File size: 50,651 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976cbed
 
 
 
 
 
 
 
 
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from mmcv.cnn import Conv2d
from mmcv.ops import point_sample
from mmdet.models import Mask2FormerTransformerDecoder, inverse_sigmoid, coordinate_to_encoding
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh
from mmengine import print_log
from mmengine.dist import get_dist_info
from mmengine.model import caffe2_xavier_init, ModuleList
from mmengine.structures import InstanceData, PixelData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList, TrackDataSample
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptMultiConfig, reduce_mean)
from mmdet.models.layers import SinePositionalEncoding3D
from mmdet.models.utils import multi_apply, preprocess_panoptic_gt, get_uncertain_point_coords_with_randomness
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead

from seg.models.utils import preprocess_video_panoptic_gt, mask_pool
from seg.models.utils.load_checkpoint import load_checkpoint_with_prefix


@MODELS.register_module()
class Mask2FormerVideoHead(AnchorFreeHead):
    """Implements the Mask2Former head.

    See `Masked-attention Mask Transformer for Universal Image
    Segmentation <https://arxiv.org/pdf/2112.01527>`_ for details.

    Args:
        in_channels (list[int]): Number of channels in the input feature map.
        feat_channels (int): Number of channels for features.
        out_channels (int): Number of channels for output.
        num_things_classes (int): Number of things.
        num_stuff_classes (int): Number of stuff.
        num_queries (int): Number of query in Transformer decoder.
        pixel_decoder (:obj:`ConfigDict` or dict): Config for pixel
            decoder. Defaults to None.
        enforce_decoder_input_project (bool, optional): Whether to add
            a layer to change the embed_dim of tranformer encoder in
            pixel decoder to the embed_dim of transformer decoder.
            Defaults to False.
        transformer_decoder (:obj:`ConfigDict` or dict): Config for
            transformer decoder. Defaults to None.
        positional_encoding (:obj:`ConfigDict` or dict): Config for
            transformer decoder position encoding. Defaults to
            dict(num_feats=128, normalize=True).
        loss_cls (:obj:`ConfigDict` or dict): Config of the classification
            loss. Defaults to None.
        loss_mask (:obj:`ConfigDict` or dict): Config of the mask loss.
            Defaults to None.
        loss_dice (:obj:`ConfigDict` or dict): Config of the dice loss.
            Defaults to None.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            Mask2Former head.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            Mask2Former head.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], optional): Initialization config dict. Defaults to None.
    """

    def __init__(self,
                 in_channels: List[int],
                 feat_channels: int,
                 out_channels: int,
                 num_things_classes: int = 80,
                 num_stuff_classes: int = 53,
                 num_queries: int = 100,
                 num_transformer_feat_level: int = 3,
                 pixel_decoder: ConfigType = ...,
                 enforce_decoder_input_project: bool = False,
                 transformer_decoder: ConfigType = ...,
                 positional_encoding: ConfigType = None,
                 loss_cls: ConfigType = None,
                 loss_mask: ConfigType = None,
                 loss_dice: ConfigType = None,
                 loss_iou: ConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None,
                 # ov configs
                 sphere_cls: bool = False,
                 ov_classifier_name: Optional[str] = None,
                 logit: Optional[int] = None,
                 # box sup
                 matching_whole_map: bool = False,
                 # box query
                 enable_box_query: bool = False,
                 group_assigner: OptConfigType = None,
                 **kwargs) -> None:
        super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
        self.num_things_classes = num_things_classes
        self.num_stuff_classes = num_stuff_classes
        self.num_classes = self.num_things_classes + self.num_stuff_classes
        self.num_queries = num_queries
        self.num_transformer_feat_level = num_transformer_feat_level
        self.num_heads = transformer_decoder.layer_cfg.cross_attn_cfg.num_heads
        self.num_transformer_decoder_layers = transformer_decoder.num_layers
        assert pixel_decoder.encoder.layer_cfg. \
                   self_attn_cfg.num_levels == num_transformer_feat_level
        pixel_decoder_ = copy.deepcopy(pixel_decoder)
        pixel_decoder_.update(
            in_channels=in_channels,
            feat_channels=feat_channels,
            out_channels=out_channels)
        self.pixel_decoder = MODELS.build(pixel_decoder_)
        self.transformer_decoder = Mask2FormerTransformerDecoder(
            **transformer_decoder)
        self.decoder_embed_dims = self.transformer_decoder.embed_dims

        self.decoder_input_projs = ModuleList()
        # from low resolution to high resolution
        for _ in range(num_transformer_feat_level):
            if (self.decoder_embed_dims != feat_channels
                    or enforce_decoder_input_project):
                self.decoder_input_projs.append(
                    Conv2d(
                        feat_channels, self.decoder_embed_dims, kernel_size=1))
            else:
                self.decoder_input_projs.append(nn.Identity())
        self.decoder_positional_encoding = SinePositionalEncoding3D(
            **positional_encoding)
        self.query_embed = nn.Embedding(self.num_queries, feat_channels)
        self.query_feat = nn.Embedding(self.num_queries, feat_channels)
        # from low resolution to high resolution
        self.level_embed = nn.Embedding(self.num_transformer_feat_level,
                                        feat_channels)

        if not sphere_cls:
            self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
        self.mask_embed = nn.Sequential(
            nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
            nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
            nn.Linear(feat_channels, out_channels))

        if loss_iou is not None:
            self.iou_embed = nn.Sequential(
                nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
                nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
                nn.Linear(feat_channels, 1))
        else:
            self.iou_embed = None

