File size: 4,329 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import time

import numpy as np
import torch
from mmengine import Config
from mmengine.fileio import dump
from mmengine.model.utils import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.runner import Runner, load_checkpoint
from mmengine.utils import mkdir_or_exist

from mmseg.registry import MODELS


def parse_args():
    parser = argparse.ArgumentParser(description='MMSeg benchmark a model')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument(
        '--log-interval', type=int, default=50, help='interval of logging')
    parser.add_argument(
        '--work-dir',
        help=('if specified, the results will be dumped '
              'into the directory as json'))
    parser.add_argument('--repeat-times', type=int, default=1)
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)

    init_default_scope(cfg.get('default_scope', 'mmseg'))

    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    if args.work_dir is not None:
        mkdir_or_exist(osp.abspath(args.work_dir))
        json_file = osp.join(args.work_dir, f'fps_{timestamp}.json')
    else:
        # use config filename as default work_dir if cfg.work_dir is None
        work_dir = osp.join('./work_dirs',
                            osp.splitext(osp.basename(args.config))[0])
        mkdir_or_exist(osp.abspath(work_dir))
        json_file = osp.join(work_dir, f'fps_{timestamp}.json')

    repeat_times = args.repeat_times
    # set cudnn_benchmark
    torch.backends.cudnn.benchmark = False
    cfg.model.pretrained = None

    benchmark_dict = dict(config=args.config, unit='img / s')
    overall_fps_list = []
    cfg.test_dataloader.batch_size = 1
    for time_index in range(repeat_times):
        print(f'Run {time_index + 1}:')
        # build the dataloader
        data_loader = Runner.build_dataloader(cfg.test_dataloader)

        # build the model and load checkpoint
        cfg.model.train_cfg = None
        model = MODELS.build(cfg.model)

        if 'checkpoint' in args and osp.exists(args.checkpoint):
            load_checkpoint(model, args.checkpoint, map_location='cpu')

        if torch.cuda.is_available():
            model = model.cuda()

        model = revert_sync_batchnorm(model)

        model.eval()

        # the first several iterations may be very slow so skip them
        num_warmup = 5
        pure_inf_time = 0
        total_iters = 200

        # benchmark with 200 batches and take the average
        for i, data in enumerate(data_loader):
            data = model.data_preprocessor(data, True)
            inputs = data['inputs']
            data_samples = data['data_samples']
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            start_time = time.perf_counter()

            with torch.no_grad():
                model(inputs, data_samples, mode='predict')

            if torch.cuda.is_available():
                torch.cuda.synchronize()
            elapsed = time.perf_counter() - start_time

            if i >= num_warmup:
                pure_inf_time += elapsed
                if (i + 1) % args.log_interval == 0:
                    fps = (i + 1 - num_warmup) / pure_inf_time
                    print(f'Done image [{i + 1:<3}/ {total_iters}], '
                          f'fps: {fps:.2f} img / s')

            if (i + 1) == total_iters:
                fps = (i + 1 - num_warmup) / pure_inf_time
                print(f'Overall fps: {fps:.2f} img / s\n')
                benchmark_dict[f'overall_fps_{time_index + 1}'] = round(fps, 2)
                overall_fps_list.append(fps)
                break
    benchmark_dict['average_fps'] = round(np.mean(overall_fps_list), 2)
    benchmark_dict['fps_variance'] = round(np.var(overall_fps_list), 4)
    print(f'Average fps of {repeat_times} evaluations: '
          f'{benchmark_dict["average_fps"]}')
    print(f'The variance of {repeat_times} evaluations: '
          f'{benchmark_dict["fps_variance"]}')
    dump(benchmark_dict, json_file, indent=4)


if __name__ == '__main__':
    main()