Spaces:
Runtime error
Runtime error
Upload 1861 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +10 -0
- .gitignore +128 -0
- app.py +42 -0
- ckpt/epoch_270.pth +3 -0
- configs/.DS_Store +0 -0
- configs/TTP/ttp_sam_large_levircd.py +202 -0
- configs/TTP/ttp_sam_large_levircd_fp16.py +201 -0
- configs/TTP/ttp_sam_large_levircd_infer.py +199 -0
- demo/MMSegmentation_Tutorial.ipynb +555 -0
- demo/classroom__rgb_00283.jpg +0 -0
- demo/demo.png +0 -0
- demo/image_demo.py +51 -0
- demo/image_demo_with_inferencer.py +54 -0
- demo/inference_demo.ipynb +120 -0
- demo/rs_image_inference.py +50 -0
- demo/video_demo.py +112 -0
- mmdet/.DS_Store +0 -0
- mmdet/__init__.py +27 -0
- mmdet/__pycache__/__init__.cpython-311.pyc +0 -0
- mmdet/__pycache__/registry.cpython-311.pyc +0 -0
- mmdet/__pycache__/version.cpython-311.pyc +0 -0
- mmdet/apis/__init__.py +9 -0
- mmdet/apis/det_inferencer.py +644 -0
- mmdet/apis/inference.py +372 -0
- mmdet/configs/.DS_Store +0 -0
- mmdet/configs/_base_/datasets/coco_detection.py +104 -0
- mmdet/configs/_base_/datasets/coco_instance.py +106 -0
- mmdet/configs/_base_/datasets/coco_instance_semantic.py +87 -0
- mmdet/configs/_base_/datasets/coco_panoptic.py +105 -0
- mmdet/configs/_base_/datasets/mot_challenge.py +101 -0
- mmdet/configs/_base_/default_runtime.py +33 -0
- mmdet/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py +220 -0
- mmdet/configs/_base_/models/cascade_rcnn_r50_fpn.py +201 -0
- mmdet/configs/_base_/models/faster_rcnn_r50_fpn.py +138 -0
- mmdet/configs/_base_/models/mask_rcnn_r50_caffe_c4.py +158 -0
- mmdet/configs/_base_/models/mask_rcnn_r50_fpn.py +154 -0
- mmdet/configs/_base_/models/retinanet_r50_fpn.py +77 -0
- mmdet/configs/_base_/schedules/schedule_1x.py +33 -0
- mmdet/configs/_base_/schedules/schedule_2x.py +33 -0
- mmdet/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py +13 -0
- mmdet/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py +13 -0
- mmdet/configs/common/lsj_100e_coco_detection.py +134 -0
- mmdet/configs/common/lsj_100e_coco_instance.py +134 -0
- mmdet/configs/common/lsj_200e_coco_detection.py +25 -0
- mmdet/configs/common/lsj_200e_coco_instance.py +25 -0
- mmdet/configs/common/ms_3x_coco.py +130 -0
- mmdet/configs/common/ms_3x_coco_instance.py +136 -0
- mmdet/configs/common/ms_90k_coco.py +151 -0
- mmdet/configs/common/ms_poly_3x_coco_instance.py +138 -0
- mmdet/configs/common/ms_poly_90k_coco_instance.py +153 -0
.gitattributes
CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
samples/A/test_1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
samples/A/test_2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
samples/A/test_3.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
samples/A/test_4.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
samples/A/test_5.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
samples/B/test_1.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
samples/B/test_2.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
samples/B/test_3.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
samples/B/test_4.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
samples/B/test_5.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pth
|
2 |
+
gradio_cached_examples/
|
3 |
+
|
4 |
+
.idea
|
5 |
+
.DS_Store
|
6 |
+
work_dirs/
|
7 |
+
pretrain_models/
|
8 |
+
|
9 |
+
# Byte-compiled / optimized / DLL files
|
10 |
+
__pycache__/
|
11 |
+
*.py[cod]
|
12 |
+
*$py.class
|
13 |
+
|
14 |
+
# C extensions
|
15 |
+
*.so
|
16 |
+
|
17 |
+
# Distribution / packaging
|
18 |
+
.Python
|
19 |
+
build/
|
20 |
+
develop-eggs/
|
21 |
+
dist/
|
22 |
+
downloads/
|
23 |
+
eggs/
|
24 |
+
.eggs/
|
25 |
+
lib/
|
26 |
+
lib64/
|
27 |
+
parts/
|
28 |
+
sdist/
|
29 |
+
var/
|
30 |
+
wheels/
|
31 |
+
*.egg-info/
|
32 |
+
.installed.cfg
|
33 |
+
*.egg
|
34 |
+
MANIFEST
|
35 |
+
|
36 |
+
# PyInstaller
|
37 |
+
# Usually these files are written by a python script from a template
|
38 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
39 |
+
*.manifest
|
40 |
+
*.spec
|
41 |
+
|
42 |
+
# Installer logs
|
43 |
+
pip-log.txt
|
44 |
+
pip-delete-this-directory.txt
|
45 |
+
|
46 |
+
# Unit test / coverage reports
|
47 |
+
htmlcov/
|
48 |
+
.tox/
|
49 |
+
.coverage
|
50 |
+
.coverage.*
|
51 |
+
.cache
|
52 |
+
nosetests.xml
|
53 |
+
coverage.xml
|
54 |
+
*.cover
|
55 |
+
.hypothesis/
|
56 |
+
.pytest_cache/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/en/_build/
|
76 |
+
docs/zh_cn/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# celery beat schedule file
|
88 |
+
celerybeat-schedule
|
89 |
+
|
90 |
+
# SageMath parsed files
|
91 |
+
*.sage.py
|
92 |
+
|
93 |
+
# Environments
|
94 |
+
.env
|
95 |
+
.venv
|
96 |
+
env/
|
97 |
+
venv/
|
98 |
+
ENV/
|
99 |
+
env.bak/
|
100 |
+
venv.bak/
|
101 |
+
.DS_Store
|
102 |
+
|
103 |
+
# Spyder project settings
|
104 |
+
.spyderproject
|
105 |
+
.spyproject
|
106 |
+
|
107 |
+
# Rope project settings
|
108 |
+
.ropeproject
|
109 |
+
|
110 |
+
# mkdocs documentation
|
111 |
+
/site
|
112 |
+
|
113 |
+
# mypy
|
114 |
+
.mypy_cache/
|
115 |
+
|
116 |
+
data
|
117 |
+
.vscode
|
118 |
+
.idea
|
119 |
+
|
120 |
+
# custom
|
121 |
+
*.pkl
|
122 |
+
*.pkl.json
|
123 |
+
*.log.json
|
124 |
+
work_dirs/
|
125 |
+
mmseg/.mim
|
126 |
+
|
127 |
+
# Pytorch
|
128 |
+
*.pth
|
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
from opencd.apis import OpenCDInferencer
|
5 |
+
|
6 |
+
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
7 |
+
|
8 |
+
config_file = 'configs/TTP/ttp_sam_large_levircd_infer.py'
|
9 |
+
checkpoint_file = 'ckpt/epoch_270.pth'
|
10 |
+
|
11 |
+
# build the model from a config file and a checkpoint file
|
12 |
+
mmcd_inferencer = OpenCDInferencer(
|
13 |
+
model=config_file,
|
14 |
+
weights=checkpoint_file,
|
15 |
+
classes=['unchanged', 'changed'],
|
16 |
+
palette=[[0, 0, 0], [255, 255, 255]],
|
17 |
+
device=device
|
18 |
+
)
|
19 |
+
|
20 |
+
def infer(img1, img2):
|
21 |
+
# test a single image
|
22 |
+
result = mmcd_inferencer([[img1, img2]], show=False, return_vis=True)
|
23 |
+
visualization = result['visualization']
|
24 |
+
return visualization
|
25 |
+
|
26 |
+
|
27 |
+
with gr.Blocks() as demo:
|
28 |
+
with gr.Row():
|
29 |
+
input_0 = gr.Image(label='Input Image1')
|
30 |
+
input_1 = gr.Image(label='Input Image2')
|
31 |
+
with gr.Row():
|
32 |
+
output_gt = gr.Image(label='Predicted Mask')
|
33 |
+
btn = gr.Button("Detect")
|
34 |
+
btn.click(infer, inputs=[input_0, input_1], outputs=[output_gt])
|
35 |
+
|
36 |
+
img1_files = glob.glob('samples/A/*.png')
|
37 |
+
img2_files = [f.replace('A', 'B') for f in img1_files]
|
38 |
+
input_files = [[x, y] for x, y in zip(img1_files, img2_files)]
|
39 |
+
gr.Examples(input_files, fn=infer, inputs=[input_0, input_1], outputs=[output_gt], cache_examples=True)
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
demo.launch()
|
ckpt/epoch_270.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a37d3a79379f4bf3d7ecb85b71209f35cd8af7e61cae564038397e8b7fb3eaf2
|
3 |
+
size 1415063308
|
configs/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
configs/TTP/ttp_sam_large_levircd.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_scope = 'opencd'
|
2 |
+
|
3 |
+
work_dir = 'work_dirs/lervicd/ttp_sam_large_levircd'
|
4 |
+
|
5 |
+
custom_imports = dict(imports=['mmseg.ttp'], allow_failed_imports=False)
|
6 |
+
|
7 |
+
env_cfg = dict(
|
8 |
+
cudnn_benchmark=True,
|
9 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
10 |
+
dist_cfg=dict(backend='nccl'),
|
11 |
+
)
|
12 |
+
default_hooks = dict(
|
13 |
+
timer=dict(type='IterTimerHook'),
|
14 |
+
logger=dict(type='LoggerHook', interval=10, log_metric_by_epoch=True),
|
15 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
16 |
+
checkpoint=dict(type='CheckpointHook', by_epoch=True, interval=10, save_best='cd/iou_changed', max_keep_ckpts=5, greater_keys=['cd/iou_changed'], save_last=True),
|
17 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
18 |
+
visualization=dict(type='CDVisualizationHook', interval=1,
|
19 |
+
img_shape=(1024, 1024, 3))
|
20 |
+
)
|
21 |
+
vis_backends = [dict(type='CDLocalVisBackend'),
|
22 |
+
dict(type='WandbVisBackend',
|
23 |
+
init_kwargs=dict(project='samcd', group='levircd', name='ttp_sam_large_levircd'))
|
24 |
+
]
|
25 |
+
|
26 |
+
visualizer = dict(
|
27 |
+
type='CDLocalVisualizer',
|
28 |
+
vis_backends=vis_backends, name='visualizer', alpha=1.0)
|
29 |
+
log_processor = dict(by_epoch=True)
|
30 |
+
|
31 |
+
log_level = 'INFO'
|
32 |
+
load_from = None
|
33 |
+
resume = False
|
34 |
+
|
35 |
+
crop_size = (512, 512)
|
36 |
+
|
37 |
+
data_preprocessor = dict(
|
38 |
+
type='DualInputSegDataPreProcessor',
|
39 |
+
mean=[123.675, 116.28, 103.53] * 2,
|
40 |
+
std=[58.395, 57.12, 57.375] * 2,
|
41 |
+
bgr_to_rgb=True,
|
42 |
+
pad_val=0,
|
43 |
+
seg_pad_val=255,
|
44 |
+
size_divisor=32,
|
45 |
+
test_cfg=dict(size_divisor=32)
|
46 |
+
)
|
47 |
+
|
48 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
49 |
+
fpn_norm_cfg = dict(type='LN2d', requires_grad=True)
|
50 |
+
|
51 |
+
sam_pretrain_ckpt_path = 'https://download.openmmlab.com/mmclassification/v1/vit_sam/vit-large-p16_sam-pre_3rdparty_sa1b-1024px_20230411-595feafd.pth'
|
52 |
+
|
53 |
+
model = dict(
|
54 |
+
type='SiamEncoderDecoder',
|
55 |
+
data_preprocessor=data_preprocessor,
|
56 |
+
backbone=dict(
|
57 |
+
type='MMPretrainSamVisionEncoder',
|
58 |
+
encoder_cfg=dict(
|
59 |
+
type='mmpretrain.ViTSAM',
|
60 |
+
arch='large',
|
61 |
+
img_size=crop_size[0],
|
62 |
+
patch_size=16,
|
63 |
+
out_channels=256,
|
64 |
+
use_abs_pos=True,
|
65 |
+
use_rel_pos=True,
|
66 |
+
window_size=14,
|
67 |
+
layer_cfgs=dict(type='TimeFusionTransformerEncoderLayer'),
|
68 |
+
init_cfg=dict(type='Pretrained', checkpoint=sam_pretrain_ckpt_path, prefix='backbone.'),
|
69 |
+
),
|
70 |
+
peft_cfg=dict(
|
71 |
+
r=16,
|
72 |
+
target_modules=["qkv"],
|
73 |
+
lora_dropout=0.01,
|
74 |
+
bias='lora_only',
|
75 |
+
),
|
76 |
+
),
|
77 |
+
neck=dict(
|
78 |
+
type='SequentialNeck',
|
79 |
+
necks=[
|
80 |
+
dict(
|
81 |
+
type='FeatureFusionNeck',
|
82 |
+
policy='concat',
|
83 |
+
out_indices=(0,)),
|
84 |
+
dict(
|
85 |
+
type='SimpleFPN',
|
