|
59 |
|
60 |
ax.set_title(title)
|
61 |
ax.set_xlabel(x)
|
62 |
+
ax.set_ylabel(y if y else 'Frequency')
|
63 |
plt.tight_layout()
|
64 |
|
65 |
buf = io.BytesIO()
|
66 |
plt.savefig(buf, format='png')
|
67 |
buf.seek(0)
|
68 |
img = Image.open(buf)
|
69 |
+
images.append((img, plot['explanation']))
|
70 |
plt.close(fig)
|
71 |
|
72 |
+
return images if len(images) == 3 else images + [(Image.new('RGB', (800, 600), (255,255,255)), "")]*(3-len(images))
|
73 |
|
74 |
except Exception as e:
|
75 |
error_message = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
|
|
77 |
error_image = Image.new('RGB', (800, 400), (255, 255, 255))
|
78 |
draw = ImageDraw.Draw(error_image)
|
79 |
draw.text((10, 10), error_message, fill=(255, 0, 0))
|
80 |
+
return [(error_image, "An error occurred")] * 3
|
81 |
|
82 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
83 |
gr.Markdown("# Data Analysis Dashboard")
|
84 |
|
85 |
with gr.Row():
|
|
|
86 |
file = gr.File(label="Upload Dataset", file_types=[".csv", ".xlsx"])
|
87 |
+
instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...")
|
88 |
|
89 |
+
api_key = gr.Textbox(label="Gemini API Key", type="password")
|
90 |
submit = gr.Button("Generate Insights", variant="primary")
|
91 |
|
92 |
+
output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)]
|
93 |
+
output_texts = [gr.Textbox(label=f"Explanation {i+1}") for i in range(3)]
|
94 |
|
95 |
submit.click(
|
96 |
process_file,
|
97 |
+
inputs=[file, instructions, api_key],
|
98 |
+
outputs=output_images + output_texts
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|