File size: 8,649 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import logging
import os
from typing import List

import numpy as np
import pycocotools.mask as maskUtils

import mmcv
from mmengine import print_log, list_from_file, scandir, track_parallel_progress
from mmengine.dist import master_only, dist
from mmengine.fileio import join_path, exists, load, dump

from mmdet.datasets import BaseVideoDataset
from mmdet.registry import DATASETS

from seg.models.utils import INSTANCE_OFFSET_HB

from ext.class_names.VIPSeg import CLASSES_THING, CLASSES_STUFF, COCO_CLASSES, COCO_THINGS, COCO_STUFF, PALETTE

NO_OBJ = 0
NO_OBJ_HB = 255
NO_OBJ_BUG = (200,)
DIVISOR_PAN = 100
NUM_THING = 58
NUM_STUFF = 66


def to_coco(pan_map, divisor=INSTANCE_OFFSET_HB):
    pan_new = - np.ones_like(pan_map)
    vip2hb_thing = {itm['id'] + 1: idx for idx, itm in enumerate(CLASSES_THING)}
    assert len(vip2hb_thing) == NUM_THING
    vip2hb_stuff = {itm['id'] + 1: idx for idx, itm in enumerate(CLASSES_STUFF)}
    assert len(vip2hb_stuff) == NUM_STUFF
    for idx in np.unique(pan_map):
        # 200 is a bug in vipseg dataset.
        # Please refer to https://github.com/VIPSeg-Dataset/VIPSeg-Dataset/issues/1
        if idx == NO_OBJ or idx in NO_OBJ_BUG:
            pan_new[pan_map == idx] = NO_OBJ_HB * divisor
        elif idx > 128:
            cls_id = idx // DIVISOR_PAN
            cls_new_id = vip2hb_thing[cls_id]
            inst_id = idx % DIVISOR_PAN
            pan_new[pan_map == idx] = cls_new_id * divisor + inst_id + 1
        else:
            cls_new_id = vip2hb_stuff[idx]
            cls_new_id += NUM_THING
            pan_new[pan_map == idx] = cls_new_id * divisor
    assert -1 not in np.unique(pan_new)
    return pan_new


def mask2bbox(mask):
    bbox = np.zeros((4,), dtype=np.float32)
    x_any = np.any(mask, axis=0)
    y_any = np.any(mask, axis=1)
    x = np.where(x_any)[0]
    y = np.where(y_any)[0]
    if len(x) > 0 and len(y) > 0:
        bbox = np.array((x[0], y[0], x[-1], y[-1]), dtype=np.float32)
    return bbox


def video_parser(params):
    seq_id, vid_folder, ann_folder = params
    images = []
    assert os.path.basename(vid_folder) == os.path.basename(ann_folder)
    _tmp_img_id = -1
    imgs_cur = sorted(list(map(
        lambda x: str(x), scandir(vid_folder, recursive=False, suffix='.jpg')
    )))
    pans_cur = sorted(list(map(
        lambda x: str(x), scandir(ann_folder, recursive=False, suffix='.png')
    )))
    for img_cur, pan_cur in zip(imgs_cur, pans_cur):
        assert img_cur.split('.')[0] == pan_cur.split('.')[0]
        _tmp_img_id += 1
        img_id = _tmp_img_id
        item_full = os.path.join(vid_folder, img_cur)
        inst_map = os.path.join(ann_folder, pan_cur)
        img_dict = {
            'img_path': item_full,
            'ann_path': inst_map,
        }
        assert os.path.exists(img_dict['img_path'])
        assert os.path.exists(img_dict['ann_path'])
        instances = []
        ann_map = mmcv.imread(img_dict['ann_path'], flag='unchanged').astype(np.uint32)
        img_dict['height'], img_dict['width'] = ann_map.shape
        pan_map = to_coco(ann_map, INSTANCE_OFFSET_HB)

        for pan_seg_id in np.unique(pan_map):
            label = pan_seg_id // INSTANCE_OFFSET_HB
            if label == NO_OBJ_HB:
                continue
            instance = {}
            mask = (pan_map == pan_seg_id).astype(np.uint8)
            instance['instance_id'] = pan_seg_id
            instance['bbox'] = mask2bbox(mask)
            instance['bbox_label'] = label
            instance['ignore_flag'] = 0
            instance['mask'] = maskUtils.encode(np.asfortranarray(mask))
            instance['mask']['counts'] = instance['mask']['counts'].decode()
            instances.append(instance)
        img_dict['instances'] = instances
        img_dict['video_id'] = seq_id
        img_dict['frame_id'] = img_id
        img_dict['img_id'] = seq_id * 10000 + img_id
        images.append(img_dict)
    return {
        'video_id': seq_id,
        'images': images,
        'video_length': len(images)
    }


