Update app.py
Browse files
app.py
CHANGED
@@ -19,11 +19,24 @@ def process_file(file, instructions, api_key):
|
|
19 |
|
20 |
# Generate visualization code
|
21 |
response = model.generate_content(f"""
|
22 |
-
|
|
|
23 |
Data columns: {list(df.columns)}
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
""")
|
28 |
|
29 |
# Extract code block safely
|
@@ -42,20 +55,23 @@ def process_file(file, instructions, api_key):
|
|
42 |
images = []
|
43 |
for plot in plots[:3]: # Ensure max 3 plots
|
44 |
fig, ax = plt.subplots(figsize=(10, 6))
|
45 |
-
title, plot_type, x, y = plot
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
df.plot(kind='
|
53 |
-
elif plot_type == '
|
54 |
-
df[x]
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
ax.set_title(title)
|
57 |
-
ax.set_xlabel(x)
|
58 |
-
ax.set_ylabel(y if y else 'Frequency')
|
59 |
plt.tight_layout()
|
60 |
|
61 |
buf = io.BytesIO()
|
|
|
19 |
|
20 |
# Generate visualization code
|
21 |
response = model.generate_content(f"""
|
22 |
+
Analyze the following dataset and instructions:
|
23 |
+
|
24 |
Data columns: {list(df.columns)}
|
25 |
+
Instructions: {instructions}
|
26 |
+
|
27 |
+
Based on this, create 3 appropriate visualizations. For each visualization, provide:
|
28 |
+
1. A title
|
29 |
+
2. The most suitable plot type (choose from: bar, line, scatter, hist)
|
30 |
+
3. The column to use for the x-axis
|
31 |
+
4. The column(s) to use for the y-axis (can be a list for multiple columns, or None for histograms)
|
32 |
+
5. Any necessary data preprocessing steps (e.g., grouping, sorting, etc.)
|
33 |
+
|
34 |
+
Return your response as a Python list of dictionaries:
|
35 |
+
[
|
36 |
+
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}},
|
37 |
+
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}},
|
38 |
+
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}}
|
39 |
+
]
|
40 |
""")
|
41 |
|
42 |
# Extract code block safely
|
|
|
55 |
images = []
|
56 |
for plot in plots[:3]: # Ensure max 3 plots
|
57 |
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
58 |
|
59 |
+
# Apply preprocessing if any
|
60 |
+
if plot['preprocessing']:
|
61 |
+
exec(plot['preprocessing'])
|
62 |
+
|
63 |
+
if plot['plot_type'] == 'bar':
|
64 |
+
df.plot(kind='bar', x=plot['x'], y=plot['y'], ax=ax)
|
65 |
+
elif plot['plot_type'] == 'line':
|
66 |
+
df.plot(kind='line', x=plot['x'], y=plot['y'], ax=ax)
|
67 |
+
elif plot['plot_type'] == 'scatter':
|
68 |
+
df.plot(kind='scatter', x=plot['x'], y=plot['y'], ax=ax)
|
69 |
+
elif plot['plot_type'] == 'hist':
|
70 |
+
df[plot['x']].hist(ax=ax)
|
71 |
|
72 |
+
ax.set_title(plot['title'])
|
73 |
+
ax.set_xlabel(plot['x'])
|
74 |
+
ax.set_ylabel(plot['y'] if plot['y'] else 'Frequency')
|
75 |
plt.tight_layout()
|
76 |
|
77 |
buf = io.BytesIO()
|