86 |
+
backbone_channel=512,
|
87 |
+
in_channels=[128, 256, 512, 512],
|
88 |
+
out_channels=256,
|
89 |
+
num_outs=5,
|
90 |
+
norm_cfg=fpn_norm_cfg),
|
91 |
+
],
|
92 |
+
),
|
93 |
+
decode_head=dict(
|
94 |
+
type='MLPSegHead',
|
95 |
+
out_size=(128, 128),
|
96 |
+
in_channels=[256]*5,
|
97 |
+
in_index=[0, 1, 2, 3, 4],
|
98 |
+
channels=256,
|
99 |
+
dropout_ratio=0,
|
100 |
+
num_classes=2,
|
101 |
+
norm_cfg=norm_cfg,
|
102 |
+
align_corners=False,
|
103 |
+
loss_decode=dict(
|
104 |
+
type='mmseg.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
105 |
+
train_cfg=dict(),
|
106 |
+
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(crop_size[0]//2, crop_size[1]//2))
|
107 |
+
) # yapf: disable
|
108 |
+
|
109 |
+
dataset_type = 'LEVIR_CD_Dataset'
|
110 |
+
data_root = '/mnt/levir_datasets/levir-cd'
|
111 |
+
|
112 |
+
|
113 |
+
train_pipeline = [
|
114 |
+
dict(type='MultiImgLoadImageFromFile'),
|
115 |
+
dict(type='MultiImgLoadAnnotations'),
|
116 |
+
dict(type='MultiImgRandomRotate', prob=0.5, degree=180),
|
117 |
+
dict(type='MultiImgRandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
118 |
+
dict(type='MultiImgRandomFlip', prob=0.5, direction='horizontal'),
|
119 |
+
dict(type='MultiImgRandomFlip', prob=0.5, direction='vertical'),
|
120 |
+
# dict(type='MultiImgExchangeTime', prob=0.5),
|
121 |
+
dict(
|
122 |
+
type='MultiImgPhotoMetricDistortion',
|
123 |
+
brightness_delta=10,
|
124 |
+
contrast_range=(0.8, 1.2),
|
125 |
+
saturation_range=(0.8, 1.2),
|
126 |
+
hue_delta=10),
|
127 |
+
dict(type='MultiImgPackSegInputs')
|
128 |
+
]
|
129 |
+
test_pipeline = [
|
130 |
+
dict(type='MultiImgLoadImageFromFile'),
|
131 |
+
dict(type='MultiImgResize', scale=(1024, 1024), keep_ratio=True),
|
132 |
+
# add loading annotation after ``Resize`` because ground truth
|
133 |
+
# does not need to do resize data transform
|
134 |
+
dict(type='MultiImgLoadAnnotations'),
|
135 |
+
dict(type='MultiImgPackSegInputs')
|
136 |
+
]
|
137 |
+
|
138 |
+
batch_size_per_gpu = 2
|
139 |
+
|
140 |
+
train_dataloader = dict(
|
141 |
+
batch_size=batch_size_per_gpu,
|
142 |
+
num_workers=8,
|
143 |
+
persistent_workers=True,
|
144 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
145 |
+
dataset=dict(
|
146 |
+
type=dataset_type,
|
147 |
+
data_root=data_root,
|
148 |
+
data_prefix=dict(
|
149 |
+
seg_map_path='train/label',
|
150 |
+
img_path_from='train/A',
|
151 |
+
img_path_to='train/B'),
|
152 |
+
pipeline=train_pipeline)
|
153 |
+
)
|
154 |
+
|
155 |
+
val_dataloader = dict(
|
156 |
+
batch_size=1,
|
157 |
+
num_workers=4,
|
158 |
+
persistent_workers=True,
|
159 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
160 |
+
dataset=dict(
|
161 |
+
type=dataset_type,
|
162 |
+
data_root=data_root,
|
163 |
+
data_prefix=dict(
|
164 |
+
seg_map_path='test/label',
|
165 |
+
img_path_from='test/A',
|
166 |
+
img_path_to='test/B'),
|
167 |
+
pipeline=test_pipeline)
|
168 |
+
)
|
169 |
+
|
170 |
+
test_dataloader = val_dataloader
|
171 |
+
|
172 |
+
val_evaluator = dict(
|
173 |
+
type='CDMetric',
|
174 |
+
)
|
175 |
+
test_evaluator = val_evaluator
|
176 |
+
|
177 |
+
max_epochs = 300
|
178 |
+
base_lr = 0.0004
|
179 |
+
param_scheduler = [
|
180 |
+
dict(
|
181 |
+
type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=5, convert_to_iter_based=True),
|
182 |
+
dict(
|
183 |
+
type='CosineAnnealingLR',
|
184 |
+
T_max=max_epochs,
|
185 |
+
begin=5,
|
186 |
+
by_epoch=True,
|
187 |
+
end=max_epochs,
|
188 |
+
convert_to_iter_based=True
|
189 |
+
),
|
190 |
+
]
|
191 |
+
|
192 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5)
|
193 |
+
val_cfg = dict(type='ValLoop')
|
194 |
+
test_cfg = dict(type='TestLoop')
|
195 |
+
|
196 |
+
|
197 |
+
optim_wrapper = dict(
|
198 |
+
type='OptimWrapper',
|
199 |
+
optimizer=dict(
|
200 |
+
type='AdamW', lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05),
|
201 |
+
)
|
202 |
+
|
configs/TTP/ttp_sam_large_levircd_fp16.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_scope = 'opencd'
|
2 |
+
|
3 |
+
work_dir = 'work_dirs/lervicd/ttp_sam_large_levircd_fp16'
|
4 |
+
|
5 |
+
custom_imports = dict(imports=['mmseg.ttp'], allow_failed_imports=False)
|
6 |
+
|
7 |
+
env_cfg = dict(
|
8 |
+
cudnn_benchmark=True,
|
9 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
10 |
+
dist_cfg=dict(backend='nccl'),
|
11 |
+
)
|
12 |
+
default_hooks = dict(
|
13 |
+
timer=dict(type='IterTimerHook'),
|
14 |
+
logger=dict(type='LoggerHook', interval=10, log_metric_by_epoch=True),
|
15 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
16 |
+
checkpoint=dict(type='CheckpointHook', by_epoch=True, interval=10, save_best='cd/iou_changed', max_keep_ckpts=5, greater_keys=['cd/iou_changed'], save_last=True),
|
17 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
18 |
+
visualization=dict(type='CDVisualizationHook', interval=1, img_shape=(1024, 1024, 3))
|
19 |
+
)
|
20 |
+
vis_backends = [dict(type='CDLocalVisBackend'),
|
21 |
+
dict(type='WandbVisBackend', init_kwargs=dict(project='samcd', group='levircd', name='ttp_sam_large_levircd_fp16'))
|
22 |
+
]
|
23 |
+
|
24 |
+
visualizer = dict(
|
25 |
+
type='CDLocalVisualizer',
|
26 |
+
vis_backends=vis_backends, name='visualizer', alpha=1.0)
|
27 |
+
log_processor = dict(by_epoch=True)
|
28 |
+
|
29 |
+
log_level = 'INFO'
|
30 |
+
load_from = None
|
31 |
+
resume = False
|
32 |
+
|
33 |
+
crop_size = (512, 512)
|
34 |
+
|
35 |
+
data_preprocessor = dict(
|
36 |
+
type='DualInputSegDataPreProcessor',
|
37 |
+
mean=[123.675, 116.28, 103.53] * 2,
|
38 |
+
std=[58.395, 57.12, 57.375] * 2,
|
39 |
+
bgr_to_rgb=True,
|
40 |
+
pad_val=0,
|
41 |
+
seg_pad_val=255,
|
42 |
+
size_divisor=32,
|
43 |
+
test_cfg=dict(size_divisor=32)
|
44 |
+
)
|
45 |
+
|
46 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
47 |
+
fpn_norm_cfg = dict(type='LN2d', requires_grad=True)
|
48 |
+
|
49 |
+
sam_pretrain_ckpt_path = 'https://download.openmmlab.com/mmclassification/v1/vit_sam/vit-large-p16_sam-pre_3rdparty_sa1b-1024px_20230411-595feafd.pth'
|
50 |
+
|
51 |
+
model = dict(
|
52 |
+
type='SiamEncoderDecoder',
|
53 |
+
data_preprocessor=data_preprocessor,
|
54 |
+
backbone=dict(
|
55 |
+
type='MMPretrainSamVisionEncoder',
|
56 |
+
encoder_cfg=dict(
|
57 |
+
type='mmpretrain.ViTSAM',
|
58 |
+
arch='large',
|
59 |
+
img_size=crop_size[0],
|
60 |
+
patch_size=16,
|
61 |
+
out_channels=256,
|
62 |
+
use_abs_pos=True,
|
63 |
+
use_rel_pos=True,
|
64 |
+
window_size=14,
|
65 |
+
layer_cfgs=dict(type='TimeFusionTransformerEncoderLayer'),
|
66 |
+
init_cfg=dict(type='Pretrained', checkpoint=sam_pretrain_ckpt_path, prefix='backbone.'),
|
67 |
+
),
|
68 |
+
peft_cfg=dict(
|
69 |
+
r=16,
|
70 |
+
target_modules=["qkv"],
|
71 |
+
lora_dropout=0.01,
|
72 |
+
bias='lora_only',
|
73 |
+
),
|
74 |
+
),
|
75 |
+
neck=dict(
|
76 |
+
type='SequentialNeck',
|
77 |
+
necks=[
|
78 |
+
dict(
|
79 |
+
type='FeatureFusionNeck',
|
80 |
+
policy='concat',
|
81 |
+
out_indices=(0,)),
|
82 |
+
dict(
|
83 |
+
type='SimpleFPN',
|
84 |
+
backbone_channel=512,
|
85 |
+
in_channels=[128, 256, 512, 512],
|
86 |
+
out_channels=256,
|
87 |
+
num_outs=5,
|
88 |
+
norm_cfg=fpn_norm_cfg),
|
89 |
+
],
|
90 |
+
),
|
91 |
+
decode_head=dict(
|
92 |
+
type='MLPSegHead',
|
93 |
+
out_size=(128, 128),
|
94 |
+
in_channels=[256]*5,
|
95 |
+
in_index=[0, 1, 2, 3, 4],
|
96 |
+
channels=256,
|
97 |
+
dropout_ratio=0,
|
98 |
+
num_classes=2,
|
99 |
+
norm_cfg=norm_cfg,
|
100 |
+
align_corners=False,
|
101 |
+
loss_decode=dict(
|
102 |
+
type='mmseg.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
103 |
+
train_cfg=dict(),
|
104 |
+
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(crop_size[0]//2, crop_size[1]//2))
|
105 |
+
) # yapf: disable
|
106 |
+
|
107 |
+
dataset_type = 'LEVIR_CD_Dataset'
|
108 |
+
data_root = '/mnt/levir_datasets/levir-cd'
|
109 |
+
|
110 |
+
|
111 |
+
train_pipeline = [
|
112 |
+
dict(type='MultiImgLoadImageFromFile'),
|
113 |
+
dict(type='MultiImgLoadAnnotations'),
|
114 |
+
dict(type='MultiImgRandomRotate', prob=0.5, degree=180),
|
115 |
+
dict(type='MultiImgRandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
116 |
+
dict(type='MultiImgRandomFlip', prob=0.5, direction='horizontal'),
|
117 |
+
dict(type='MultiImgRandomFlip', prob=0.5, direction='vertical'),
|
118 |
+
# dict(type='MultiImgExchangeTime', prob=0.5),
|
119 |
+
dict(
|
120 |
+
type='MultiImgPhotoMetricDistortion',
|
121 |
+
brightness_delta=10,
|
122 |
+
contrast_range=(0.8, 1.2),
|
123 |
+
saturation_range=(0.8, 1.2),
|
124 |
+
hue_delta=10),
|
125 |
+
dict(type='MultiImgPackSegInputs')
|
126 |
+
]
|
127 |
+
test_pipeline = [
|
128 |
+
dict(type='MultiImgLoadImageFromFile'),
|
129 |
+
dict(type='MultiImgResize', scale=(1024, 1024), keep_ratio=True),
|
130 |
+
# add loading annotation after ``Resize`` because ground truth
|
131 |
+
# does not need to do resize data transform
|
132 |
+
dict(type='MultiImgLoadAnnotations'),
|
133 |
+
dict(type='MultiImgPackSegInputs')
|
134 |
+
]
|
135 |
+
|
136 |
+
batch_size_per_gpu = 2
|
137 |
+
|
138 |
+
train_dataloader = dict(
|
139 |
+
batch_size=batch_size_per_gpu,
|
140 |
+
num_workers=8,
|
141 |
+
persistent_workers=True,
|
142 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
143 |
+
dataset=dict(
|
144 |
+
type=dataset_type,
|
145 |
+
data_root=data_root,
|
146 |
+
data_prefix=dict(
|
147 |
+
seg_map_path='train/label',
|
148 |
+
img_path_from='train/A',
|
149 |
+
img_path_to='train/B'),
|
150 |
+
pipeline=train_pipeline)
|
151 |
+
)
|
152 |
+
|
153 |
+
val_dataloader = dict(
|
154 |
+
batch_size=1,
|
155 |
+
num_workers=4,
|
156 |
+
persistent_workers=True,
|
157 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
158 |
+
dataset=dict(
|
159 |
+
type=dataset_type,
|
160 |
+
data_root=data_root,
|
161 |
+
data_prefix=dict(
|
162 |
+
seg_map_path='test/label',
|
163 |
+
img_path_from='test/A',
|
164 |
+
img_path_to='test/B'),
|
165 |
+
pipeline=test_pipeline)
|
166 |
+
)
|
167 |
+
|
168 |
+
test_dataloader = val_dataloader
|
169 |
+
|
170 |
+
val_evaluator = dict(
|
171 |
+
type='CDMetric',
|
172 |
+
)
|
173 |
+
test_evaluator = val_evaluator
|
174 |
+
|
175 |
+
max_epochs = 300
|
176 |
+
base_lr = 0.0004
|
177 |
+