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg
        if train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            self.sampler = TASK_UTILS.build(
                self.train_cfg['sampler'], default_args=dict(context=self))
            self.num_points = self.train_cfg.get('num_points', 12544)
            self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
            self.importance_sample_ratio = self.train_cfg.get(
                'importance_sample_ratio', 0.75)

        self.class_weight = loss_cls.class_weight
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_mask = MODELS.build(loss_mask)
        self.loss_dice = MODELS.build(loss_dice)
        if loss_iou is not None:
            self.loss_iou = MODELS.build(loss_iou)
        else:
            self.loss_iou = None

        # prepare OV things
        # OV cls embed
        if sphere_cls:
            rank, world_size = get_dist_info()
            if ov_classifier_name is None:
                _dim = 1024  # temporally hard code
                cls_embed = torch.empty(self.num_classes, _dim)
                torch.nn.init.orthogonal_(cls_embed)
                cls_embed = cls_embed[:, None]
            else:
                # ov_path = os.path.join(os.path.expanduser('~/.cache/embd'), f"{ov_classifier_name}.pth")
                ov_path = os.path.join(os.path.expanduser('./models/'), f"{ov_classifier_name}.pth")
                cls_embed = torch.load(ov_path)
                cls_embed_norm = cls_embed.norm(p=2, dim=-1)
                assert torch.allclose(cls_embed_norm, torch.ones_like(cls_embed_norm))
            if self.loss_cls and self.loss_cls.use_sigmoid:
                pass
            else:
                _dim = cls_embed.size(2)
                _prototypes = cls_embed.size(1)

                # if rank == 0:
                #     back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cuda')
                #     # back_token = back_token / back_token.norm(p=2, dim=-1, keepdim=True)
                # else:
                #     back_token = torch.empty(1, _dim, dtype=torch.float32, device='cuda')
                # if world_size > 1:
                #     dist.broadcast(back_token, src=0)
                # back_token = back_token.to(device='cpu')
                back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cpu')
                cls_embed = torch.cat([
                    cls_embed, back_token.repeat(_prototypes, 1)[None]
                ], dim=0)
            self.register_buffer('cls_embed', cls_embed.permute(2, 0, 1).contiguous(), persistent=False)

            # cls embd proj
            cls_embed_dim = self.cls_embed.size(0)
            self.cls_proj = nn.Sequential(
                nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
                nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
                nn.Linear(feat_channels, cls_embed_dim)
            )

            # Haobo Yuan:
            # For the logit_scale, I refer to this issue.
            # https://github.com/openai/CLIP/issues/46#issuecomment-945062212
            # https://github.com/openai/CLIP/issues/46#issuecomment-782558799
            # Based on my understanding, it is a mistake of CLIP.
            # Because they mention that they refer to InstDisc (Wu, 2018) paper.
            # InstDisc set a non-learnable temperature to np.log(1 / 0.07).
            # 4.6052 is np.log(1 / 0.01)
            # np.log(1 / 0.07) will be fast converged to np.log(1 / 0.01)
            if logit is None:
                logit_scale = torch.tensor(4.6052, dtype=torch.float32)
            else:
                logit_scale = torch.tensor(logit, dtype=torch.float32)
            self.register_buffer('logit_scale', logit_scale, persistent=False)

            # Mask Pooling
            self.mask_pooling = mask_pool
            self.mask_pooling_proj = nn.Sequential(
                nn.LayerNorm(feat_channels),
                nn.Linear(feat_channels, feat_channels)
            )

        # box inst
        self.matching_whole_map = matching_whole_map

        # enable box query
        self.enable_box_query = enable_box_query
        if self.enable_box_query:
            self.num_mask_tokens = 1
            self.mask_tokens = nn.Embedding(self.num_mask_tokens, feat_channels)
            self.pb_embedding = nn.Embedding(2, feat_channels)
            self.pos_linear = nn.Linear(2 * feat_channels, feat_channels)

    def init_weights(self) -> None:
        if self.init_cfg['type'] == 'Pretrained':
            checkpoint_path = self.init_cfg['checkpoint']
            state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix=self.init_cfg['prefix'])
            msg = self.load_state_dict(state_dict, strict=False)
            print_log(f"m: {msg[0]} \n u: {msg[1]}", logger='current')
            return None

        for m in self.decoder_input_projs:
            if isinstance(m, Conv2d):
                caffe2_xavier_init(m, bias=0)

        self.pixel_decoder.init_weights()

        for p in self.transformer_decoder.parameters():
            if p.dim() > 1:
                nn.init.xavier_normal_(p)

    def preprocess_gt(
            self, batch_gt_instances: InstanceList,
            batch_gt_semantic_segs: List[Optional[PixelData]]) -> InstanceList:
        """Preprocess the ground truth for all images.

        Args:
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``labels``, each is
                ground truth labels of each bbox, with shape (num_gts, )
                and ``masks``, each is ground truth masks of each instances
                of a image, shape (num_gts, h, w).
            batch_gt_semantic_segs (list[Optional[PixelData]]): Ground truth of
                semantic segmentation, each with the shape (1, h, w).
                [0, num_thing_class - 1] means things,
                [num_thing_class, num_class-1] means stuff,
                255 means VOID. It's None when training instance segmentation.

