File size: 10,025 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import copy
from typing import List

from mmdet.registry import DATASETS
from mmdet.datasets.coco import CocoDataset
from mmengine import get_local_path, print_log

CLASSES_ORIGINAL = (
    'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
    'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
    'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
    'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
    'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
    'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
    'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
    'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
    'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
    'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
    'scissors', 'teddy bear', 'hair drier', 'toothbrush'
)

CLASSES_48 = (
    'person', 'bicycle', 'car', 'motorcycle', 'truck', 'boat', 'bench',
    'bird', 'horse', 'sheep', 'zebra', 'giraffe', 'backpack',
    'handbag', 'skis', 'kite', 'surfboard', 'bottle', 'spoon',
    'bowl', 'banana', 'apple', 'orange', 'broccoli', 'carrot',
    'pizza', 'donut', 'chair', 'bed', 'tv', 'laptop',
    'remote', 'microwave', 'oven', 'refrigerator', 'book',
    'clock', 'vase', 'toothbrush', 'train', 'bear', 'suitcase',
    'frisbee', 'fork', 'sandwich', 'toilet', 'mouse', 'toaster'
)

CLASSES_17 = (
    'bus', 'dog', 'cow', 'elephant', 'umbrella', 'tie',
    'skateboard', 'cup', 'knife', 'cake',
    'couch', 'keyboard', 'sink', 'scissors',
    'airplane', 'cat', 'snowboard'
)

CLASSES_IDS_48 = [0, 1, 2, 3, 7, 8, 13, 14, 17, 18, 22, 23, 24, 26, 30, 33, 37, 39, 44, 45, 46, 47, 49, 50, 51, 53, 54,
                  56, 59, 62, 63, 65, 68, 69, 72, 73, 74, 75, 79, 6, 21, 28, 29, 42, 48, 61, 64, 70]
CLASSES_IDS_17 = [5, 16, 19, 20, 25, 27, 36, 41, 43, 55, 57, 66, 71, 76, 4, 15, 31]


@DATASETS.register_module()
class CocoOVDataset(CocoDataset):
    """Coco Open Vocabulary dataset for Instance segmentation.
    The class names are changed.
    """
    METAINFO = {
        'classes':
            ('person,child,girl,boy,woman,man,people,children,girls,boys,women,men,lady,guy,ladies,guys,clothes',
             'bicycle,bicycles,bike,bikes',
             'car,cars',
             'motorcycle,motorcycles',
             'airplane,airplanes',
             'bus,buses',
             'train,trains,locomotive,locomotives,freight train',
             'truck,trucks',
             'boat,boats',
             'traffic light',
             'fire hydrant',
             'stop sign',
             'parking meter',
             'bench,benches',
             'bird,birds',
             'cat,cats,kitties,kitty',
             'dog,dogs,puppy,puppies',
             'horse,horses,foal',
             'sheep',
             'cow,cows,calf',
             'elephant,elephants',
             'bear,bears',
             'zebra,zebras',
             'giraffe,giraffes',
             'backpack,backpacks',
             'umbrella,umbrellas',
             'handbag,handbags',
             'tie',
             'suitcase,suitcases',
             'frisbee',
             'skis',
             'snowboard',
             'sports ball',
             'kite,kites',
             'baseball bat',
             'baseball glove',
             'skateboard',
             'surfboard',
             'tennis racket',
             'bottle,bottles,water bottle',
             'wine glass,wine glasses,wineglass',
             'cup,cups,water cup,water glass',
             'fork,forks',
             'knife,knives',
             'spoon,spoons',
             'bowl,bowls',
             'banana,bananas',
             'apple,apples,apple fruit',
             'sandwich,sandwiches',
             'orange fruit',
             'broccoli',
             'carrot,carrots',
             'hot dog',
             'pizza',
             'donut,donuts',
             'cake,cakes',
             'chair,chairs',
             'couch,sofa,sofas',
             'potted plant,potted plants,pottedplant,pottedplants,planter,planters',
             'bed,beds',
             'dining table,dining tables,diningtable,diningtables,plate,plates,diningtable tablecloth',
             'toilet',
             'tv',
             'laptop',
             'mouse',
             'tv remote,remote control',
             'keyboard',
             'cell phone,mobile',
             'microwave',
             'oven,ovens',
             'toaster',
             'sink,sinks',
             'refrigerator,fridge',
             'book,books',
             'clock',
             'vase,vases',
             'scissor,scissors',
             'teddy bear,teddy bears',
             'hair drier',
             'toothbrush,toothbrushes',
             ),