param_scheduler = [
|
178 |
+
dict(
|
179 |
+
type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=5, convert_to_iter_based=True),
|
180 |
+
dict(
|
181 |
+
type='CosineAnnealingLR',
|
182 |
+
T_max=max_epochs,
|
183 |
+
begin=5,
|
184 |
+
by_epoch=True,
|
185 |
+
end=max_epochs,
|
186 |
+
convert_to_iter_based=True
|
187 |
+
),
|
188 |
+
]
|
189 |
+
|
190 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5)
|
191 |
+
val_cfg = dict(type='ValLoop')
|
192 |
+
test_cfg = dict(type='TestLoop')
|
193 |
+
|
194 |
+
|
195 |
+
optim_wrapper = dict(
|
196 |
+
type='AmpOptimWrapper',
|
197 |
+
optimizer=dict(
|
198 |
+
type='AdamW', lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05),
|
199 |
+
dtype='float16',
|
200 |
+
)
|
201 |
+
|
configs/TTP/ttp_sam_large_levircd_infer.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_scope = 'opencd'
|
2 |
+
|
3 |
+
work_dir = 'work_dirs/lervicd/ttp_sam_large_levircd'
|
4 |
+
|
5 |
+
custom_imports = dict(imports=['mmseg.ttp'], allow_failed_imports=False)
|
6 |
+
|
7 |
+
env_cfg = dict(
|
8 |
+
cudnn_benchmark=True,
|
9 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
10 |
+
dist_cfg=dict(backend='nccl'),
|
11 |
+
)
|
12 |
+
default_hooks = dict(
|
13 |
+
timer=dict(type='IterTimerHook'),
|
14 |
+
logger=dict(type='LoggerHook', interval=10, log_metric_by_epoch=True),
|
15 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
16 |
+
checkpoint=dict(type='CheckpointHook', by_epoch=True, interval=10, save_best='cd/iou_changed', max_keep_ckpts=5, greater_keys=['cd/iou_changed'], save_last=True),
|
17 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
18 |
+
visualization=dict(type='CDVisualizationHook', interval=1,
|
19 |
+
img_shape=(1024, 1024, 3))
|
20 |
+
)
|
21 |
+
vis_backends = [dict(type='CDLocalVisBackend')]
|
22 |
+
|
23 |
+
visualizer = dict(
|
24 |
+
type='CDLocalVisualizer',
|
25 |
+
vis_backends=vis_backends, name='visualizer', alpha=1.0)
|
26 |
+
log_processor = dict(by_epoch=True)
|
27 |
+
|
28 |
+
log_level = 'INFO'
|
29 |
+
load_from = None
|
30 |
+
resume = False
|
31 |
+
|
32 |
+
crop_size = (512, 512)
|
33 |
+
|
34 |
+
data_preprocessor = dict(
|
35 |
+
type='DualInputSegDataPreProcessor',
|
36 |
+
mean=[123.675, 116.28, 103.53] * 2,
|
37 |
+
std=[58.395, 57.12, 57.375] * 2,
|
38 |
+
bgr_to_rgb=True,
|
39 |
+
pad_val=0,
|
40 |
+
seg_pad_val=255,
|
41 |
+
size_divisor=32,
|
42 |
+
test_cfg=dict(size_divisor=32)
|
43 |
+
)
|
44 |
+
|
45 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
46 |
+
fpn_norm_cfg = dict(type='LN2d', requires_grad=True)
|
47 |
+
|
48 |
+
# sam_pretrain_ckpt_path = 'https://download.openmmlab.com/mmclassification/v1/vit_sam/vit-large-p16_sam-pre_3rdparty_sa1b-1024px_20230411-595feafd.pth'
|
49 |
+
|
50 |
+
model = dict(
|
51 |
+
type='SiamEncoderDecoder',
|
52 |
+
data_preprocessor=data_preprocessor,
|
53 |
+
backbone=dict(
|
54 |
+
type='MMPretrainSamVisionEncoder',
|
55 |
+
encoder_cfg=dict(
|
56 |
+
type='mmpretrain.ViTSAM',
|
57 |
+
arch='large',
|
58 |
+
img_size=crop_size[0],
|
59 |
+
patch_size=16,
|
60 |
+
out_channels=256,
|
61 |
+
use_abs_pos=True,
|
62 |
+
use_rel_pos=True,
|
63 |
+
window_size=14,
|
64 |
+
layer_cfgs=dict(type='TimeFusionTransformerEncoderLayer'),
|
65 |
+
# init_cfg=dict(type='Pretrained', checkpoint=sam_pretrain_ckpt_path, prefix='backbone.'),
|
66 |
+
),
|
67 |
+
peft_cfg=dict(
|
68 |
+
r=16,
|
69 |
+
target_modules=["qkv"],
|
70 |
+
lora_dropout=0.01,
|
71 |
+
bias='lora_only',
|
72 |
+
),
|
73 |
+
),
|
74 |
+
neck=dict(
|
75 |
+
type='SequentialNeck',
|
76 |
+
necks=[
|
77 |
+
dict(
|
78 |
+
type='FeatureFusionNeck',
|
79 |
+
policy='concat',
|
80 |
+
out_indices=(0,)),
|
81 |
+
dict(
|
82 |
+
type='SimpleFPN',
|
83 |
+
backbone_channel=512,
|
84 |
+
in_channels=[128, 256, 512, 512],
|
85 |
+
out_channels=256,
|
86 |
+
num_outs=5,
|
87 |
+
norm_cfg=fpn_norm_cfg),
|
88 |
+
],
|
89 |
+
),
|
90 |
+
decode_head=dict(
|
91 |
+
type='MLPSegHead',
|
92 |
+
out_size=(128, 128),
|
93 |
+
in_channels=[256]*5,
|
94 |
+
in_index=[0, 1, 2, 3, 4],
|
95 |
+
channels=256,
|
96 |
+
dropout_ratio=0,
|
97 |
+
num_classes=2,
|
98 |
+
norm_cfg=norm_cfg,
|
99 |
+
align_corners=False,
|
100 |
+
loss_decode=dict(
|
101 |
+
type='mmseg.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
102 |
+
train_cfg=dict(),
|
103 |
+
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(crop_size[0]//2, crop_size[1]//2))
|
104 |
+
) # yapf: disable
|
105 |
+
|
106 |
+
dataset_type = 'LEVIR_CD_Dataset'
|
107 |
+
data_root = '/mnt/levir_datasets/levir-cd'
|
108 |
+
|
109 |
+
|
110 |
+
train_pipeline = [
|
111 |
+
dict(type='MultiImgLoadImageFromFile'),
|
112 |
+
dict(type='MultiImgLoadAnnotations'),
|
113 |
+
dict(type='MultiImgRandomRotate', prob=0.5, degree=180),
|
114 |
+
dict(type='MultiImgRandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
115 |
+
dict(type='MultiImgRandomFlip', prob=0.5, direction='horizontal'),
|
116 |
+
dict(type='MultiImgRandomFlip', prob=0.5, direction='vertical'),
|
117 |
+
# dict(type='MultiImgExchangeTime', prob=0.5),
|
118 |
+
dict(
|
119 |
+
type='MultiImgPhotoMetricDistortion',
|
120 |
+
brightness_delta=10,
|
121 |
+
contrast_range=(0.8, 1.2),
|
122 |
+
saturation_range=(0.8, 1.2),
|
123 |
+
hue_delta=10),
|
124 |
+
dict(type='MultiImgPackSegInputs')
|
125 |
+
]
|
126 |
+
test_pipeline = [
|
127 |
+
dict(type='MultiImgLoadImageFromFile', to_float32=True),
|
128 |
+
dict(type='MultiImgResize', scale=(1024, 1024), keep_ratio=True),
|
129 |
+
# add loading annotation after ``Resize`` because ground truth
|
130 |
+
# does not need to do resize data transform
|
131 |
+
dict(type='MultiImgLoadAnnotations'),
|
132 |
+
dict(type='MultiImgPackSegInputs')
|
133 |
+
]
|
134 |
+
|
135 |
+
batch_size_per_gpu = 2
|
136 |
+
|
137 |
+
train_dataloader = dict(
|
138 |
+
batch_size=batch_size_per_gpu,
|
139 |
+
num_workers=8,
|
140 |
+
persistent_workers=True,
|
141 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
142 |
+
dataset=dict(
|
143 |
+
type=dataset_type,
|
144 |
+
data_root=data_root,
|
145 |
+
data_prefix=dict(
|
146 |
+
seg_map_path='train/label',
|
147 |
+
img_path_from='train/A',
|
148 |
+
img_path_to='train/B'),
|
149 |
+
pipeline=train_pipeline)
|
150 |
+
)
|
151 |
+
|
152 |
+
val_dataloader = dict(
|
153 |
+
batch_size=1,
|
154 |
+
num_workers=4,
|
155 |
+
persistent_workers=True,
|
156 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
157 |
+
dataset=dict(
|
158 |
+
type=dataset_type,
|
159 |
+
data_root=data_root,
|
160 |
+
data_prefix=dict(
|
161 |
+
seg_map_path='test/label',
|
162 |
+
img_path_from='test/A',
|
163 |
+
img_path_to='test/B'),
|
164 |
+
pipeline=test_pipeline)
|
165 |
+
)
|
166 |
+
|
167 |
+
test_dataloader = val_dataloader
|
168 |
+
|
169 |
+
val_evaluator = dict(
|
170 |
+
type='CDMetric',
|
171 |
+
)
|
172 |
+
test_evaluator = val_evaluator
|
173 |
+
|
174 |
+
max_epochs = 300
|
175 |
+
base_lr = 0.0004
|
176 |
+
param_scheduler = [
|
177 |
+
dict(
|
178 |
+
type='LinearLR', start_factor=1e-4, by_epoch=True, begin=0, end=5, convert_to_iter_based=True),
|
179 |
+
dict(
|
180 |
+
type='CosineAnnealingLR',
|
181 |
+
T_max=max_epochs,
|
182 |
+
begin=5,
|
183 |
+
by_epoch=True,
|
184 |
+
end=max_epochs,
|
185 |
+
convert_to_iter_based=True
|
186 |
+
),
|
187 |
+
]
|
188 |
+
|
189 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5)
|
190 |
+
val_cfg = dict(type='ValLoop')
|
191 |
+
test_cfg = dict(type='TestLoop')
|
192 |
+
|
193 |
+
|
194 |
+
optim_wrapper = dict(
|
195 |
+
type='OptimWrapper',
|
196 |
+
optimizer=dict(
|
197 |
+
type='AdamW', lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05),
|
198 |
+
)
|
199 |
+
|
demo/MMSegmentation_Tutorial.ipynb
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"colab_type": "text",
|
7 |
+
"id": "view-in-github"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/main/demo/MMSegmentation_Tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {
|
16 |
+
"id": "FVmnaxFJvsb8"
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"# MMSegmentation Tutorial\n",
|
20 |
+
"Welcome to MMSegmentation! \n",
|
21 |
+
"\n",
|
22 |
+
"In this tutorial, we demo\n",
|
23 |
+
"* How to do inference with MMSeg trained weight\n",
|
24 |
+
"* How to train on your own dataset and visualize the results. "
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "markdown",
|
29 |
+
"metadata": {
|
30 |
+
"id": "QS8YHrEhbpas"
|
31 |
+
},
|
32 |
+
"source": [
|
33 |
+
"## Install MMSegmentation\n",
|
34 |
+
"This step may take several minutes. \n",
|
35 |
+
"\n",
|
36 |
+
"We use PyTorch 1.12 and CUDA 11.3 for this tutorial. You may install other versions by change the version number in pip install command. "
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": null,
|
42 |
+
"metadata": {
|
43 |
+
"colab": {
|
44 |
+
"base_uri": "https://localhost:8080/"
|
45 |
+
},
|
46 |
+
"id": "UWyLrLYaNEaL",
|
47 |
+
"outputId": "32a47fe3-f10d-47a1-f6b9-b7c235abdab1"
|
48 |
+
},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"# Check nvcc version\n",
|
52 |
+
"!nvcc -V\n",
|
53 |
+
"# Check GCC version\n",
|
54 |
+
"!gcc --version"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"metadata": {
|
61 |
+
"colab": {
|
62 |
+
"base_uri": "https://localhost:8080/"
|
63 |
+
},
|
64 |
+
"id": "Ki3WUBjKbutg",
|
65 |
+
"outputId": "14bd14b0-4d8c-4fa9-e3f9-da35c0efc0d5"
|
66 |
+
},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"# Install PyTorch\n",
|
70 |
+
"!conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch\n",
|
71 |
+
"# Install mim\n",
|
72 |
+
"!pip install -U openmim\n",
|
73 |
+
"# Install mmengine\n",
|
74 |
+
"!mim install mmengine\n",
|
75 |
+
"# Install MMCV\n",
|
76 |
+
"!mim install 'mmcv >= 2.0.0rc1'\n"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": null,
|
82 |
+
"metadata": {
|
83 |
+
"colab": {
|
84 |
+
"base_uri": "https://localhost:8080/"
|
85 |
+
},
|
86 |
+
"id": "nR-hHRvbNJJZ",
|
87 |
+
"outputId": "10c3b131-d4db-458c-fc10-b94b1c6ed546"
|
88 |
+
},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"!rm -rf mmsegmentation\n",
|
92 |
+
"!git clone -b main https://github.com/open-mmlab/mmsegmentation.git \n",
|
93 |
+
"%cd mmsegmentation\n",
|
94 |
+
"!pip install -e ."