        Returns:
            list[obj:`InstanceData`]: each contains the following keys

                - labels (Tensor): Ground truth class indices\
                    for a image, with shape (n, ), n is the sum of\
                    number of stuff type and number of instance in a image.
                - masks (Tensor): Ground truth mask for a\
                    image, with shape (n, h, w).
        """
        num_things_list = [self.num_things_classes] * len(batch_gt_instances)
        num_stuff_list = [self.num_stuff_classes] * len(batch_gt_instances)
        if isinstance(batch_gt_instances[0], List):
            gt_labels_list = [
                [torch.stack([torch.ones_like(gt_instances['labels']) * frame_id, gt_instances['labels']], dim=1)
                 for frame_id, gt_instances in enumerate(gt_vid_instances)]
                for gt_vid_instances in batch_gt_instances
            ]
            gt_labels_list = [torch.cat(gt_labels, dim=0) for gt_labels in gt_labels_list]
            gt_masks_list = [
                [gt_instances['masks'] for gt_instances in gt_vid_instances]
                for gt_vid_instances in batch_gt_instances
            ]
            gt_semantic_segs = [
                [None if gt_semantic_seg is None else gt_semantic_seg.sem_seg
                 for gt_semantic_seg in gt_vid_semantic_segs]
                for gt_vid_semantic_segs in batch_gt_semantic_segs
            ]
            if gt_semantic_segs[0][0] is None:
                gt_semantic_segs = [None] * len(batch_gt_instances)
            else:
                gt_semantic_segs = [torch.stack(gt_sem_seg, dim=0) for gt_sem_seg in gt_semantic_segs]
            gt_instance_ids_list = [
                [torch.stack([torch.ones_like(gt_instances['instances_ids']) * frame_id, gt_instances['instances_ids']],
                             dim=1)
                 for frame_id, gt_instances in enumerate(gt_vid_instances)]
                for gt_vid_instances in batch_gt_instances
            ]
            gt_instance_ids_list = [torch.cat(gt_instance_ids, dim=0) for gt_instance_ids in gt_instance_ids_list]
            targets = multi_apply(preprocess_video_panoptic_gt, gt_labels_list,
                                  gt_masks_list, gt_semantic_segs, gt_instance_ids_list,
                                  num_things_list, num_stuff_list)
        else:
            gt_labels_list = [
                gt_instances['labels'] for gt_instances in batch_gt_instances
            ]
            gt_masks_list = [
                gt_instances['masks'] for gt_instances in batch_gt_instances
            ]
            gt_semantic_segs = [
                None if gt_semantic_seg is None else gt_semantic_seg.sem_seg
                for gt_semantic_seg in batch_gt_semantic_segs
            ]
            targets = multi_apply(preprocess_panoptic_gt, gt_labels_list,
                                  gt_masks_list, gt_semantic_segs, num_things_list,
                                  num_stuff_list)
        labels, masks = targets
        batch_gt_instances = [
            InstanceData(labels=label, masks=mask)
            for label, mask in zip(labels, masks)
        ]
        return batch_gt_instances

    def get_queries(self, batch_data_samples):
        img_size = batch_data_samples[0].batch_input_shape
        query_feat_list = []
        bp_list = []
        for idx, data_sample in enumerate(batch_data_samples):
            is_box = data_sample.gt_instances.bp.eq(0)
            is_point = data_sample.gt_instances.bp.eq(1)
            assert is_box.any()
            sparse_embed, _ = self.pe(
                data_sample.gt_instances[is_box],
                image_size=img_size,
                with_bboxes=True,
                with_points=False,
            )
            sparse_embed = [sparse_embed]
            if is_point.any():
                _sparse_embed, _ = self.pe(
                    data_sample.gt_instances[is_point],
                    image_size=img_size,
                    with_bboxes=False,
                    with_points=True,
                )
                sparse_embed.append(_sparse_embed)
            sparse_embed = torch.cat(sparse_embed)
            assert len(sparse_embed) == len(data_sample.gt_instances)

            query_feat_list.append(self.query_proj(sparse_embed.flatten(1, 2)))
            bp_list.append(data_sample.gt_instances.bp)

        query_feat = torch.stack(query_feat_list)
        bp_labels = torch.stack(bp_list).to(dtype=torch.long)
        bp_embed = self.bp_embedding.weight[bp_labels]
        bp_embed = bp_embed.repeat_interleave(self.num_mask_tokens, dim=1)

        query_feat = query_feat + bp_embed
        return query_feat, None

    def get_targets(
            self,
            cls_scores_list: List[Tensor],
            mask_preds_list: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            return_sampling_results: bool = False
    ) -> Tuple[List[Union[Tensor, int]]]:
        """Compute classification and mask targets for all images for a decoder
        layer.

        Args:
            cls_scores_list (list[Tensor]): Mask score logits from a single
                decoder layer for all images. Each with shape (num_queries,
                cls_out_channels).
            mask_preds_list (list[Tensor]): Mask logits from a single decoder
                layer for all images. Each with shape (num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.
            return_sampling_results (bool): Whether to return the sampling
                results. Defaults to False.

        Returns:
            tuple: a tuple containing the following targets.