@DATASETS.register_module()
class VIPSegDataset(BaseVideoDataset):
    METAINFO = {
        'classes': COCO_CLASSES,
        'thing_classes': COCO_THINGS,
        'stuff_classes': COCO_STUFF,
        'palette': PALETTE,
    }

    def __init__(
            self,
            *args,
            img_map_suffix: str = '.jpg',
            seg_map_suffix: str = '.png',
            **kwargs
    ):
        self.img_map_suffix = img_map_suffix
        self.seg_map_suffix = seg_map_suffix
        super().__init__(*args, **kwargs)

    @master_only
    def build_cache(self, ann_json_path, video_folders, ann_folders) -> None:
        vid_ids = range(len(video_folders))

        data_list = track_parallel_progress(
            video_parser,
            tasks=list(zip(vid_ids, video_folders, ann_folders)),
            nproc=20,
            keep_order=False,
        )
        data_list = sorted(data_list, key=lambda x: x['video_id'])
        dump(data_list, ann_json_path)

    def load_data_list(self) -> List[dict]:
        video_folders = list_from_file(self.ann_file, prefix=self.data_prefix['img'])
        ann_folders = list_from_file(self.ann_file, prefix=self.data_prefix['seg'])
        assert len(video_folders) == len(ann_folders)
        print_log(f"#videos : {len(video_folders)} ",
                  logger='current',
                  level=logging.INFO)

        split = os.path.basename(self.ann_file).split('.')[0]
        ann_json_path = f"{split}_annotations.json"
        ann_json_path = join_path(self.data_root, ann_json_path)
        if not exists(ann_json_path):
            self.build_cache(ann_json_path, video_folders, ann_folders)
        dist.barrier()
        raw_data_list = load(ann_json_path)
        data_list = []
        for raw_data_info in raw_data_list:
            data_info = self.parse_data_info(raw_data_info)
            data_list.append(data_info)
        vid_len_list = [itm['video_length'] for itm in data_list]
        max_vid_len = max(vid_len_list)
        min_vid_len = min(vid_len_list)
        print_log(
            f"Max video len : {max_vid_len}; "
            f"Min video len : {min_vid_len}."
            ,
            logger='current',
            level=logging.INFO
        )
        return data_list

    def parse_data_info(self, raw_data_info: dict) -> dict:
        data_info = {
            'video_id': raw_data_info['video_id'],
            'video_length': raw_data_info['video_length']
        }
        images = []
        for raw_img_data_info in raw_data_info['images']:
            img_data_info = {
                'img_path': raw_img_data_info['img_path'],
                'height': raw_img_data_info['height'],
                'width': raw_img_data_info['width'],
                'video_id': raw_img_data_info['video_id'],
                'frame_id': raw_img_data_info['frame_id'],
                'img_id': raw_img_data_info['img_id']
            }
            instances = []
            segments_info = []
            for ann in raw_img_data_info['instances']:
                instance = {}
                category_id = ann['bbox_label']
                bbox = ann['bbox']
                is_thing = category_id < NUM_THING
                if is_thing:
                    instance['bbox'] = bbox
                    instance['bbox_label'] = category_id
                    instance['ignore_flag'] = ann['ignore_flag']
                    instance['instance_id'] = ann['instance_id']

                segment_info = {
                    'mask': ann['mask'],
                    'category': category_id,
                    'is_thing': is_thing
                }
                segments_info.append(segment_info)
                if len(instance) > 0 and is_thing:
                    instances.append(instance)
            img_data_info['instances'] = instances
            img_data_info['segments_info'] = segments_info
            images.append(img_data_info)
        data_info['images'] = images
        return data_info

    def filter_data(self) -> List[dict]:
        """Filter image annotations according to filter_cfg.

        Returns:
            list[int]: Filtered results.
        """
        if self.test_mode:
            return self.data_list

        num_imgs_before_filter = sum([len(info['images']) for info in self.data_list])
        num_imgs_after_filter = num_imgs_before_filter

        new_data_list = self.data_list

        print_log(
            'The number of samples before and after filtering: '
            f'{num_imgs_before_filter} / {num_imgs_after_filter}', 'current')
        return new_data_list