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"metadata": {
|
101 |
+
"colab": {
|
102 |
+
"base_uri": "https://localhost:8080/"
|
103 |
+
},
|
104 |
+
"id": "mAE_h7XhPT7d",
|
105 |
+
"outputId": "83bf0f8e-fc69-40b1-f9fe-0025724a217c"
|
106 |
+
},
|
107 |
+
"outputs": [],
|
108 |
+
"source": [
|
109 |
+
"# Check Pytorch installation\n",
|
110 |
+
"import torch, torchvision\n",
|
111 |
+
"print(torch.__version__, torch.cuda.is_available())\n",
|
112 |
+
"\n",
|
113 |
+
"# Check MMSegmentation installation\n",
|
114 |
+
"import mmseg\n",
|
115 |
+
"print(mmseg.__version__)"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "markdown",
|
120 |
+
"metadata": {
|
121 |
+
"id": "Ta51clKX4cwM"
|
122 |
+
},
|
123 |
+
"source": [
|
124 |
+
"## Finetune a semantic segmentation model on a new dataset\n",
|
125 |
+
"\n",
|
126 |
+
"To finetune on a customized dataset, the following steps are necessary. \n",
|
127 |
+
"1. Add a new dataset class. \n",
|
128 |
+
"2. Create a config file accordingly. \n",
|
129 |
+
"3. Perform training and evaluation. "
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "markdown",
|
134 |
+
"metadata": {
|
135 |
+
"id": "AcZg6x_K5Zs3"
|
136 |
+
},
|
137 |
+
"source": [
|
138 |
+
"### Add a new dataset\n",
|
139 |
+
"\n",
|
140 |
+
"Datasets in MMSegmentation require image and semantic segmentation maps to be placed in folders with the same prefix. To support a new dataset, we may need to modify the original file structure. \n",
|
141 |
+
"\n",
|
142 |
+
"In this tutorial, we give an example of converting the dataset. You may refer to [docs](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/tutorials/customize_datasets.md#customize-datasets-by-reorganizing-data) for details about dataset reorganization. \n",
|
143 |
+
"\n",
|
144 |
+
"We use [Stanford Background Dataset](http://dags.stanford.edu/projects/scenedataset.html) as an example. The dataset contains 715 images chosen from existing public datasets [LabelMe](http://labelme.csail.mit.edu), [MSRC](http://research.microsoft.com/en-us/projects/objectclassrecognition), [PASCAL VOC](http://pascallin.ecs.soton.ac.uk/challenges/VOC) and [Geometric Context](http://www.cs.illinois.edu/homes/dhoiem/). Images from these datasets are mainly outdoor scenes, each containing approximately 320-by-240 pixels. \n",
|
145 |
+
"In this tutorial, we use the region annotations as labels. There are 8 classes in total, i.e. sky, tree, road, grass, water, building, mountain, and foreground object. "
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"metadata": {
|
152 |
+
"colab": {
|
153 |
+
"base_uri": "https://localhost:8080/"
|
154 |
+
},
|
155 |
+
"id": "TFIt7MHq5Wls",
|
156 |
+
"outputId": "74a126e4-c8a4-4d2f-a910-b58b71843a23"
|
157 |
+
},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"# download and unzip\n",
|
161 |
+
"!wget http://dags.stanford.edu/data/iccv09Data.tar.gz -O stanford_background.tar.gz\n",
|
162 |
+
"!tar xf stanford_background.tar.gz"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": null,
|
168 |
+
"metadata": {
|
169 |
+
"colab": {
|
170 |
+
"base_uri": "https://localhost:8080/",
|
171 |
+
"height": 377
|
172 |
+
},
|
173 |
+
"id": "78LIci7F9WWI",
|
174 |
+
"outputId": "c432ddac-5a50-47b1-daac-5a26b07afea2"
|
175 |
+
},
|
176 |
+
"outputs": [],
|
177 |
+
"source": [
|
178 |
+
"# Let's take a look at the dataset\n",
|
179 |
+
"import mmcv\n",
|
180 |
+
"import mmengine\n",
|
181 |
+
"import matplotlib.pyplot as plt\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"img = mmcv.imread('iccv09Data/images/6000124.jpg')\n",
|
185 |
+
"plt.figure(figsize=(8, 6))\n",
|
186 |
+
"plt.imshow(mmcv.bgr2rgb(img))\n",
|
187 |
+
"plt.show()"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "markdown",
|
192 |
+
"metadata": {
|
193 |
+
"id": "L5mNQuc2GsVE"
|
194 |
+
},
|
195 |
+
"source": [
|
196 |
+
"We need to convert the annotation into semantic map format as an image."
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": null,
|
202 |
+
"metadata": {
|
203 |
+
"id": "WnGZfribFHCx"
|
204 |
+
},
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"# define dataset root and directory for images and annotations\n",
|
208 |
+
"data_root = 'iccv09Data'\n",
|
209 |
+
"img_dir = 'images'\n",
|
210 |
+
"ann_dir = 'labels'\n",
|
211 |
+
"# define class and palette for better visualization\n",
|
212 |
+
"classes = ('sky', 'tree', 'road', 'grass', 'water', 'bldg', 'mntn', 'fg obj')\n",
|
213 |
+
"palette = [[128, 128, 128], [129, 127, 38], [120, 69, 125], [53, 125, 34], \n",
|
214 |
+
" [0, 11, 123], [118, 20, 12], [122, 81, 25], [241, 134, 51]]"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"execution_count": null,
|
220 |
+
"metadata": {
|
221 |
+
"id": "WnGZfribFHCx"
|
222 |
+
},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"import os.path as osp\n",
|
226 |
+
"import numpy as np\n",
|
227 |
+
"from PIL import Image\n",
|
228 |
+
"\n",
|
229 |
+
"# convert dataset annotation to semantic segmentation map\n",
|
230 |
+
"for file in mmengine.scandir(osp.join(data_root, ann_dir), suffix='.regions.txt'):\n",
|
231 |
+
" seg_map = np.loadtxt(osp.join(data_root, ann_dir, file)).astype(np.uint8)\n",
|
232 |
+
" seg_img = Image.fromarray(seg_map).convert('P')\n",
|
233 |
+
" seg_img.putpalette(np.array(palette, dtype=np.uint8))\n",
|
234 |
+
" seg_img.save(osp.join(data_root, ann_dir, file.replace('.regions.txt', \n",
|
235 |
+
" '.png')))"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"metadata": {
|
242 |
+
"colab": {
|
243 |
+
"base_uri": "https://localhost:8080/",
|
244 |
+
"height": 377
|
245 |
+
},
|
246 |
+
"id": "5MCSS9ABfSks",
|
247 |
+
"outputId": "92b9bafc-589e-48fc-c9e9-476f125d6522"
|
248 |
+
},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"# Let's take a look at the segmentation map we got\n",
|
252 |
+
"import matplotlib.patches as mpatches\n",
|
253 |
+
"img = Image.open('iccv09Data/labels/6000124.png')\n",
|
254 |
+
"plt.figure(figsize=(8, 6))\n",
|
255 |
+
"im = plt.imshow(np.array(img.convert('RGB')))\n",
|
256 |
+
"\n",
|
257 |
+
"# create a patch (proxy artist) for every color \n",
|
258 |
+
"patches = [mpatches.Patch(color=np.array(palette[i])/255., \n",
|
259 |
+
" label=classes[i]) for i in range(8)]\n",
|
260 |
+
"# put those patched as legend-handles into the legend\n",
|
261 |
+
"plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., \n",
|
262 |
+
" fontsize='large')\n",
|
263 |
+
"\n",
|
264 |
+
"plt.show()"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": null,
|
270 |
+
"metadata": {
|
271 |
+
"id": "WbeLYCp2k5hl"
|
272 |
+
},
|
273 |
+
"outputs": [],
|
274 |
+
"source": [
|
275 |
+
"# split train/val set randomly\n",
|
276 |
+
"split_dir = 'splits'\n",
|
277 |
+
"mmengine.mkdir_or_exist(osp.join(data_root, split_dir))\n",
|
278 |
+
"filename_list = [osp.splitext(filename)[0] for filename in mmengine.scandir(\n",
|
279 |
+
" osp.join(data_root, ann_dir), suffix='.png')]\n",
|
280 |
+
"with open(osp.join(data_root, split_dir, 'train.txt'), 'w') as f:\n",
|
281 |
+
" # select first 4/5 as train set\n",
|
282 |
+
" train_length = int(len(filename_list)*4/5)\n",
|
283 |
+
" f.writelines(line + '\\n' for line in filename_list[:train_length])\n",
|
284 |
+
"with open(osp.join(data_root, split_dir, 'val.txt'), 'w') as f:\n",
|
285 |
+
" # select last 1/5 as train set\n",
|
286 |
+
" f.writelines(line + '\\n' for line in filename_list[train_length:])"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "markdown",
|
291 |
+
"metadata": {
|
292 |
+
"id": "HchvmGYB_rrO"
|
293 |
+
},
|
294 |
+
"source": [
|
295 |
+
"After downloading the data, we need to implement `load_annotations` function in the new dataset class `StanfordBackgroundDataset`."
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"metadata": {
|
302 |
+
"id": "LbsWOw62_o-X"
|
303 |
+
},
|
304 |
+
"outputs": [],
|
305 |
+
"source": [
|
306 |
+
"from mmseg.registry import DATASETS\n",
|
307 |
+
"from mmseg.datasets import BaseSegDataset\n",
|
308 |
+
"\n",
|
309 |
+
"\n",
|
310 |
+
"@DATASETS.register_module()\n",
|
311 |
+
"class StanfordBackgroundDataset(BaseSegDataset):\n",
|
312 |
+
" METAINFO = dict(classes = classes, palette = palette)\n",
|
313 |
+
" def __init__(self, **kwargs):\n",
|
314 |
+
" super().__init__(img_suffix='.jpg', seg_map_suffix='.png', **kwargs)\n",
|
315 |
+
" "
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "markdown",
|
320 |
+
"metadata": {
|
321 |
+
"id": "yUVtmn3Iq3WA"
|
322 |
+
},
|
323 |
+
"source": [
|
324 |
+
"### Create a config file\n",
|
325 |
+
"In the next step, we need to modify the config for the training. To accelerate the process, we finetune the model from trained weights."
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": null,
|
331 |
+
"metadata": {},
|
332 |
+
"outputs": [],
|
333 |
+
"source": [
|
334 |
+
"# Download config and checkpoint files\n",
|
335 |
+
"!mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest ."
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
+
"metadata": {
|
342 |
+
"id": "Wwnj9tRzqX_A"
|
343 |
+
},
|
344 |
+
"outputs": [],
|
345 |
+
"source": [
|
346 |
+
"from mmengine import Config\n",
|
347 |
+
"cfg = Config.fromfile('configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py')\n",
|
348 |
+
"print(f'Config:\\n{cfg.pretty_text}')"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "markdown",
|
353 |
+
"metadata": {
|
354 |
+
"id": "1y2oV5w97jQo"
|
355 |
+
},
|
356 |
+
"source": [
|
357 |
+
"Since the given config is used to train PSPNet on the cityscapes dataset, we need to modify it accordingly for our new dataset. "
|
358 |
+
]
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"cell_type": "code",
|
362 |
+
"execution_count": null,
|
363 |
+
"metadata": {
|
364 |
+
"colab": {
|
365 |
+
"base_uri": "https://localhost:8080/"
|
366 |
+
},
|
367 |
+
"id": "eyKnYC1Z7iCV",
|
368 |
+
"outputId": "6195217b-187f-4675-994b-ba90d8bb3078"
|
369 |
+
},
|
370 |
+
"outputs": [],
|
371 |
+
"source": [
|
372 |
+
"# Since we use only one GPU, BN is used instead of SyncBN\n",
|
373 |
+
"cfg.norm_cfg = dict(type='BN', requires_grad=True)\n",
|
374 |
+
"cfg.crop_size = (256, 256)\n",
|
375 |
+
"cfg.model.data_preprocessor.size = cfg.crop_size\n",
|
376 |
+
"cfg.model.backbone.norm_cfg = cfg.norm_cfg\n",
|
377 |
+
"cfg.model.decode_head.norm_cfg = cfg.norm_cfg\n",
|
378 |
+
"cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg\n",
|
379 |
+
"# modify num classes of the model in decode/auxiliary head\n",
|
380 |
+
"cfg.model.decode_head.num_classes = 8\n",
|
381 |
+
"cfg.model.auxiliary_head.num_classes = 8\n",
|
382 |
+
"\n",
|
383 |
+
"# Modify dataset type and path\n",
|
384 |
+
"cfg.dataset_type = 'StanfordBackgroundDataset'\n",
|
385 |
+
"cfg.data_root = data_root\n",
|
386 |
+
"\n",
|
387 |
+
"cfg.train_dataloader.batch_size = 8\n",
|
388 |
+
"\n",
|
389 |
+
"cfg.train_pipeline = [\n",
|
390 |
+
" dict(type='LoadImageFromFile'),\n",
|
391 |
+
" dict(type='LoadAnnotations'),\n",
|
392 |
+
" dict(type='RandomResize', scale=(320, 240), ratio_range=(0.5, 2.0), keep_ratio=True),\n",
|
393 |
+
" dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75),\n",
|
394 |
+
" dict(type='RandomFlip', prob=0.5),\n",
|
395 |
+
" dict(type='PackSegInputs')\n",
|
396 |
+
"]\n",
|
397 |
+
"\n",
|
398 |
+
"cfg.test_pipeline = [\n",
|
399 |
+
" dict(type='LoadImageFromFile'),\n",
|
400 |
+
" dict(type='Resize', scale=(320, 240), keep_ratio=True),\n",
|
401 |
+
" # add loading annotation after ``Resize`` because ground truth\n",
|
402 |
+
" # does not need to do resize data transform\n",
|
403 |
+
" dict(type='LoadAnnotations'),\n",
|
404 |
+
" dict(type='PackSegInputs')\n",
|
405 |
+
"]\n",
|
406 |
+
"\n",
|
407 |
+
"\n",
|
408 |
+
"cfg.train_dataloader.dataset.type = cfg.dataset_type\n",
|
409 |
+
"cfg.train_dataloader.dataset.data_root = cfg.data_root\n",
|
410 |
+
"cfg.train_dataloader.dataset.data_prefix = dict(img_path=img_dir, seg_map_path=ann_dir)\n",
|
411 |
+
"cfg.train_dataloader.dataset.pipeline = cfg.train_pipeline\n",
|
412 |
+
"cfg.train_dataloader.dataset.ann_file = 'splits/train.txt'\n",
|
413 |
+
"\n",
|
414 |
+
"cfg.val_dataloader.dataset.type = cfg.dataset_type\n",
|
415 |
+
"cfg.val_dataloader.dataset.data_root = cfg.data_root\n",
|
416 |
+
"cfg.val_dataloader.dataset.data_prefix = dict(img_path=img_dir, seg_map_path=ann_dir)\n",
|
417 |
+
"cfg.val_dataloader.dataset.pipeline = cfg.test_pipeline\n",
|
418 |
+
"cfg.val_dataloader.dataset.ann_file = 'splits/val.txt'\n",
|
419 |
+
"\n",
|
420 |
+
"cfg.test_dataloader = cfg.val_dataloader\n",
|
421 |
+
"\n",
|
422 |
+
"\n",
|
423 |
+
"# Load the pretrained weights\n",
|
424 |
+
"cfg.load_from = 'pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'\n",
|
425 |
+
"\n",
|
426 |
+
"# Set up working dir to save files and logs.\n",
|
427 |
+
"cfg.work_dir = './work_dirs/tutorial'\n",
|
428 |
+
"\n",
|
429 |
+
"cfg.train_cfg.max_iters = 200\n",
|
430 |
+
"cfg.train_cfg.val_interval = 200\n",
|
431 |
+
"cfg.default_hooks.logger.interval = 10\n",
|
432 |
+
"cfg.default_hooks.checkpoint.interval = 200\n",
|
433 |
+
"\n",
|
434 |
+
"# Set seed to facilitate reproducing the result\n",
|
435 |
+