                - labels_list (list[Tensor]): Labels of all images.\
                    Each with shape (num_queries, ).
                - label_weights_list (list[Tensor]): Label weights\
                    of all images. Each with shape (num_queries, ).
                - mask_targets_list (list[Tensor]): Mask targets of\
                    all images. Each with shape (num_queries, h, w).
                - mask_weights_list (list[Tensor]): Mask weights of\
                    all images. Each with shape (num_queries, ).
                - avg_factor (int): Average factor that is used to average\
                    the loss. When using sampling method, avg_factor is
                    usually the sum of positive and negative priors. When
                    using `MaskPseudoSampler`, `avg_factor` is usually equal
                    to the number of positive priors.

            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end.
        """
        results = multi_apply(
            self._get_targets_single, cls_scores_list, mask_preds_list, batch_gt_instances, batch_img_metas
        )
        labels_list, label_weights_list, mask_targets_list, mask_weights_list, \
            pos_inds_list, neg_inds_list, sampling_results_list = results[:7]
        rest_results = list(results[7:])

        avg_factor = sum([results.avg_factor for results in sampling_results_list])
        res = (labels_list, label_weights_list, mask_targets_list, mask_weights_list, avg_factor)

        if return_sampling_results:
            res = res + sampling_results_list

        return res + tuple(rest_results)

    def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor,
                            gt_instances: InstanceData,
                            img_meta: dict) -> Tuple[Tensor]:
        """Compute classification and mask targets for one image.

        Args:
            cls_score (Tensor): Mask score logits from a single decoder layer
                for one image. Shape (num_queries, cls_out_channels).
            mask_pred (Tensor): Mask logits for a single decoder layer for one
                image. Shape (num_queries, h, w).
            gt_instances (:obj:`InstanceData`): It contains ``labels`` and
                ``masks``.
            img_meta (dict): Image informtation.

        Returns:
            tuple[Tensor]: A tuple containing the following for one image.

                - labels (Tensor): Labels of each image. \
                    shape (num_queries, ).
                - label_weights (Tensor): Label weights of each image. \
                    shape (num_queries, ).
                - mask_targets (Tensor): Mask targets of each image. \
                    shape (num_queries, h, w).
                - mask_weights (Tensor): Mask weights of each image. \
                    shape (num_queries, ).
                - pos_inds (Tensor): Sampled positive indices for each \
                    image.
                - neg_inds (Tensor): Sampled negative indices for each \
                    image.
                - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        gt_labels = gt_instances.labels
        gt_masks = gt_instances.masks

        # sample points
        num_queries = cls_score.shape[0]
        num_gts = gt_labels.shape[0]

        if not self.matching_whole_map:
            point_coords = torch.rand((1, self.num_points, 2), device=cls_score.device)
            # shape (num_queries, num_points)
            mask_points_pred = point_sample(mask_pred.unsqueeze(1),
                                            point_coords.repeat(num_queries, 1, 1)).squeeze(1)
            # shape (num_gts, num_points)
            gt_points_masks = point_sample(gt_masks.unsqueeze(1).float(),
                                           point_coords.repeat(num_gts, 1, 1)).squeeze(1)
        else:
            mask_points_pred = mask_pred
            gt_points_masks = gt_masks

        sampled_gt_instances = InstanceData(
            labels=gt_labels, masks=gt_points_masks)
        sampled_pred_instances = InstanceData(
            scores=cls_score, masks=mask_points_pred)
        # assign and sample
        assign_result = self.assigner.assign(
            pred_instances=sampled_pred_instances,
            gt_instances=sampled_gt_instances,
            img_meta=img_meta
        )
        pred_instances = InstanceData(scores=cls_score, masks=mask_pred)
        sampling_result = self.sampler.sample(
            assign_result=assign_result,
            pred_instances=pred_instances,
            gt_instances=gt_instances)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label target
        labels = gt_labels.new_full((num_queries,), self.num_classes, dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_labels.new_ones((num_queries,))

        # mask target
        mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds]
        mask_weights = mask_pred.new_zeros((num_queries,))
        mask_weights[pos_inds] = 1.0

        return labels, label_weights, mask_targets, mask_weights, pos_inds, neg_inds, sampling_result

    def loss_by_feat(self, all_cls_scores: Tensor, all_mask_preds: Tensor,
                     batch_gt_instances: List[InstanceData],
                     batch_img_metas: List[dict]) -> Dict[str, Tensor]:
        """Loss function.

        Args:
            all_cls_scores (Tensor): Classification scores for all decoder
                layers with shape (num_decoder, batch_size, num_queries,
                cls_out_channels). Note `cls_out_channels` should includes
                background.
            all_mask_preds (Tensor): Mask scores for all decoder layers with
                shape (num_decoder, batch_size, num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        num_dec_layers = len(all_cls_scores)
        batch_gt_instances_list = [
            batch_gt_instances for _ in range(num_dec_layers)
        ]
        img_metas_list = [batch_img_metas for _ in range(num_dec_layers)]
        losses_cls, losses_mask, losses_dice = multi_apply(
            self._loss_by_feat_single, all_cls_scores, all_mask_preds, batch_gt_instances_list, img_metas_list
        )

        loss_dict = dict()
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_mask_i, loss_dice_i in zip(losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_mask'] = loss_mask_i
            loss_dict[f'd{num_dec_layer}.loss_dice'] = loss_dice_i
            num_dec_layer += 1
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_mask'] = losses_mask[-1]
        loss_dict['loss_dice'] = losses_dice[-1]
        return loss_dict

    def _loss_by_feat_single(self, cls_scores: Tensor, mask_preds: Tensor,
                             batch_gt_instances: List[InstanceData],
                             batch_img_metas: List[dict]) -> Tuple[Tensor]:
        """Loss function for outputs from a single decoder layer.

