File size: 7,761 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/python
#
# Converts the *instanceIds.png annotations of the Cityscapes dataset
# to COCO-style panoptic segmentation format (http://cocodataset.org/#format-data).
# The convertion is working for 'fine' set of the annotations.
#
# By default with this tool uses IDs specified in labels.py. You can use flag
# --use-train-id to get train ids for categories. 'ignoreInEval' categories are
# removed during the conversion.
#
# In panoptic segmentation format image_id is used to match predictions and ground truth.
# For cityscapes image_id has form <city>_123456_123456 and corresponds to the prefix
# of cityscapes image files.
#

# python imports
from __future__ import print_function, absolute_import, division, unicode_literals
import os
import glob
import sys
import argparse
import json
import numpy as np

# Image processing
from PIL import Image

# cityscapes imports
from ext.cityscapes_scripts.helpers.csHelpers import printError
from ext.cityscapes_scripts.helpers.labels import id2label, labels


import mmengine


# The main method
def convert2panoptic(cityscapesPath=None, outputFolder=None, useTrainId=False, setNames=["val", "train", "test"]):
    # Where to look for Cityscapes
    if cityscapesPath is None:
        if 'CITYSCAPES_DATASET' in os.environ:
            cityscapesPath = os.environ['CITYSCAPES_DATASET']
        else:
            cityscapesPath = 'data/cityscapes'
        cityscapesPath = os.path.join(cityscapesPath, "gtFine")

    if outputFolder is None:
        outputFolder = cityscapesPath.replace('gtFine', "annotations")

    mmengine.mkdir_or_exist(outputFolder)

    categories = []
    for label in labels:
        if label.ignoreInEval:
            continue
        categories.append({'id': int(label.trainId) if useTrainId else int(label.id),
                           'name': label.name,
                           'color': label.color,
                           'supercategory': label.category,
                           'isthing': 1 if label.hasInstances else 0})

    categories = sorted(categories, key=lambda x:x['id'])

    for setName in setNames:
        # how to search for all ground truth
        searchFine   = os.path.join(cityscapesPath, setName, "*", "*_instanceIds.png")
        # search files
        filesFine = glob.glob(searchFine)
        filesFine.sort()

        files = filesFine
        # quit if we did not find anything
        if not files:
            printError(
                "Did not find any files for {} set using matching pattern {}. Please consult the README.".format(setName, searchFine)
            )
        # a bit verbose
        print("Converting {} annotation files for {} set.".format(len(files), setName))

        trainIfSuffix = "_trainId" if useTrainId else ""
        outputBaseFile = "cityscapes_panoptic_{}{}".format(setName, trainIfSuffix)
        outFile = os.path.join(outputFolder, "{}.json".format(outputBaseFile))
        print("Json file with the annotations in panoptic format will be saved in {}".format(outFile))
        panopticFolder = os.path.join(outputFolder, outputBaseFile)
        if not os.path.isdir(panopticFolder):
            print("Creating folder {} for panoptic segmentation PNGs".format(panopticFolder))
            os.mkdir(panopticFolder)
        print("Corresponding segmentations in .png format will be saved in {}".format(panopticFolder))

        images = []
        annotations = []
        for progress, f in enumerate(files):

            originalFormat = np.array(Image.open(f))

            fileName = os.path.basename(f)
            location = fileName.split('_')[0]
            imageId = fileName.replace("_gtFine_instanceIds.png", "")
            fileName = os.path.join(location, fileName)
            inputFileName = fileName.replace("_gtFine_instanceIds.png", "_leftImg8bit.png")
            outputFileName = fileName.replace("_gtFine_instanceIds.png", "_panoptic.png")
            # image entry, id for image is its filename without extension
            images.append({"id": imageId,
                           "width": int(originalFormat.shape[1]),
                           "height": int(originalFormat.shape[0]),
                           "file_name": inputFileName})

            pan_format = np.zeros(
                (originalFormat.shape[0], originalFormat.shape[1], 3), dtype=np.uint8
            )

            segmentIds = np.unique(originalFormat)
            segmInfo = []
            for segmentId in segmentIds:
                if segmentId < 1000:
                    semanticId = segmentId
                    isCrowd = 1
                else:
                    semanticId = segmentId // 1000
                    isCrowd = 0
                labelInfo = id2label[semanticId]
                categoryId = labelInfo.trainId if useTrainId else labelInfo.id
                if labelInfo.ignoreInEval:
                    continue
                if not labelInfo.hasInstances:
                    isCrowd = 0

                mask = originalFormat == segmentId
                color = [segmentId % 256, segmentId // 256, segmentId // 256 // 256]
                pan_format[mask] = color

                area = np.sum(mask) # segment area computation

                # bbox computation for a segment
                hor = np.sum(mask, axis=0)
                hor_idx = np.nonzero(hor)[0]
                x = hor_idx[0]
                width = hor_idx[-1] - x + 1
                vert = np.sum(mask, axis=1)
                vert_idx = np.nonzero(vert)[0]
                y = vert_idx[0]
                height = vert_idx[-1] - y + 1
                bbox = [int(x), int(y), int(width), int(height)]

                segmInfo.append({"id": int(segmentId),
                                 "category_id": int(categoryId),
                                 "area": int(area),
                                 "bbox": bbox,
                                 "iscrowd": isCrowd})

            annotations.append({'image_id': imageId,
                                'file_name': outputFileName,
                                "segments_info": segmInfo})

            mmengine.mkdir_or_exist(os.path.dirname(os.path.join(panopticFolder, outputFileName)))
            Image.fromarray(pan_format).save(os.path.join(panopticFolder, outputFileName))

            print("\rProgress: {:>3.2f} %".format((progress + 1) * 100 / len(files)), end=' ')
            sys.stdout.flush()

        print("\nSaving the json file {}".format(outFile))
        d = {'images': images,
             'annotations': annotations,
             'categories': categories}
        with open(outFile, 'w') as f:
            json.dump(d, f, sort_keys=True, indent=4)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset-folder",
                        dest="cityscapesPath",
                        help="path to the Cityscapes dataset 'gtFine' folder",
                        default=None,
                        type=str)
    parser.add_argument("--output-folder",
                        dest="outputFolder",
                        help="path to the output folder.",
                        default=None,
                        type=str)
    parser.add_argument("--use-train-id", default=True,action="store_true", dest="useTrainId")
    parser.add_argument("--set-names",
                        dest="setNames",
                        help="set names to which apply the function to",
                        nargs='+',
                        default=["val", "train"],
                        type=str)
    args = parser.parse_args()

    convert2panoptic(args.cityscapesPath, args.outputFolder, args.useTrainId, args.setNames)


# call the main
if __name__ == "__main__":
    main()