"cfg['randomness'] = dict(seed=0)\n",
|
436 |
+
"\n",
|
437 |
+
"# Let's have a look at the final config used for training\n",
|
438 |
+
"print(f'Config:\\n{cfg.pretty_text}')"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "markdown",
|
443 |
+
"metadata": {
|
444 |
+
"id": "QWuH14LYF2gQ"
|
445 |
+
},
|
446 |
+
"source": [
|
447 |
+
"### Train and Evaluation"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": null,
|
453 |
+
"metadata": {
|
454 |
+
"colab": {
|
455 |
+
"base_uri": "https://localhost:8080/"
|
456 |
+
},
|
457 |
+
"id": "jYKoSfdMF12B",
|
458 |
+
"outputId": "422219ca-d7a5-4890-f09f-88c959942e64"
|
459 |
+
},
|
460 |
+
"outputs": [],
|
461 |
+
"source": [
|
462 |
+
"from mmengine.runner import Runner\n",
|
463 |
+
"\n",
|
464 |
+
"runner = Runner.from_cfg(cfg)"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"cell_type": "code",
|
469 |
+
"execution_count": null,
|
470 |
+
"metadata": {},
|
471 |
+
"outputs": [],
|
472 |
+
"source": [
|
473 |
+
"# start training\n",
|
474 |
+
"runner.train()"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "markdown",
|
479 |
+
"metadata": {
|
480 |
+
"id": "DEkWOP-NMbc_"
|
481 |
+
},
|
482 |
+
"source": [
|
483 |
+
"Inference with trained model"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "code",
|
488 |
+
"execution_count": null,
|
489 |
+
"metadata": {
|
490 |
+
"colab": {
|
491 |
+
"base_uri": "https://localhost:8080/",
|
492 |
+
"height": 645
|
493 |
+
},
|
494 |
+
"id": "ekG__UfaH_OU",
|
495 |
+
"outputId": "1437419c-869a-4902-df86-d4f6f8b2597a"
|
496 |
+
},
|
497 |
+
"outputs": [],
|
498 |
+
"source": [
|
499 |
+
"from mmseg.apis import init_model, inference_model, show_result_pyplot\n",
|
500 |
+
"\n",
|
501 |
+
"# Init the model from the config and the checkpoint\n",
|
502 |
+
"checkpoint_path = './work_dirs/tutorial/iter_200.pth'\n",
|
503 |
+
"model = init_model(cfg, checkpoint_path, 'cuda:0')\n",
|
504 |
+
"\n",
|
505 |
+
"img = mmcv.imread('iccv09Data/images/6000124.jpg')\n",
|
506 |
+
"result = inference_model(model, img)\n",
|
507 |
+
"plt.figure(figsize=(8, 6))\n",
|
508 |
+
"vis_result = show_result_pyplot(model, img, result)\n",
|
509 |
+
"plt.imshow(mmcv.bgr2rgb(vis_result))\n"
|
510 |
+
]
|
511 |
+
}
|
512 |
+
],
|
513 |
+
"metadata": {
|
514 |
+
"accelerator": "GPU",
|
515 |
+
"colab": {
|
516 |
+
"collapsed_sections": [],
|
517 |
+
"include_colab_link": true,
|
518 |
+
"name": "MMSegmentation Tutorial.ipynb",
|
519 |
+
"provenance": []
|
520 |
+
},
|
521 |
+
"kernelspec": {
|
522 |
+
"display_name": "Python 3.10.6 ('pt1.12')",
|
523 |
+
"language": "python",
|
524 |
+
"name": "python3"
|
525 |
+
},
|
526 |
+
"language_info": {
|
527 |
+
"codemirror_mode": {
|
528 |
+
"name": "ipython",
|
529 |
+
"version": 3
|
530 |
+
},
|
531 |
+
"file_extension": ".py",
|
532 |
+
"mimetype": "text/x-python",
|
533 |
+
"name": "python",
|
534 |
+
"nbconvert_exporter": "python",
|
535 |
+
"pygments_lexer": "ipython3",
|
536 |
+
"version": "3.10.6"
|
537 |
+
},
|
538 |
+
"pycharm": {
|
539 |
+
"stem_cell": {
|
540 |
+
"cell_type": "raw",
|
541 |
+
"metadata": {
|
542 |
+
"collapsed": false
|
543 |
+
},
|
544 |
+
"source": []
|
545 |
+
}
|
546 |
+
},
|
547 |
+
"vscode": {
|
548 |
+
"interpreter": {
|
549 |
+
"hash": "0442e67aee3d9cbb788fa6e86d60c4ffa94ad7f1943c65abfecb99a6f4696c58"
|
550 |
+
}
|
551 |
+
}
|
552 |
+
},
|
553 |
+
"nbformat": 4,
|
554 |
+
"nbformat_minor": 2
|
555 |
+
}
|
demo/classroom__rgb_00283.jpg
ADDED
demo/demo.png
ADDED
demo/image_demo.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
from mmengine.model import revert_sync_batchnorm
|
5 |
+
|
6 |
+
from mmseg.apis import inference_model, init_model, show_result_pyplot
|
7 |
+
|
8 |
+
|
9 |
+
def main():
|
10 |
+
parser = ArgumentParser()
|
11 |
+
parser.add_argument('img', help='Image file')
|
12 |
+
parser.add_argument('config', help='Config file')
|
13 |
+
parser.add_argument('checkpoint', help='Checkpoint file')
|
14 |
+
parser.add_argument('--out-file', default=None, help='Path to output file')
|
15 |
+
parser.add_argument(
|
16 |
+
'--device', default='cuda:0', help='Device used for inference')
|
17 |
+
parser.add_argument(
|
18 |
+
'--opacity',
|
19 |
+
type=float,
|
20 |
+
default=0.5,
|
21 |
+
help='Opacity of painted segmentation map. In (0, 1] range.')
|
22 |
+
parser.add_argument(
|
23 |
+
'--with-labels',
|
24 |
+
action='store_true',
|
25 |
+
default=False,
|
26 |
+
help='Whether to display the class labels.')
|
27 |
+
parser.add_argument(
|
28 |
+
'--title', default='result', help='The image identifier.')
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
# build the model from a config file and a checkpoint file
|
32 |
+
model = init_model(args.config, args.checkpoint, device=args.device)
|
33 |
+
if args.device == 'cpu':
|
34 |
+
model = revert_sync_batchnorm(model)
|
35 |
+
# test a single image
|
36 |
+
result = inference_model(model, args.img)
|
37 |
+
# show the results
|
38 |
+
show_result_pyplot(
|
39 |
+
model,
|
40 |
+
args.img,
|
41 |
+
result,
|
42 |
+
title=args.title,
|
43 |
+
opacity=args.opacity,
|
44 |
+
with_labels=args.with_labels,
|
45 |
+
draw_gt=False,
|
46 |
+
show=False if args.out_file is not None else True,
|
47 |
+
out_file=args.out_file)
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
main()
|
demo/image_demo_with_inferencer.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
from mmseg.apis import MMSegInferencer
|
5 |
+
|
6 |
+
|
7 |
+
def main():
|
8 |
+
parser = ArgumentParser()
|
9 |
+
parser.add_argument('img', help='Image file')
|
10 |
+
parser.add_argument('model', help='Config file')
|
11 |
+
parser.add_argument('--checkpoint', default=None, help='Checkpoint file')
|
12 |
+
parser.add_argument(
|
13 |
+
'--out-dir', default='', help='Path to save result file')
|
14 |
+
parser.add_argument(
|
15 |
+
'--show',
|
16 |
+
action='store_true',
|
17 |
+
default=False,
|
18 |
+
help='Whether to display the drawn image.')
|
19 |
+
parser.add_argument(
|
20 |
+
'--dataset-name',
|
21 |
+
default='cityscapes',
|
22 |
+
help='Color palette used for segmentation map')
|
23 |
+
parser.add_argument(
|
24 |
+
'--device', default='cuda:0', help='Device used for inference')
|
25 |
+
parser.add_argument(
|
26 |
+
'--opacity',
|
27 |
+
type=float,
|
28 |
+
default=0.5,
|
29 |
+
help='Opacity of painted segmentation map. In (0, 1] range.')
|
30 |
+
parser.add_argument(
|
31 |
+
'--with-labels',
|
32 |
+
action='store_true',
|
33 |
+
default=False,
|
34 |
+
help='Whether to display the class labels.')
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
# build the model from a config file and a checkpoint file
|
38 |
+
mmseg_inferencer = MMSegInferencer(
|
39 |
+
args.model,
|
40 |
+
args.checkpoint,
|
41 |
+
dataset_name=args.dataset_name,
|
42 |
+
device=args.device)
|
43 |
+
|
44 |
+
# test a single image
|
45 |
+
mmseg_inferencer(
|
46 |
+
args.img,
|
47 |
+
show=args.show,
|
48 |
+
out_dir=args.out_dir,
|
49 |
+
opacity=args.opacity,
|
50 |
+
with_labels=args.with_labels)
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == '__main__':
|
54 |
+
main()
|
demo/inference_demo.ipynb
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"!mkdir ../checkpoints\n",
|
10 |
+
"!wget https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth -P ../checkpoints"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {
|
17 |
+
"pycharm": {
|
18 |
+
"is_executing": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"import torch\n",
|
24 |
+
"import matplotlib.pyplot as plt\n",
|
25 |
+
"from mmengine.model.utils import revert_sync_batchnorm\n",
|
26 |
+
"from mmseg.apis import init_model, inference_model, show_result_pyplot"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": null,
|
32 |
+
"metadata": {
|
33 |
+
"pycharm": {
|
34 |
+
"is_executing": true
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"config_file = '../configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'\n",
|
40 |
+
"checkpoint_file = '../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [],
|
48 |
+
"source": [
|
49 |
+
"# build the model from a config file and a checkpoint file\n",
|
50 |
+
"model = init_model(config_file, checkpoint_file, device='cpu')"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"# test a single image\n",
|
60 |
+
"img = 'demo.png'\n",
|
61 |
+
"if not torch.cuda.is_available():\n",
|
62 |
+
" model = revert_sync_batchnorm(model)\n",
|
63 |
+
"result = inference_model(model, img)"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"# show the results\n",
|
73 |
+
"vis_result = show_result_pyplot(model, img, result, show=False)\n",
|
74 |
+
"plt.imshow(vis_result)"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": null,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": []
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"metadata": {
|
86 |
+
"kernelspec": {
|
87 |
+
"display_name": "pt1.13",
|
88 |
+
"language": "python",
|
89 |
+
"name": "python3"
|
90 |
+
},
|
91 |
+
"language_info": {
|
92 |
+
"codemirror_mode": {
|
93 |
+
"name": "ipython",
|
94 |
+
"version": 3
|
95 |
+
},
|
96 |
+
"file_extension": ".py",
|
97 |
+
"mimetype": "text/x-python",
|
98 |
+
"name": "python",
|
99 |
+
"nbconvert_exporter": "python",
|
100 |
+
"pygments_lexer": "ipython3",
|
101 |
+
"version": "3.10.11"
|
102 |
+
},
|
103 |
+
"pycharm": {
|
104 |
+
"stem_cell": {
|
105 |
+
"cell_type": "raw",
|
106 |
+
"metadata": {
|
107 |
+
"collapsed": false
|
108 |
+
},
|
109 |
+
"source": []
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"vscode": {
|
113 |
+
"interpreter": {
|
114 |
+
"hash": "f61d5b8fecdd960739697f6c2860080d7b76a5be5d896cb034bdb275ab3ddda0"
|
115 |
+
}
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"nbformat": 4,
|
119 |
+
"nbformat_minor": 4
|
120 |
+
}
|
demo/rs_image_inference.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
from mmseg.apis import RSImage, RSInferencer
|
5 |
+
|
6 |
+
|
7 |
+
def main():
|
8 |
+
parser = ArgumentParser()
|
9 |
+
parser.add_argument('image', help='Image file path')
|
10 |
+
parser.add_argument('config', help='Config file')
|
11 |
+
parser.add_argument('checkpoint', help='Checkpoint file')
|
12 |
+
parser.add_argument(
|
13 |
+
'--output-path',
|
14 |
+
help='Path to save result image',
|
15 |
+
default='result.png')
|
16 |
+
parser.add_argument(
|
17 |
+
'--batch-size',
|
18 |
+
type=int,
|
19 |
+
default=1,
|
20 |
+
help='maximum number of windows inferred simultaneously')
|
21 |
+
parser.add_argument(
|
22 |
+
'--window-size',
|
23 |
+
help='window xsize,ysize',
|
24 |
+
default=(224, 224),
|
25 |
+
type=int,
|
26 |
+
nargs=2)
|
27 |
+
parser.add_argument(
|
28 |
+
'--stride',
|
29 |
+
help='window xstride,ystride',
|
30 |
+
default=(224, 224),
|
31 |
+
type=int,
|
32 |
+
nargs=2)
|
33 |
+
parser.add_argument(
|
34 |
+
'--thread', default=1, type=int, help='number of inference threads')
|
35 |
+
parser.add_argument(
|
36 |
+
'--device', default='cuda:0', help='Device used for inference')
|
37 |
+
args = parser.parse_args()
|
38 |
+
inferencer = RSInferencer.from_config_path(
|
39 |
+
args.config,
|
40 |
+
args.checkpoint,
|
41 |
+
batch_size=args.batch_size,
|
42 |
+
thread=args.thread,
|
43 |
+
device=args.device)
|
44 |
+
image = RSImage(args.image)
|
45 |
+
|
46 |
+
inferencer.run(image, args.window_size, args.stride, args.output_path)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|
demo/video_demo.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
from mmengine.model.utils import revert_sync_batchnorm
|
6 |
+
|
7 |
+
from mmseg.apis import inference_model, init_model
|
8 |
+
from mmseg.apis.inference import show_result_pyplot
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
parser = ArgumentParser()
|
13 |
+
parser.add_argument('video', help='Video file or webcam id')
|
14 |
+
parser.add_argument('config', help='Config file')
|
15 |
+
parser.add_argument('checkpoint', help='Checkpoint file')
|
16 |
+
parser.add_argument(
|
17 |
+
'--device', default='cuda:0', help='Device used for inference')
|
18 |
+
parser.add_argument(
|
19 |
+
'--palette',
|
20 |
+
default='cityscapes',
|
21 |
+
help='Color palette used for segmentation map')
|
22 |
+
parser.add_argument(
|
23 |
+
'--show', action='store_true', help='Whether to show draw result')
|
24 |
+
parser.add_argument(
|
25 |
+
'--show-wait-time', default=1, type=int, help='Wait time after imshow')
|
26 |
+
parser.add_argument(
|
27 |
+
'--output-file', default=None, type=str, help='Output video file path')
|
28 |
+
parser.add_argument(
|
29 |
+
'--output-fourcc',
|
30 |
+
default='MJPG',
|
31 |
+
type=str,
|
32 |
+
help='Fourcc of the output video')
|
33 |
+
parser.add_argument(
|
34 |
+
'--output-fps', default=-1, type=int, help='FPS of the output video')
|
35 |
+
parser.add_argument(
|
36 |
+
'--output-height',
|
37 |
+
default=-1,
|
38 |
+
type=int,
|
39 |
+
help='Frame height of the output video')
|
40 |
+
parser.add_argument(
|
41 |
+
'--output-width',
|
42 |
+
default=-1,
|
43 |
+
type=int,
|
44 |
+
help='Frame width of the output video')
|
45 |
+
parser.add_argument(
|
46 |
+
'--opacity',
|
47 |
+
type=float,
|
48 |
+
default=0.5,
|
49 |
+
help='Opacity of painted segmentation map. In (0, 1] range.')