        Args:
            cls_scores (Tensor): Mask score logits from a single decoder layer
                for all images. Shape (batch_size, num_queries,
                cls_out_channels). Note `cls_out_channels` should includes
                background.
            mask_preds (Tensor): Mask logits for a pixel decoder for all
                images. Shape (batch_size, num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.

        Returns:
            tuple[Tensor]: Loss components for outputs from a single \
                decoder layer.
        """
        batch_size, num_ins = cls_scores.size(0), cls_scores.size(1)
        # hack here:
        is_sam = num_ins != self.num_queries

        if not is_sam:
            cls_scores_list = [cls_scores[i] for i in range(batch_size)]
            mask_preds_list = [mask_preds[i] for i in range(batch_size)]
            labels_list, label_weights_list, mask_targets_list, mask_weights_list, avg_factor = \
                self.get_targets(cls_scores_list, mask_preds_list, batch_gt_instances, batch_img_metas)
            labels = torch.stack(labels_list, dim=0)
            label_weights = torch.stack(label_weights_list, dim=0)
            mask_targets = torch.cat(mask_targets_list, dim=0)
            mask_weights = torch.stack(mask_weights_list, dim=0)
        else:
            labels = torch.stack([item.labels for item in batch_gt_instances])
            label_weights = labels.new_ones((batch_size, num_ins), dtype=torch.float)
            mask_targets = torch.cat([item.masks for item in batch_gt_instances])
            mask_weights = mask_targets.new_ones((batch_size, num_ins), dtype=torch.float)
            avg_factor = cls_scores.size(1)

        # classification loss
        # shape (batch_size * num_queries, )
        cls_scores = cls_scores.flatten(0, 1)
        labels = labels.flatten(0, 1)
        label_weights = label_weights.flatten(0, 1)
        class_weight = cls_scores.new_tensor(self.class_weight)
        ignore_inds = labels.eq(-1.)
        # zero will not be involved in the loss cal
        labels[ignore_inds] = 0
        label_weights[ignore_inds] = 0.
        obj_inds = labels.eq(self.num_classes)
        if is_sam:
            cls_avg_factor = cls_scores.new_tensor([0])
        else:
            cls_avg_factor = class_weight[labels].sum()
        cls_avg_factor = reduce_mean(cls_avg_factor)
        cls_avg_factor = max(cls_avg_factor, 1)
        if self.loss_iou is not None:
            loss_cls = self.loss_cls(
                cls_scores[..., :-1],
                labels,
                label_weights,
                avg_factor=cls_avg_factor
            )
            loss_iou = self.loss_iou(
                cls_scores[..., -1:],
                obj_inds.to(dtype=torch.long),
                avg_factor=cls_avg_factor
            )
            if is_sam:
                loss_iou = loss_iou * 0
            loss_cls = loss_cls + loss_iou
        else:
            loss_cls = self.loss_cls(
                cls_scores,
                labels,
                label_weights,
                avg_factor=cls_avg_factor
            )

        # loss_mask
        num_total_masks = reduce_mean(cls_scores.new_tensor([avg_factor]))
        num_total_masks = max(num_total_masks, 1)
        # extract positive ones
        # shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w)
        mask_preds = mask_preds[mask_weights > 0]

        if mask_targets.shape[0] == 0:
            # zero match
            loss_dice = mask_preds.sum()
            loss_mask = mask_preds.sum()
            return loss_cls, loss_mask, loss_dice

        if not self.matching_whole_map:
            with torch.no_grad():
                points_coords = get_uncertain_point_coords_with_randomness(
                    mask_preds.unsqueeze(1), None, self.num_points,
                    self.oversample_ratio, self.importance_sample_ratio)
                # shape (num_total_gts, h, w) -> (num_total_gts, num_points)
                mask_point_targets = point_sample(
                    mask_targets.unsqueeze(1).float(), points_coords).squeeze(1)
            # shape (num_queries, h, w) -> (num_queries, num_points)
            mask_point_preds = point_sample(
                mask_preds.unsqueeze(1), points_coords).squeeze(1)
        else:
            mask_point_targets = mask_targets
            mask_point_preds = mask_preds

        # dice loss
        loss_dice = self.loss_dice(
            mask_point_preds, mask_point_targets, avg_factor=num_total_masks)

        # mask loss
        # shape (num_queries, num_points) -> (num_queries * num_points, )
        mask_point_preds = mask_point_preds.reshape(-1)
        # shape (num_total_gts, num_points) -> (num_total_gts * num_points, )
        mask_point_targets = mask_point_targets.reshape(-1)
        loss_mask = self.loss_mask(
            mask_point_preds,
            mask_point_targets,
            avg_factor=num_total_masks * self.num_points
        )

        return loss_cls, loss_mask, loss_dice

    def forward_logit(self, cls_embd):
        cls_pred = torch.einsum('bnc,ckp->bnkp', F.normalize(cls_embd, dim=-1), self.cls_embed)
        cls_pred = cls_pred.max(-1).values
        cls_pred = self.logit_scale.exp() * cls_pred
        return cls_pred

    def _forward_head(self, decoder_out: Tensor, mask_feature: Tensor,
                      attn_mask_target_size: Tuple[int, int],
                      num_frames: int = 0) -> Tuple[Tensor]:
        """Forward for head part which is called after every decoder layer.

