Spaces:
Running
on
A10G
Running
on
A10G
File size: 716 Bytes
b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import torch
import torch.nn.functional as F
# https://github.com/NVlabs/ODISE/blob/e97b06c424c575fec9fc5368dd4b3e050d91abc4/odise/modeling/meta_arch/odise.py#L923
def mask_pool(x, mask):
"""
Args:
x: [B, C, H, W]
mask: [B, Q, H, W]
"""
if not x.shape[-2:] == mask.shape[-2:]:
# reshape mask to x
mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False)
with torch.no_grad():
mask = mask.detach()
mask = (mask > 0).to(mask.dtype)
denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8
mask_pooled_x = torch.einsum(
"bchw,bqhw->bqc",
x,
mask / denorm,
)
return mask_pooled_x
|