|
50 |
+
args = parser.parse_args()
|
51 |
+
|
52 |
+
assert args.show or args.output_file, \
|
53 |
+
'At least one output should be enabled.'
|
54 |
+
|
55 |
+
# build the model from a config file and a checkpoint file
|
56 |
+
model = init_model(args.config, args.checkpoint, device=args.device)
|
57 |
+
if args.device == 'cpu':
|
58 |
+
model = revert_sync_batchnorm(model)
|
59 |
+
|
60 |
+
# build input video
|
61 |
+
if args.video.isdigit():
|
62 |
+
args.video = int(args.video)
|
63 |
+
cap = cv2.VideoCapture(args.video)
|
64 |
+
assert (cap.isOpened())
|
65 |
+
input_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
66 |
+
input_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
|
67 |
+
input_fps = cap.get(cv2.CAP_PROP_FPS)
|
68 |
+
|
69 |
+
# init output video
|
70 |
+
writer = None
|
71 |
+
output_height = None
|
72 |
+
output_width = None
|
73 |
+
if args.output_file is not None:
|
74 |
+
fourcc = cv2.VideoWriter_fourcc(*args.output_fourcc)
|
75 |
+
output_fps = args.output_fps if args.output_fps > 0 else input_fps
|
76 |
+
output_height = args.output_height if args.output_height > 0 else int(
|
77 |
+
input_height)
|
78 |
+
output_width = args.output_width if args.output_width > 0 else int(
|
79 |
+
input_width)
|
80 |
+
writer = cv2.VideoWriter(args.output_file, fourcc, output_fps,
|
81 |
+
(output_width, output_height), True)
|
82 |
+
|
83 |
+
# start looping
|
84 |
+
try:
|
85 |
+
while True:
|
86 |
+
flag, frame = cap.read()
|
87 |
+
if not flag:
|
88 |
+
break
|
89 |
+
|
90 |
+
# test a single image
|
91 |
+
result = inference_model(model, frame)
|
92 |
+
|
93 |
+
# blend raw image and prediction
|
94 |
+
draw_img = show_result_pyplot(model, frame, result)
|
95 |
+
|
96 |
+
if args.show:
|
97 |
+
cv2.imshow('video_demo', draw_img)
|
98 |
+
cv2.waitKey(args.show_wait_time)
|
99 |
+
if writer:
|
100 |
+
if draw_img.shape[0] != output_height or draw_img.shape[
|
101 |
+
1] != output_width:
|
102 |
+
draw_img = cv2.resize(draw_img,
|
103 |
+
(output_width, output_height))
|
104 |
+
writer.write(draw_img)
|
105 |
+
finally:
|
106 |
+
if writer:
|
107 |
+
writer.release()
|
108 |
+
cap.release()
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == '__main__':
|
112 |
+
main()
|
mmdet/.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
mmdet/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import mmcv
|
3 |
+
import mmengine
|
4 |
+
from mmengine.utils import digit_version
|
5 |
+
|
6 |
+
from .version import __version__, version_info
|
7 |
+
|
8 |
+
mmcv_minimum_version = '2.0.0rc4'
|
9 |
+
mmcv_maximum_version = '2.2.0'
|
10 |
+
mmcv_version = digit_version(mmcv.__version__)
|
11 |
+
|
12 |
+
mmengine_minimum_version = '0.7.1'
|
13 |
+
mmengine_maximum_version = '1.0.0'
|
14 |
+
mmengine_version = digit_version(mmengine.__version__)
|
15 |
+
|
16 |
+
assert (mmcv_version >= digit_version(mmcv_minimum_version)
|
17 |
+
and mmcv_version < digit_version(mmcv_maximum_version)), \
|
18 |
+
f'MMCV=={mmcv.__version__} is used but incompatible. ' \
|
19 |
+
f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.'
|
20 |
+
|
21 |
+
assert (mmengine_version >= digit_version(mmengine_minimum_version)
|
22 |
+
and mmengine_version < digit_version(mmengine_maximum_version)), \
|
23 |
+
f'MMEngine=={mmengine.__version__} is used but incompatible. ' \
|
24 |
+
f'Please install mmengine>={mmengine_minimum_version}, ' \
|
25 |
+
f'<{mmengine_maximum_version}.'
|
26 |
+
|
27 |
+
__all__ = ['__version__', 'version_info', 'digit_version']
|
mmdet/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (1.29 kB). View file
|
|
mmdet/__pycache__/registry.cpython-311.pyc
ADDED
Binary file (3.82 kB). View file
|
|
mmdet/__pycache__/version.cpython-311.pyc
ADDED
Binary file (1.35 kB). View file
|
|
mmdet/apis/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from .det_inferencer import DetInferencer
|
3 |
+
from .inference import (async_inference_detector, inference_detector,
|
4 |
+
inference_mot, init_detector, init_track_model)
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'init_detector', 'async_inference_detector', 'inference_detector',
|
8 |
+
'DetInferencer', 'inference_mot', 'init_track_model'
|
9 |
+
]
|
mmdet/apis/det_inferencer.py
ADDED
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import copy
|
3 |
+
import os.path as osp
|
4 |
+
import warnings
|
5 |
+
from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Union
|
6 |
+
|
7 |
+
import mmcv
|
8 |
+
import mmengine
|
9 |
+
import numpy as np
|
10 |
+
import torch.nn as nn
|
11 |
+
from mmcv.transforms import LoadImageFromFile
|
12 |
+
from mmengine.dataset import Compose
|
13 |
+
from mmengine.fileio import (get_file_backend, isdir, join_path,
|
14 |
+
list_dir_or_file)
|
15 |
+
from mmengine.infer.infer import BaseInferencer, ModelType
|
16 |
+
from mmengine.model.utils import revert_sync_batchnorm
|
17 |
+
from mmengine.registry import init_default_scope
|
18 |
+
from mmengine.runner.checkpoint import _load_checkpoint_to_model
|
19 |
+
from mmengine.visualization import Visualizer
|
20 |
+
from rich.progress import track
|
21 |
+
|
22 |
+
from mmdet.evaluation import INSTANCE_OFFSET
|
23 |
+
from mmdet.registry import DATASETS
|
24 |
+
from mmdet.structures import DetDataSample
|
25 |
+
from mmdet.structures.mask import encode_mask_results, mask2bbox
|
26 |
+
from mmdet.utils import ConfigType
|
27 |
+
from ..evaluation import get_classes
|
28 |
+
|
29 |
+
try:
|
30 |
+
from panopticapi.evaluation import VOID
|
31 |
+
from panopticapi.utils import id2rgb
|
32 |
+
except ImportError:
|
33 |
+
id2rgb = None
|
34 |
+
VOID = None
|
35 |
+
|
36 |
+
InputType = Union[str, np.ndarray]
|
37 |
+
InputsType = Union[InputType, Sequence[InputType]]
|
38 |
+
PredType = List[DetDataSample]
|
39 |
+
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
|
40 |
+
|
41 |
+
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
|
42 |
+
'.tiff', '.webp')
|
43 |
+
|
44 |
+
|
45 |
+
class DetInferencer(BaseInferencer):
|
46 |
+
"""Object Detection Inferencer.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
model (str, optional): Path to the config file or the model name
|
50 |
+
defined in metafile. For example, it could be
|
51 |
+
"rtmdet-s" or 'rtmdet_s_8xb32-300e_coco' or
|
52 |
+
"configs/rtmdet/rtmdet_s_8xb32-300e_coco.py".
|
53 |
+
If model is not specified, user must provide the
|
54 |
+
`weights` saved by MMEngine which contains the config string.
|
55 |
+
Defaults to None.
|
56 |
+
weights (str, optional): Path to the checkpoint. If it is not specified
|
57 |
+
and model is a model name of metafile, the weights will be loaded
|
58 |
+
from metafile. Defaults to None.
|
59 |
+
device (str, optional): Device to run inference. If None, the available
|
60 |
+
device will be automatically used. Defaults to None.
|
61 |
+
scope (str, optional): The scope of the model. Defaults to mmdet.
|
62 |
+
palette (str): Color palette used for visualization. The order of
|
63 |
+
priority is palette -> config -> checkpoint. Defaults to 'none'.
|
64 |
+
show_progress (bool): Control whether to display the progress
|
65 |
+
bar during the inference process. Defaults to True.
|
66 |
+
"""
|
67 |
+
|
68 |
+
preprocess_kwargs: set = set()
|
69 |
+
forward_kwargs: set = set()
|
70 |
+
visualize_kwargs: set = {
|
71 |
+
'return_vis',
|
72 |
+
'show',
|
73 |
+
'wait_time',
|
74 |
+
'draw_pred',
|
75 |
+
'pred_score_thr',
|
76 |
+
'img_out_dir',
|
77 |
+
'no_save_vis',
|
78 |
+
}
|
79 |
+
postprocess_kwargs: set = {
|
80 |
+
'print_result',
|
81 |
+
'pred_out_dir',
|
82 |
+
'return_datasamples',
|
83 |
+
'no_save_pred',
|
84 |
+
}
|
85 |
+
|
86 |
+
def __init__(self,
|
87 |
+
model: Optional[Union[ModelType, str]] = None,
|
88 |
+
weights: Optional[str] = None,
|
89 |
+
device: Optional[str] = None,
|
90 |
+
scope: Optional[str] = 'mmdet',
|
91 |
+
palette: str = 'none',
|
92 |
+
show_progress: bool = True) -> None:
|
93 |
+
# A global counter tracking the number of images processed, for
|
94 |
+
# naming of the output images
|
95 |
+
self.num_visualized_imgs = 0
|
96 |
+
self.num_predicted_imgs = 0
|
97 |
+
self.palette = palette
|
98 |
+
init_default_scope(scope)
|
99 |
+
super().__init__(
|
100 |
+
model=model, weights=weights, device=device, scope=scope)
|
101 |
+
self.model = revert_sync_batchnorm(self.model)
|
102 |
+
self.show_progress = show_progress
|
103 |
+
|
104 |
+
def _load_weights_to_model(self, model: nn.Module,
|
105 |
+
checkpoint: Optional[dict],
|
106 |
+
cfg: Optional[ConfigType]) -> None:
|
107 |
+
"""Loading model weights and meta information from cfg and checkpoint.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
model (nn.Module): Model to load weights and meta information.
|
111 |
+
checkpoint (dict, optional): The loaded checkpoint.
|
112 |
+
cfg (Config or ConfigDict, optional): The loaded config.
|
113 |
+
"""
|
114 |
+
|
115 |
+
if checkpoint is not None:
|
116 |
+
_load_checkpoint_to_model(model, checkpoint)
|
117 |
+
checkpoint_meta = checkpoint.get('meta', {})
|
118 |
+
# save the dataset_meta in the model for convenience
|
119 |
+
if 'dataset_meta' in checkpoint_meta:
|
120 |
+
# mmdet 3.x, all keys should be lowercase
|
121 |
+
model.dataset_meta = {
|
122 |
+
k.lower(): v
|
123 |
+
for k, v in checkpoint_meta['dataset_meta'].items()
|
124 |
+
}
|
125 |
+
elif 'CLASSES' in checkpoint_meta:
|
126 |
+
# < mmdet 3.x
|
127 |
+
classes = checkpoint_meta['CLASSES']
|
128 |
+
model.dataset_meta = {'classes': classes}
|
129 |
+
else:
|
130 |
+
warnings.warn(
|
131 |
+
'dataset_meta or class names are not saved in the '
|
132 |
+
'checkpoint\'s meta data, use COCO classes by default.')
|
133 |
+
model.dataset_meta = {'classes': get_classes('coco')}
|
134 |
+
else:
|
135 |
+
warnings.warn('Checkpoint is not loaded, and the inference '
|
136 |
+
'result is calculated by the randomly initialized '
|
137 |
+
'model!')