        Args:
            decoder_out (Tensor): in shape (batch_size, num_queries, c).
            mask_feature (Tensor): in shape (batch_size, c, h, w).
            attn_mask_target_size (tuple[int, int]): target attention
                mask size.

        Returns:
            tuple: A tuple contain three elements.

                - cls_pred (Tensor): Classification scores in shape \
                    (batch_size, num_queries, cls_out_channels). \
                    Note `cls_out_channels` should includes background.
                - mask_pred (Tensor): Mask scores in shape \
                    (batch_size, num_queries,h, w).
                - attn_mask (Tensor): Attention mask in shape \
                    (batch_size * num_heads, num_queries, h, w).
                - num_frames: How many frames are there in video.
        """
        decoder_out = self.transformer_decoder.post_norm(decoder_out)
        # shape (num_queries, batch_size, c)
        if isinstance(self.cls_embed, nn.Module):
            cls_pred = self.cls_embed(decoder_out)
        # shape (num_queries, batch_size, c)
        mask_embed = self.mask_embed(decoder_out)
        # shape (num_queries, batch_size, h, w)
        mask_pred = torch.einsum('bqc,bchw->bqhw', mask_embed, mask_feature)

        if not isinstance(self.cls_embed, nn.Module):
            maskpool_embd = self.mask_pooling(x=mask_feature, mask=mask_pred.detach())
            maskpool_embd = self.mask_pooling_proj(maskpool_embd)
            cls_embd = self.cls_proj(maskpool_embd + decoder_out)
            cls_pred = self.forward_logit(cls_embd)

        if self.iou_embed is not None:
            iou_pred = self.iou_embed(decoder_out)
            cls_pred = torch.cat([cls_pred, iou_pred], dim=-1)

        if num_frames > 0:
            assert len(mask_pred.shape) == 4
            assert mask_pred.shape[2] % num_frames == 0
            frame_h = mask_pred.shape[2] // num_frames
            num_q = mask_pred.shape[1]
            _mask_pred = mask_pred.unflatten(-2, (num_frames, frame_h)).flatten(1, 2)
            attn_mask = F.interpolate(
                _mask_pred,
                attn_mask_target_size,
                mode='bilinear',
                align_corners=False)
            attn_mask = attn_mask.unflatten(1, (num_q, num_frames)).flatten(2, 3)
        else:
            attn_mask = F.interpolate(
                mask_pred,
                attn_mask_target_size,
                mode='bilinear',
                align_corners=False)
        # shape (num_queries, batch_size, h, w) ->
        #   (batch_size * num_head, num_queries, h, w)
        attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat(
            (1, self.num_heads, 1, 1)).flatten(0, 1)
        attn_mask = attn_mask.sigmoid() < 0.5
        attn_mask = attn_mask.detach()

        return cls_pred, mask_pred, attn_mask

    def forward(self, x: List[Tensor], batch_data_samples: SampleList) -> Tuple[List[Tensor]]:
        """Forward function.

        Args:
            x (list[Tensor]): Multi scale Features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            tuple[list[Tensor]]: A tuple contains two elements.

                - cls_pred_list (list[Tensor)]: Classification logits \
                    for each decoder layer. Each is a 3D-tensor with shape \
                    (batch_size, num_queries, cls_out_channels). \
                    Note `cls_out_channels` should includes background.
                - mask_pred_list (list[Tensor]): Mask logits for each \
                    decoder layer. Each with shape (batch_size, num_queries, \
                    h, w).
        """
        batch_img_metas = []
        if isinstance(batch_data_samples[0], TrackDataSample):
            for track_sample in batch_data_samples:
                cur_list = []
                for det_sample in track_sample:
                    cur_list.append(det_sample.metainfo)
                batch_img_metas.append(cur_list)
            num_frames = len(batch_img_metas[0])
        else:
            for data_sample in batch_data_samples:
                batch_img_metas.append(data_sample.metainfo)
            num_frames = 0
        batch_size = len(batch_img_metas)

        mask_features, multi_scale_memorys = self.pixel_decoder(x)
        if num_frames > 0:
            mask_features = mask_features.unflatten(0, (batch_size, num_frames))
            mask_features = mask_features.transpose(1, 2).flatten(2, 3)
        decoder_inputs = []
        decoder_positional_encodings = []
        for i in range(self.num_transformer_feat_level):
            decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i])
            # shape (batch_size, c, h, w) -> (batch_size, h*w, c)
            decoder_input = decoder_input.flatten(2).permute(0, 2, 1)
            if num_frames > 0:
                decoder_input = decoder_input.unflatten(0, (batch_size, num_frames))
                decoder_input = decoder_input.flatten(1, 2)
            level_embed = self.level_embed.weight[i].view(1, 1, -1)
            decoder_input = decoder_input + level_embed