        'palette':
            [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228),
             (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30),
             (100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30),
             (165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255),
             (0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255),
             (199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92),
             (209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164),
             (92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0),
             (174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174),
             (255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54),
             (207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51),
             (74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65),
             (0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0),
             (227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161),
             (163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120),
             (183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133),
             (166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62),
             (65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45),
             (196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1),
             (246, 0, 122), (191, 162, 208)]
    }

    def load_data_list(self) -> List[dict]:
        """Load annotations from an annotation file named as ``self.ann_file``

        Returns:
            List[dict]: A list of annotation.
        """  # noqa: E501
        with get_local_path(
                self.ann_file, backend_args=self.backend_args) as local_path:
            self.coco = self.COCOAPI(local_path)
        # The order of returned `cat_ids` will not
        # change with the order of the `classes`
        self.cat_ids = self.coco.get_cat_ids(
            cat_names=CLASSES_ORIGINAL)
        self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
        self.cat_img_map = copy.deepcopy(self.coco.cat_img_map)

        img_ids = self.coco.get_img_ids()
        data_list = []
        total_ann_ids = []
        for img_id in img_ids:
            raw_img_info = self.coco.load_imgs([img_id])[0]
            raw_img_info['img_id'] = img_id

            ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
            raw_ann_info = self.coco.load_anns(ann_ids)
            total_ann_ids.extend(ann_ids)

            parsed_data_info = self.parse_data_info({
                'raw_ann_info':
                    raw_ann_info,
                'raw_img_info':
                    raw_img_info
            })
            data_list.append(parsed_data_info)
        if self.ANN_ID_UNIQUE:
            assert len(set(total_ann_ids)) == len(
                total_ann_ids
            ), f"Annotation ids in '{self.ann_file}' are not unique!"

        del self.coco

        return data_list

    def filter_data(self) -> List[dict]:
        valid_data_infos = super().filter_data()

        if self.filter_cfg is None:
            return valid_data_infos

        sub_split = self.filter_cfg.get('sub_split', None)
        if sub_split is None:
            return valid_data_infos

        if sub_split == '48_17':
            with_cat_ids = []
            wo_cat_ids = []
            classes = list(CLASSES_ORIGINAL)
            if self.test_mode:
                for cls in CLASSES_17:
                    with_cat_ids.append(classes.index(cls))
                for cls in CLASSES_48:
                    with_cat_ids.append(classes.index(cls))
            else:
                for cls in CLASSES_48:
                    with_cat_ids.append(classes.index(cls))
                for cls in CLASSES_17:
                    wo_cat_ids.append(classes.index(cls))
        else:
            raise ValueError(f"{sub_split} does not support")

        keep_w_novel = True
        filtered_data_infos = []
        for data_info in valid_data_infos:
            instances = data_info['instances']
            filtered_instances = []
            flag = False
            for ins in instances:
                if ins['bbox_label'] in with_cat_ids:
                    filtered_instances.append(ins)
                    flag = True
            if not flag:
                continue
            if not keep_w_novel:
                for ins in instances:
                    if ins['bbox_label'] in wo_cat_ids:
                        filtered_instances.append(ins)
                        flag = False
                        break
            if flag:
                data_info['instances'] = filtered_instances
                filtered_data_infos.append(data_info)

        print_log(
            f"There are totally {len(filtered_data_infos)} images in the filtered dataset.",
            logger='current',
        )
        return filtered_data_infos