|
138 |
+
warnings.warn('weights is None, use COCO classes by default.')
|
139 |
+
model.dataset_meta = {'classes': get_classes('coco')}
|
140 |
+
|
141 |
+
# Priority: args.palette -> config -> checkpoint
|
142 |
+
if self.palette != 'none':
|
143 |
+
model.dataset_meta['palette'] = self.palette
|
144 |
+
else:
|
145 |
+
test_dataset_cfg = copy.deepcopy(cfg.test_dataloader.dataset)
|
146 |
+
# lazy init. We only need the metainfo.
|
147 |
+
test_dataset_cfg['lazy_init'] = True
|
148 |
+
metainfo = DATASETS.build(test_dataset_cfg).metainfo
|
149 |
+
cfg_palette = metainfo.get('palette', None)
|
150 |
+
if cfg_palette is not None:
|
151 |
+
model.dataset_meta['palette'] = cfg_palette
|
152 |
+
else:
|
153 |
+
if 'palette' not in model.dataset_meta:
|
154 |
+
warnings.warn(
|
155 |
+
'palette does not exist, random is used by default. '
|
156 |
+
'You can also set the palette to customize.')
|
157 |
+
model.dataset_meta['palette'] = 'random'
|
158 |
+
|
159 |
+
def _init_pipeline(self, cfg: ConfigType) -> Compose:
|
160 |
+
"""Initialize the test pipeline."""
|
161 |
+
pipeline_cfg = cfg.test_dataloader.dataset.pipeline
|
162 |
+
|
163 |
+
# For inference, the key of ``img_id`` is not used.
|
164 |
+
if 'meta_keys' in pipeline_cfg[-1]:
|
165 |
+
pipeline_cfg[-1]['meta_keys'] = tuple(
|
166 |
+
meta_key for meta_key in pipeline_cfg[-1]['meta_keys']
|
167 |
+
if meta_key != 'img_id')
|
168 |
+
|
169 |
+
load_img_idx = self._get_transform_idx(
|
170 |
+
pipeline_cfg, ('LoadImageFromFile', LoadImageFromFile))
|
171 |
+
if load_img_idx == -1:
|
172 |
+
raise ValueError(
|
173 |
+
'LoadImageFromFile is not found in the test pipeline')
|
174 |
+
pipeline_cfg[load_img_idx]['type'] = 'mmdet.InferencerLoader'
|
175 |
+
return Compose(pipeline_cfg)
|
176 |
+
|
177 |
+
def _get_transform_idx(self, pipeline_cfg: ConfigType,
|
178 |
+
name: Union[str, Tuple[str, type]]) -> int:
|
179 |
+
"""Returns the index of the transform in a pipeline.
|
180 |
+
|
181 |
+
If the transform is not found, returns -1.
|
182 |
+
"""
|
183 |
+
for i, transform in enumerate(pipeline_cfg):
|
184 |
+
if transform['type'] in name:
|
185 |
+
return i
|
186 |
+
return -1
|
187 |
+
|
188 |
+
def _init_visualizer(self, cfg: ConfigType) -> Optional[Visualizer]:
|
189 |
+
"""Initialize visualizers.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
cfg (ConfigType): Config containing the visualizer information.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
Visualizer or None: Visualizer initialized with config.
|
196 |
+
"""
|
197 |
+
visualizer = super()._init_visualizer(cfg)
|
198 |
+
visualizer.dataset_meta = self.model.dataset_meta
|
199 |
+
return visualizer
|
200 |
+
|
201 |
+
def _inputs_to_list(self, inputs: InputsType) -> list:
|
202 |
+
"""Preprocess the inputs to a list.
|
203 |
+
|
204 |
+
Preprocess inputs to a list according to its type:
|
205 |
+
|
206 |
+
- list or tuple: return inputs
|
207 |
+
- str:
|
208 |
+
- Directory path: return all files in the directory
|
209 |
+
- other cases: return a list containing the string. The string
|
210 |
+
could be a path to file, a url or other types of string according
|
211 |
+
to the task.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
inputs (InputsType): Inputs for the inferencer.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
list: List of input for the :meth:`preprocess`.
|
218 |
+
"""
|
219 |
+
if isinstance(inputs, str):
|
220 |
+
backend = get_file_backend(inputs)
|
221 |
+
if hasattr(backend, 'isdir') and isdir(inputs):
|
222 |
+
# Backends like HttpsBackend do not implement `isdir`, so only
|
223 |
+
# those backends that implement `isdir` could accept the inputs
|
224 |
+
# as a directory
|
225 |
+
filename_list = list_dir_or_file(
|
226 |
+
inputs, list_dir=False, suffix=IMG_EXTENSIONS)
|
227 |
+
inputs = [
|
228 |
+
join_path(inputs, filename) for filename in filename_list
|
229 |
+
]
|
230 |
+
|
231 |
+
if not isinstance(inputs, (list, tuple)):
|
232 |
+
inputs = [inputs]
|
233 |
+
|
234 |
+
return list(inputs)
|
235 |
+
|
236 |
+
def preprocess(self, inputs: InputsType, batch_size: int = 1, **kwargs):
|
237 |
+
"""Process the inputs into a model-feedable format.
|
238 |
+
|
239 |
+
Customize your preprocess by overriding this method. Preprocess should
|
240 |
+
return an iterable object, of which each item will be used as the
|
241 |
+
input of ``model.test_step``.
|
242 |
+
|
243 |
+
``BaseInferencer.preprocess`` will return an iterable chunked data,
|
244 |
+
which will be used in __call__ like this:
|
245 |
+
|
246 |
+
.. code-block:: python
|
247 |
+
|
248 |
+
def __call__(self, inputs, batch_size=1, **kwargs):
|
249 |
+
chunked_data = self.preprocess(inputs, batch_size, **kwargs)
|
250 |
+
for batch in chunked_data:
|
251 |
+
preds = self.forward(batch, **kwargs)
|
252 |
+
|
253 |
+
Args:
|
254 |
+
inputs (InputsType): Inputs given by user.
|
255 |
+
batch_size (int): batch size. Defaults to 1.
|
256 |
+
|
257 |
+
Yields:
|
258 |
+
Any: Data processed by the ``pipeline`` and ``collate_fn``.
|
259 |
+
"""
|
260 |
+
chunked_data = self._get_chunk_data(inputs, batch_size)
|
261 |
+
yield from map(self.collate_fn, chunked_data)
|
262 |
+
|
263 |
+
def _get_chunk_data(self, inputs: Iterable, chunk_size: int):
|
264 |
+
"""Get batch data from inputs.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
inputs (Iterable): An iterable dataset.
|
268 |
+
chunk_size (int): Equivalent to batch size.
|
269 |
+
|
270 |
+
Yields:
|
271 |
+
list: batch data.
|
272 |
+
"""
|
273 |
+
inputs_iter = iter(inputs)
|
274 |
+
while True:
|
275 |
+
try:
|
276 |
+
chunk_data = []
|
277 |
+
for _ in range(chunk_size):
|
278 |
+
inputs_ = next(inputs_iter)
|
279 |
+
if isinstance(inputs_, dict):
|
280 |
+
if 'img' in inputs_:
|
281 |
+
ori_inputs_ = inputs_['img']
|
282 |
+
else:
|
283 |
+
ori_inputs_ = inputs_['img_path']
|
284 |
+
chunk_data.append(
|
285 |
+
(ori_inputs_,
|
286 |
+
self.pipeline(copy.deepcopy(inputs_))))
|
287 |
+
else:
|
288 |
+
chunk_data.append((inputs_, self.pipeline(inputs_)))
|
289 |
+
yield chunk_data
|
290 |
+
except StopIteration:
|
291 |
+
if chunk_data:
|
292 |
+
yield chunk_data
|
293 |
+
break
|
294 |
+
|
295 |
+
# TODO: Video and Webcam are currently not supported and
|
296 |
+
# may consume too much memory if your input folder has a lot of images.
|
297 |
+
# We will be optimized later.
|
298 |
+
def __call__(
|
299 |
+
self,
|
300 |
+
inputs: InputsType,
|
301 |
+
batch_size: int = 1,
|
302 |
+
return_vis: bool = False,
|
303 |
+
show: bool = False,
|
304 |
+
wait_time: int = 0,
|
305 |
+
no_save_vis: bool = False,
|
306 |
+
draw_pred: bool = True,
|
307 |
+
pred_score_thr: float = 0.3,
|
308 |
+
return_datasamples: bool = False,
|
309 |
+
print_result: bool = False,
|
310 |
+
no_save_pred: bool = True,
|
311 |
+
out_dir: str = '',
|
312 |
+
# by open image task
|
313 |
+
texts: Optional[Union[str, list]] = None,
|
314 |
+
# by open panoptic task
|
315 |
+
stuff_texts: Optional[Union[str, list]] = None,
|
316 |
+
# by GLIP
|
317 |
+
custom_entities: bool = False,
|
318 |
+
**kwargs) -> dict:
|
319 |
+
"""Call the inferencer.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
inputs (InputsType): Inputs for the inferencer.
|
323 |
+
batch_size (int): Inference batch size. Defaults to 1.
|
324 |
+
show (bool): Whether to display the visualization results in a
|
325 |
+
popup window. Defaults to False.
|
326 |
+
wait_time (float): The interval of show (s). Defaults to 0.
|
327 |
+
no_save_vis (bool): Whether to force not to save prediction
|
328 |
+
vis results. Defaults to False.
|
329 |
+
draw_pred (bool): Whether to draw predicted bounding boxes.
|
330 |
+
Defaults to True.
|
331 |
+
pred_score_thr (float): Minimum score of bboxes to draw.
|
332 |
+
Defaults to 0.3.
|
333 |
+
return_datasamples (bool): Whether to return results as
|
334 |
+
:obj:`DetDataSample`. Defaults to False.
|
335 |
+
print_result (bool): Whether to print the inference result w/o
|
336 |
+
visualization to the console. Defaults to False.
|
337 |
+
no_save_pred (bool): Whether to force not to save prediction
|
338 |
+
results. Defaults to True.
|
339 |
+
out_dir: Dir to save the inference results or
|
340 |
+
visualization. If left as empty, no file will be saved.
|
341 |
+
Defaults to ''.
|
342 |
+
texts (str | list[str]): Text prompts. Defaults to None.
|
343 |
+
stuff_texts (str | list[str]): Stuff text prompts of open
|
344 |
+
panoptic task. Defaults to None.
|
345 |
+
custom_entities (bool): Whether to use custom entities.
|
346 |
+
Defaults to False. Only used in GLIP.
|
347 |
+
**kwargs: Other keyword arguments passed to :meth:`preprocess`,
|
348 |
+
:meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
|
349 |
+
Each key in kwargs should be in the corresponding set of
|
350 |
+
``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
|
351 |
+
and ``postprocess_kwargs``.
|
352 |
+
|
353 |
+
Returns:
|
354 |
+
dict: Inference and visualization results.
|
355 |
+
"""
|
356 |
+
(
|
357 |
+
preprocess_kwargs,
|
358 |
+
forward_kwargs,
|
359 |
+
visualize_kwargs,
|
360 |
+
postprocess_kwargs,
|
361 |
+
) = self._dispatch_kwargs(**kwargs)
|
362 |
+
|
363 |
+
ori_inputs = self._inputs_to_list(inputs)
|
364 |
+
|
365 |
+
if texts is not None and isinstance(texts, str):
|
366 |
+
texts = [texts] * len(ori_inputs)
|
367 |
+
if stuff_texts is not None and isinstance(stuff_texts, str):
|
368 |
+
stuff_texts = [stuff_texts] * len(ori_inputs)
|
369 |
+
if texts is not None:
|
370 |
+
assert len(texts) == len(ori_inputs)
|
371 |
+
for i in range(len(texts)):
|
372 |
+
if isinstance(ori_inputs[i], str):
|
373 |
+
ori_inputs[i] = {
|
374 |
+
'text': texts[i],
|
375 |
+
'img_path': ori_inputs[i],
|
376 |
+
'custom_entities': custom_entities
|
377 |
+
}
|
378 |
+
else:
|
379 |
+
ori_inputs[i] = {
|
380 |
+
'text': texts[i],
|
381 |
+
'img': ori_inputs[i],
|
382 |
+
'custom_entities': custom_entities
|
383 |
+
}
|
384 |
+
if stuff_texts is not None:
|
385 |
+
assert len(stuff_texts) == len(ori_inputs)
|
386 |
+
for i in range(len(stuff_texts)):
|
387 |
+
ori_inputs[i]['stuff_text'] = stuff_texts[i]
|
388 |
+
|
389 |
+
inputs = self.preprocess(
|
390 |
+
ori_inputs, batch_size=batch_size, **preprocess_kwargs)
|
391 |
+
|
392 |
+
results_dict = {'predictions': [], 'visualization': []}
|
393 |
+
for ori_imgs, data in (track(inputs, description='Inference')
|
394 |
+
if self.show_progress else inputs):
|
395 |
+
preds = self.forward(data, **forward_kwargs)
|
396 |
+
visualization = self.visualize(
|
397 |
+
ori_imgs,
|
398 |
+
preds,
|
399 |
+
return_vis=return_vis,
|
400 |
+
show=show,
|
401 |
+
wait_time=wait_time,
|
402 |
+
draw_pred=draw_pred,
|
403 |
+
pred_score_thr=pred_score_thr,
|
404 |
+
no_save_vis=no_save_vis,
|
405 |
+
img_out_dir=out_dir,
|
406 |
+
**visualize_kwargs)
|
407 |
+
results = self.postprocess(
|
408 |
+
preds,
|
409 |
+
visualization,
|
410 |
+
return_datasamples=return_datasamples,
|
411 |
+
print_result=print_result,
|
412 |
+
no_save_pred=no_save_pred,
|
413 |
+
pred_out_dir=out_dir,
|
414 |
+
**postprocess_kwargs)
|
415 |
+
results_dict['predictions'].extend(results['predictions'])
|
416 |
+
if results['visualization'] is not None:
|
417 |
+
results_dict['visualization'].extend(results['visualization'])
|
418 |
+
return results_dict
|
419 |
+
|
420 |
+
def visualize(self,
|
421 |
+
inputs: InputsType,
|
422 |
+
preds: PredType,
|
423 |
+
return_vis: bool = False,
|
424 |
+
show: bool = False,
|
425 |
+
wait_time: int = 0,
|
426 |
+
draw_pred: bool = True,
|
427 |
+
pred_score_thr: float = 0.3,
|
428 |
+
no_save_vis: bool = False,
|
429 |
+
img_out_dir: str = '',
|
430 |
+
**kwargs) -> Union[List[np.ndarray], None]:
|
431 |
+
"""Visualize predictions.
