Spaces:
Sleeping
Sleeping
File size: 8,067 Bytes
b34d1d6 5f78ef5 b34d1d6 5f78ef5 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
# mm libs
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.visualization import DetLocalVisualizer
from mmengine import Config, print_log
from mmengine.structures import InstanceData
from mmdet.datasets.coco_panoptic import CocoPanopticDataset
from PIL import ImageDraw
import spaces
IMG_SIZE = 1024
TITLE = "<center><strong><font size='8'>OMG-Seg: Is One Model Good Enough For All Segmentation?<font></strong></center>"
CSS = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
model_cfg = Config.fromfile('app/configs/m2_convl.py')
model = MODELS.build(model_cfg.model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device=device)
model = model.eval()
model.init_weights()
mean = torch.tensor([123.675, 116.28, 103.53], device=device)[:, None, None]
std = torch.tensor([58.395, 57.12, 57.375], device=device)[:, None, None]
visualizer = DetLocalVisualizer()
examples = [
["assets/000000000139.jpg"],
["assets/000000000285.jpg"],
["assets/000000000632.jpg"],
["assets/000000000724.jpg"],
]
class IMGState:
def __init__(self):
self.img = None
self.selected_points = []
self.available_to_set = True
def set_img(self, img):
self.img = img
self.available_to_set = False
def clear(self):
self.img = None
self.selected_points = []
self.available_to_set = True
def clean(self):
self.selected_points = []
@property
def available(self):
return self.available_to_set
@classmethod
def cls_clean(cls, state):
state.clean()
return Image.fromarray(state.img), None
@classmethod
def cls_clear(cls, state):
state.clear()
return None, None
def store_img(img, img_state):
w, h = img.size
scale = IMG_SIZE / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
img = img.resize((new_w, new_h), resample=Image.Resampling.BILINEAR)
img_numpy = np.array(img)
img_state.set_img(img_numpy)
print_log(f"Successfully loaded an image with size {new_w} x {new_h}", logger='current')
return img, None
def get_points_with_draw(image, img_state, evt: gr.SelectData):
x, y = evt.index[0], evt.index[1]
print_log(f"Point: {x}_{y}", logger='current')
point_radius, point_color = 10, (97, 217, 54)
img_state.selected_points.append([x, y])
if len(img_state.selected_points) > 0:
img_state.selected_points = img_state.selected_points[-1:]
image = Image.fromarray(img_state.img)
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
return image
@spaces.GPU()
def segment_point(image, img_state, mode):
output_img = img_state.img
h, w = output_img.shape[:2]
img_tensor = torch.tensor(output_img, device=device, dtype=torch.float32).permute((2, 0, 1))[None]
img_tensor = (img_tensor - mean) / std
im_w = w if w % 32 == 0 else w // 32 * 32 + 32
im_h = h if h % 32 == 0 else h // 32 * 32 + 32
img_tensor = F.pad(img_tensor, (0, im_w - w, 0, im_h - h), 'constant', 0)
if len(img_state.selected_points) > 0:
input_points = torch.tensor(img_state.selected_points, dtype=torch.float32, device=device)
batch_data_samples = [DetDataSample()]
selected_point = torch.cat([input_points - 3, input_points + 3], 1)
gt_instances = InstanceData(
point_coords=selected_point,
)
pb_labels = torch.zeros(len(gt_instances), dtype=torch.long, device=device)
gt_instances.bp = pb_labels
batch_data_samples[0].gt_instances = gt_instances
batch_data_samples[0].data_tag = 'sam'
batch_data_samples[0].set_metainfo(dict(batch_input_shape=(im_h, im_w)))
batch_data_samples[0].set_metainfo(dict(img_shape=(h, w)))
is_prompt = True
else:
batch_data_samples = [DetDataSample()]
batch_data_samples[0].data_tag = 'coco'
batch_data_samples[0].set_metainfo(dict(batch_input_shape=(im_h, im_w)))
batch_data_samples[0].set_metainfo(dict(img_shape=(h, w)))
is_prompt = False
with torch.no_grad():
results = model.predict(img_tensor, batch_data_samples, rescale=False)
masks = results[0]
if is_prompt:
masks = masks[0, :h, :w]
masks = masks > 0. # no sigmoid
rgb_shape = tuple(list(masks.shape) + [3])
color = np.zeros(rgb_shape, dtype=np.uint8)
color[masks] = np.array([97, 217, 54])
output_img = (output_img * 0.7 + color * 0.3).astype(np.uint8)
output_img = Image.fromarray(output_img)
else:
if mode == 'Panoptic Segmentation':
output_img = visualizer._draw_panoptic_seg(
output_img,
masks['pan_results'].to('cpu').numpy(),
classes=CocoPanopticDataset.METAINFO['classes'],
palette=CocoPanopticDataset.METAINFO['palette']
)
elif mode == 'Instance Segmentation':
masks['ins_results'] = masks['ins_results'][masks['ins_results'].scores > .2]
output_img = visualizer._draw_instances(
output_img,
masks['ins_results'].to('cpu').numpy(),
classes=CocoPanopticDataset.METAINFO['classes'],
palette=CocoPanopticDataset.METAINFO['palette']
)
return image, output_img
def register_title():
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(TITLE)
def register_point_mode():
with gr.Tab("Point mode"):
img_state = gr.State(IMGState())
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_p = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
segm_p = gr.Image(label="Segment", interactive=False, type="pil")
with gr.Row():
with gr.Column():
mode = gr.Radio(
["Panoptic Segmentation", "Instance Segmentation"],
label="Mode",
value="Panoptic Segmentation",
info="Please select the segmentation mode. (Ignored if provided with prompt.)"
)
with gr.Row():
with gr.Column():
segment_btn = gr.Button("Segment", variant="primary")
with gr.Column():
clean_btn = gr.Button("Clean Prompts", variant="secondary")
with gr.Row():
with gr.Column():
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[img_p, img_state],
outputs=[img_p, segm_p],
examples_per_page=4,
fn=store_img,
run_on_click=True
)
img_p.upload(
store_img,
[img_p, img_state],
[img_p, segm_p]
)
img_p.select(
get_points_with_draw,
[img_p, img_state],
img_p
)
segment_btn.click(
segment_point,
[img_p, img_state, mode],
[img_p, segm_p]
)
clean_btn.click(
IMGState.cls_clean,
img_state,
[img_p, segm_p]
)
img_p.clear(
IMGState.cls_clear,
img_state,
[img_p, segm_p]
)
def build_demo():
with gr.Blocks(css=CSS, title="RAP-SAM") as _demo:
register_title()
register_point_mode()
return _demo
if __name__ == '__main__':
demo = build_demo()
demo.queue(api_open=False)
demo.launch(server_name='0.0.0.0')
|