            # shape (batch_size, c, h, w) -> (batch_size, h*w, c)
            num_frames_real = 1 if num_frames == 0 else num_frames
            mask = decoder_input.new_zeros(
                (batch_size, num_frames_real) + multi_scale_memorys[i].shape[-2:],
                dtype=torch.bool)
            decoder_positional_encoding = self.decoder_positional_encoding(
                mask)
            decoder_positional_encoding = decoder_positional_encoding.transpose(
                1, 2).flatten(2).permute(0, 2, 1)
            decoder_inputs.append(decoder_input)
            decoder_positional_encodings.append(decoder_positional_encoding)

        if self.enable_box_query and batch_data_samples[0].data_tag in ['sam_mul', 'sam']:
            query_feat, input_query_bbox, self_attn_mask, _ = self.prepare_for_dn_mo(batch_data_samples)
            query_embed = coordinate_to_encoding(input_query_bbox.sigmoid())
            query_embed = self.pos_linear(query_embed)
        else:
            # coco style query generation
            # shape (num_queries, c) -> (batch_size, num_queries, c)
            query_feat = self.query_feat.weight.unsqueeze(0).repeat((batch_size, 1, 1))
            query_embed = self.query_embed.weight.unsqueeze(0).repeat((batch_size, 1, 1))
            self_attn_mask = None

        cls_pred_list = []
        mask_pred_list = []
        cls_pred, mask_pred, attn_mask = self._forward_head(
            query_feat, mask_features, multi_scale_memorys[0].shape[-2:],
            num_frames=num_frames
        )
        cls_pred_list.append(cls_pred)
        if num_frames > 0:
            mask_pred = mask_pred.unflatten(2, (num_frames, -1))
        mask_pred_list.append(mask_pred)

        for i in range(self.num_transformer_decoder_layers):
            level_idx = i % self.num_transformer_feat_level
            # if a mask is all True(all background), then set it all False.
            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False

            # cross_attn + self_attn
            layer = self.transformer_decoder.layers[i]
            query_feat = layer(
                query=query_feat,
                key=decoder_inputs[level_idx],
                value=decoder_inputs[level_idx],
                query_pos=query_embed,
                key_pos=decoder_positional_encodings[level_idx],
                cross_attn_mask=attn_mask,
                self_attn_mask=self_attn_mask,
                query_key_padding_mask=None,
                # here we do not apply masking on padded region
                key_padding_mask=None)
            cls_pred, mask_pred, attn_mask = self._forward_head(
                query_feat, mask_features, multi_scale_memorys[(i + 1) % self.num_transformer_feat_level].shape[-2:],
                num_frames=num_frames
            )

            cls_pred_list.append(cls_pred)
            if num_frames > 0:
                mask_pred = mask_pred.unflatten(2, (num_frames, -1))
            mask_pred_list.append(mask_pred)

        return cls_pred_list, mask_pred_list, query_feat

    def loss(
            self,
            x: Tuple[Tensor],
            batch_data_samples: SampleList,
    ) -> Dict[str, Tensor]:
        """Perform forward propagation and loss calculation of the panoptic
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the upstream
                network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        batch_img_metas = []
        batch_gt_instances = []
        batch_gt_semantic_segs = []
        for data_sample in batch_data_samples:
            if isinstance(data_sample, TrackDataSample):
                clip_meta = []
                clip_instances = []
                clip_sem_seg = []
                for det_sample in data_sample:
                    clip_meta.append(det_sample.metainfo)
                    clip_instances.append(det_sample.gt_instances)
                    if 'gt_sem_seg' in det_sample:
                        clip_sem_seg.append(det_sample.gt_sem_seg)
                    else:
                        clip_sem_seg.append(None)
                batch_img_metas.append(clip_meta)
                batch_gt_instances.append(clip_instances)
                batch_gt_semantic_segs.append(clip_sem_seg)
            else:
                batch_img_metas.append(data_sample.metainfo)
                batch_gt_instances.append(data_sample.gt_instances)
                if 'gt_sem_seg' in data_sample:
                    batch_gt_semantic_segs.append(data_sample.gt_sem_seg)
                else:
                    batch_gt_semantic_segs.append(None)

        # forward
        all_cls_scores, all_mask_preds, _ = self(x, batch_data_samples)

        # preprocess ground truth
        if not self.enable_box_query or batch_data_samples[0].data_tag in ['coco', 'sam']:
            batch_gt_instances = self.preprocess_gt(batch_gt_instances, batch_gt_semantic_segs)

        # loss
        if isinstance(batch_data_samples[0], TrackDataSample):
            num_frames = len(batch_img_metas[0])
            all_mask_preds = [mask.flatten(2, 3) for mask in all_mask_preds]
            for instance in batch_gt_instances:
                instance['masks'] = instance['masks'].flatten(1, 2)
            film_metas = [
                {
                    'img_shape': (meta[0]['img_shape'][0] * num_frames,
                                  meta[0]['img_shape'][1])
                } for meta in batch_img_metas
            ]
            batch_img_metas = film_metas

        losses = self.loss_by_feat(all_cls_scores, all_mask_preds, batch_gt_instances, batch_img_metas)

        if self.enable_box_query:
            losses['loss_zero'] = 0 * self.query_feat.weight.sum() + 0 * self.query_embed.weight.sum()
            losses['loss_zero'] += 0 * self.pb_embedding.weight.sum()
            losses['loss_zero'] += 0 * self.mask_tokens.weight.sum()
            for name, param in self.pos_linear.named_parameters():
                losses['loss_zero'] += 0 * param.sum()
        return losses

    def predict(self, x: Tuple[Tensor],
                batch_data_samples: SampleList,
                return_query=False,
                ) -> Tuple[Tensor, ...]:
        """Test without augmentaton.

        Args:
            return_query:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            tuple[Tensor]: A tuple contains two tensors.

                - mask_cls_results (Tensor): Mask classification logits,\
                    shape (batch_size, num_queries, cls_out_channels).
                    Note `cls_out_channels` should includes background.
                - mask_pred_results (Tensor): Mask logits, shape \
                    (batch_size, num_queries, h, w).
        """
        data_sample = batch_data_samples[0]
        if isinstance(data_sample, TrackDataSample):
            img_shape = data_sample[0].metainfo['batch_input_shape']
            num_frames = len(data_sample)
        else:
            img_shape = data_sample.metainfo['batch_input_shape']
            num_frames = 0
        all_cls_scores, all_mask_preds, query_feat = self(x, batch_data_samples)
        if self.iou_embed is not None:
            _all_cls_scores = [cls_score[..., :-1] for cls_score in all_cls_scores]
            iou_results = [cls_score[..., -1:] for cls_score in all_cls_scores]
            all_cls_scores = _all_cls_scores
        else:
            iou_results = None
        mask_cls_results = all_cls_scores[-1]
        mask_pred_results = all_mask_preds[-1]
        if iou_results is not None:
            iou_results = iou_results[-1]

        if num_frames > 0:
            mask_pred_results = mask_pred_results.flatten(1, 2)
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(img_shape[0], img_shape[1]),
            mode='bilinear',
            align_corners=False)
        if num_frames > 0:
            num_queries = mask_cls_results.shape[1]
            mask_pred_results = mask_pred_results.unflatten(1, (num_queries, num_frames))

        if iou_results is None:
            return mask_cls_results, mask_pred_results

        if return_query:
            return mask_cls_results, mask_pred_results, query_feat, iou_results
        else:
            return mask_cls_results, mask_pred_results, iou_results

    def prepare_for_dn_mo(self, batch_data_samples):
        scalar, noise_scale = 100, 0.4
        gt_instances = [t.gt_instances for t in batch_data_samples]

        point_coords = torch.stack([inst.point_coords for inst in gt_instances])
        pb_labels = torch.stack([inst['bp'] for inst in gt_instances])
        labels = torch.zeros_like(pb_labels).long()

        boxes = point_coords  # + boxes

        factors = []
        for i, data_sample in enumerate(batch_data_samples):
            h, w, = data_sample.metainfo['img_shape']
            factor = boxes[i].new_tensor([w, h, w, h]).unsqueeze(0).repeat(boxes[i].size(0), 1)
            factors.append(factor)
        factors = torch.stack(factors, 0)

        boxes = bbox_xyxy_to_cxcywh(boxes / factors)  # xyxy / factor or xywh / factor ????
        # box_start = [t['box_start'] for t in targets]
        box_start = [len(point) for point in point_coords]

        known_labels = labels
        known_pb_labels = pb_labels
        known_bboxs = boxes

        known_labels_expaned = known_labels.clone()
        known_pb_labels_expaned = known_pb_labels.clone()
        known_bbox_expand = known_bboxs.clone()

        if noise_scale > 0 and self.training:
            diff = torch.zeros_like(known_bbox_expand)
            diff[:, :, :2] = known_bbox_expand[:, :, 2:] / 2
            diff[:, :, 2:] = known_bbox_expand[:, :, 2:]
            # add very small noise to input points; no box
            sc = 0.01
            for i, st in enumerate(box_start):
                diff[i, :st] = diff[i, :st] * sc
            known_bbox_expand += torch.mul(
                (torch.rand_like(known_bbox_expand) * 2 - 1.0),
                diff) * noise_scale

            known_bbox_expand = known_bbox_expand.clamp(min=0.0, max=1.0)

        input_label_embed = self.pb_embedding(known_pb_labels_expaned)

        input_bbox_embed = inverse_sigmoid(known_bbox_expand)

        input_label_embed = input_label_embed.repeat_interleave(
            self.num_mask_tokens,
            1) + self.mask_tokens.weight.unsqueeze(0).repeat(
            input_label_embed.shape[0], input_label_embed.shape[1], 1)
        input_bbox_embed = input_bbox_embed.repeat_interleave(
            self.num_mask_tokens, 1)

        single_pad = self.num_mask_tokens

        # NOTE scalar is modified to 100, each click cannot see each other
        scalar = int(input_label_embed.shape[1] / self.num_mask_tokens)

        pad_size = input_label_embed.shape[1]

        if input_label_embed.shape[1] > 0:
            input_query_label = input_label_embed
            input_query_bbox = input_bbox_embed

        tgt_size = pad_size
        attn_mask = torch.ones(tgt_size, tgt_size).to('cuda') < 0
        # match query cannot see the reconstruct
        attn_mask[pad_size:, :pad_size] = True
        # reconstruct cannot see each other
        for i in range(scalar):
            if i == 0:
                attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True
            if i == scalar - 1:
                attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True
            else:
                attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True
                attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True
        mask_dict = {
            'known_lbs_bboxes': (known_labels, known_bboxs),
            'pad_size': pad_size,
            'scalar': scalar,
        }
        return input_query_label, input_query_bbox, attn_mask, mask_dict