|
432 |
+
|
433 |
+
Args:
|
434 |
+
inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer.
|
435 |
+
preds (List[:obj:`DetDataSample`]): Predictions of the model.
|
436 |
+
return_vis (bool): Whether to return the visualization result.
|
437 |
+
Defaults to False.
|
438 |
+
show (bool): Whether to display the image in a popup window.
|
439 |
+
Defaults to False.
|
440 |
+
wait_time (float): The interval of show (s). Defaults to 0.
|
441 |
+
draw_pred (bool): Whether to draw predicted bounding boxes.
|
442 |
+
Defaults to True.
|
443 |
+
pred_score_thr (float): Minimum score of bboxes to draw.
|
444 |
+
Defaults to 0.3.
|
445 |
+
no_save_vis (bool): Whether to force not to save prediction
|
446 |
+
vis results. Defaults to False.
|
447 |
+
img_out_dir (str): Output directory of visualization results.
|
448 |
+
If left as empty, no file will be saved. Defaults to ''.
|
449 |
+
|
450 |
+
Returns:
|
451 |
+
List[np.ndarray] or None: Returns visualization results only if
|
452 |
+
applicable.
|
453 |
+
"""
|
454 |
+
if no_save_vis is True:
|
455 |
+
img_out_dir = ''
|
456 |
+
|
457 |
+
if not show and img_out_dir == '' and not return_vis:
|
458 |
+
return None
|
459 |
+
|
460 |
+
if self.visualizer is None:
|
461 |
+
raise ValueError('Visualization needs the "visualizer" term'
|
462 |
+
'defined in the config, but got None.')
|
463 |
+
|
464 |
+
results = []
|
465 |
+
|
466 |
+
for single_input, pred in zip(inputs, preds):
|
467 |
+
if isinstance(single_input, str):
|
468 |
+
img_bytes = mmengine.fileio.get(single_input)
|
469 |
+
img = mmcv.imfrombytes(img_bytes)
|
470 |
+
img = img[:, :, ::-1]
|
471 |
+
img_name = osp.basename(single_input)
|
472 |
+
elif isinstance(single_input, np.ndarray):
|
473 |
+
img = single_input.copy()
|
474 |
+
img_num = str(self.num_visualized_imgs).zfill(8)
|
475 |
+
img_name = f'{img_num}.jpg'
|
476 |
+
else:
|
477 |
+
raise ValueError('Unsupported input type: '
|
478 |
+
f'{type(single_input)}')
|
479 |
+
|
480 |
+
out_file = osp.join(img_out_dir, 'vis',
|
481 |
+
img_name) if img_out_dir != '' else None
|
482 |
+
|
483 |
+
self.visualizer.add_datasample(
|
484 |
+
img_name,
|
485 |
+
img,
|
486 |
+
pred,
|
487 |
+
show=show,
|
488 |
+
wait_time=wait_time,
|
489 |
+
draw_gt=False,
|
490 |
+
draw_pred=draw_pred,
|
491 |
+
pred_score_thr=pred_score_thr,
|
492 |
+
out_file=out_file,
|
493 |
+
)
|
494 |
+
results.append(self.visualizer.get_image())
|
495 |
+
self.num_visualized_imgs += 1
|
496 |
+
|
497 |
+
return results
|
498 |
+
|
499 |
+
def postprocess(
|
500 |
+
self,
|
501 |
+
preds: PredType,
|
502 |
+
visualization: Optional[List[np.ndarray]] = None,
|
503 |
+
return_datasamples: bool = False,
|
504 |
+
print_result: bool = False,
|
505 |
+
no_save_pred: bool = False,
|
506 |
+
pred_out_dir: str = '',
|
507 |
+
**kwargs,
|
508 |
+
) -> Dict:
|
509 |
+
"""Process the predictions and visualization results from ``forward``
|
510 |
+
and ``visualize``.
|
511 |
+
|
512 |
+
This method should be responsible for the following tasks:
|
513 |
+
|
514 |
+
1. Convert datasamples into a json-serializable dict if needed.
|
515 |
+
2. Pack the predictions and visualization results and return them.
|
516 |
+
3. Dump or log the predictions.
|
517 |
+
|
518 |
+
Args:
|
519 |
+
preds (List[:obj:`DetDataSample`]): Predictions of the model.
|
520 |
+
visualization (Optional[np.ndarray]): Visualized predictions.
|
521 |
+
return_datasamples (bool): Whether to use Datasample to store
|
522 |
+
inference results. If False, dict will be used.
|
523 |
+
print_result (bool): Whether to print the inference result w/o
|
524 |
+
visualization to the console. Defaults to False.
|
525 |
+
no_save_pred (bool): Whether to force not to save prediction
|
526 |
+
results. Defaults to False.
|
527 |
+
pred_out_dir: Dir to save the inference results w/o
|
528 |
+
visualization. If left as empty, no file will be saved.
|
529 |
+
Defaults to ''.
|
530 |
+
|
531 |
+
Returns:
|
532 |
+
dict: Inference and visualization results with key ``predictions``
|
533 |
+
and ``visualization``.
|
534 |
+
|
535 |
+
- ``visualization`` (Any): Returned by :meth:`visualize`.
|
536 |
+
- ``predictions`` (dict or DataSample): Returned by
|
537 |
+
:meth:`forward` and processed in :meth:`postprocess`.
|
538 |
+
If ``return_datasamples=False``, it usually should be a
|
539 |
+
json-serializable dict containing only basic data elements such
|
540 |
+
as strings and numbers.
|
541 |
+
"""
|
542 |
+
if no_save_pred is True:
|
543 |
+
pred_out_dir = ''
|
544 |
+
|
545 |
+
result_dict = {}
|
546 |
+
results = preds
|
547 |
+
if not return_datasamples:
|
548 |
+
results = []
|
549 |
+
for pred in preds:
|
550 |
+
result = self.pred2dict(pred, pred_out_dir)
|
551 |
+
results.append(result)
|
552 |
+
elif pred_out_dir != '':
|
553 |
+
warnings.warn('Currently does not support saving datasample '
|
554 |
+
'when return_datasamples is set to True. '
|
555 |
+
'Prediction results are not saved!')
|
556 |
+
# Add img to the results after printing and dumping
|
557 |
+
result_dict['predictions'] = results
|
558 |
+
if print_result:
|
559 |
+
print(result_dict)
|
560 |
+
result_dict['visualization'] = visualization
|
561 |
+
return result_dict
|
562 |
+
|
563 |
+
# TODO: The data format and fields saved in json need further discussion.
|
564 |
+
# Maybe should include model name, timestamp, filename, image info etc.
|
565 |
+
def pred2dict(self,
|
566 |
+
data_sample: DetDataSample,
|
567 |
+
pred_out_dir: str = '') -> Dict:
|
568 |
+
"""Extract elements necessary to represent a prediction into a
|
569 |
+
dictionary.
|
570 |
+
|
571 |
+
It's better to contain only basic data elements such as strings and
|
572 |
+
numbers in order to guarantee it's json-serializable.
|
573 |
+
|
574 |
+
Args:
|
575 |
+
data_sample (:obj:`DetDataSample`): Predictions of the model.
|
576 |
+
pred_out_dir: Dir to save the inference results w/o
|
577 |
+
visualization. If left as empty, no file will be saved.
|
578 |
+
Defaults to ''.
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
dict: Prediction results.
|
582 |
+
"""
|
583 |
+
is_save_pred = True
|
584 |
+
if pred_out_dir == '':
|
585 |
+
is_save_pred = False
|
586 |
+
|
587 |
+
if is_save_pred and 'img_path' in data_sample:
|
588 |
+
img_path = osp.basename(data_sample.img_path)
|
589 |
+
img_path = osp.splitext(img_path)[0]
|
590 |
+
out_img_path = osp.join(pred_out_dir, 'preds',
|
591 |
+
img_path + '_panoptic_seg.png')
|
592 |
+
out_json_path = osp.join(pred_out_dir, 'preds', img_path + '.json')
|
593 |
+
elif is_save_pred:
|
594 |
+
out_img_path = osp.join(
|
595 |
+
pred_out_dir, 'preds',
|
596 |
+
f'{self.num_predicted_imgs}_panoptic_seg.png')
|
597 |
+
out_json_path = osp.join(pred_out_dir, 'preds',
|
598 |
+
f'{self.num_predicted_imgs}.json')
|
599 |
+
self.num_predicted_imgs += 1
|
600 |
+
|
601 |
+
result = {}
|
602 |
+
if 'pred_instances' in data_sample:
|
603 |
+
masks = data_sample.pred_instances.get('masks')
|
604 |
+
pred_instances = data_sample.pred_instances.numpy()
|
605 |
+
result = {
|
606 |
+
'labels': pred_instances.labels.tolist(),
|
607 |
+
'scores': pred_instances.scores.tolist()
|
608 |
+
}
|
609 |
+
if 'bboxes' in pred_instances:
|
610 |
+
result['bboxes'] = pred_instances.bboxes.tolist()
|
611 |
+
if masks is not None:
|
612 |
+
if 'bboxes' not in pred_instances or pred_instances.bboxes.sum(
|
613 |
+
) == 0:
|
614 |
+
# Fake bbox, such as the SOLO.
|
615 |
+
bboxes = mask2bbox(masks.cpu()).numpy().tolist()
|
616 |
+
result['bboxes'] = bboxes
|
617 |
+
encode_masks = encode_mask_results(pred_instances.masks)
|
618 |
+
for encode_mask in encode_masks:
|
619 |
+
if isinstance(encode_mask['counts'], bytes):
|
620 |
+
encode_mask['counts'] = encode_mask['counts'].decode()
|
621 |
+
result['masks'] = encode_masks
|
622 |
+
|
623 |
+
if 'pred_panoptic_seg' in data_sample:
|
624 |
+
if VOID is None:
|
625 |
+
raise RuntimeError(
|
626 |
+
'panopticapi is not installed, please install it by: '
|
627 |
+
'pip install git+https://github.com/cocodataset/'
|
628 |
+
'panopticapi.git.')
|
629 |
+
|
630 |
+
pan = data_sample.pred_panoptic_seg.sem_seg.cpu().numpy()[0]
|
631 |
+
pan[pan % INSTANCE_OFFSET == len(
|
632 |
+
self.model.dataset_meta['classes'])] = VOID
|
633 |
+
pan = id2rgb(pan).astype(np.uint8)
|
634 |
+
|
635 |
+
if is_save_pred:
|
636 |
+
mmcv.imwrite(pan[:, :, ::-1], out_img_path)
|
637 |
+
result['panoptic_seg_path'] = out_img_path
|
638 |
+
else:
|
639 |
+
result['panoptic_seg'] = pan
|
640 |
+
|
641 |
+
if is_save_pred:
|
642 |
+
mmengine.dump(result, out_json_path)
|
643 |
+
|
644 |
+
return result
|
mmdet/apis/inference.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import copy
|
3 |
+
import warnings
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Optional, Sequence, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from mmcv.ops import RoIPool
|
11 |
+
from mmcv.transforms import Compose
|
12 |
+
from mmengine.config import Config
|
13 |
+
from mmengine.dataset import default_collate
|
14 |
+
from mmengine.model.utils import revert_sync_batchnorm
|
15 |
+
from mmengine.registry import init_default_scope
|
16 |
+
from mmengine.runner import load_checkpoint
|
17 |
+
|
18 |
+
from mmdet.registry import DATASETS
|
19 |
+
from mmdet.utils import ConfigType
|
20 |
+
from ..evaluation import get_classes
|
21 |
+
from ..registry import MODELS
|
22 |
+
from ..structures import DetDataSample, SampleList
|
23 |
+
from ..utils import get_test_pipeline_cfg
|
24 |
+
|
25 |
+
|
26 |
+
def init_detector(
|
27 |
+
config: Union[str, Path, Config],
|
28 |
+
checkpoint: Optional[str] = None,
|
29 |
+
palette: str = 'none',
|
30 |
+
device: str = 'cuda:0',
|
31 |
+
cfg_options: Optional[dict] = None,
|
32 |
+
) -> nn.Module:
|
33 |
+
"""Initialize a detector from config file.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
|
37 |
+
:obj:`Path`, or the config object.
|
38 |
+
checkpoint (str, optional): Checkpoint path. If left as None, the model
|
39 |
+
will not load any weights.
|
40 |
+
palette (str): Color palette used for visualization. If palette
|
41 |
+
is stored in checkpoint, use checkpoint's palette first, otherwise
|
42 |
+
use externally passed palette. Currently, supports 'coco', 'voc',
|
43 |
+
'citys' and 'random'. Defaults to none.
|
44 |
+
device (str): The device where the anchors will be put on.
|
45 |
+
Defaults to cuda:0.
|
46 |
+
cfg_options (dict, optional): Options to override some settings in
|
47 |
+
the used config.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
nn.Module: The constructed detector.
|
51 |
+
"""
|
52 |
+
if isinstance(config, (str, Path)):
|
53 |
+
config = Config.fromfile(config)
|
54 |
+
elif not isinstance(config, Config):
|
55 |
+
raise TypeError('config must be a filename or Config object, '
|
56 |
+
f'but got {type(config)}')
|
57 |
+
if cfg_options is not None:
|
58 |
+
config.merge_from_dict(cfg_options)
|
59 |
+
elif 'init_cfg' in config.model.backbone:
|
60 |
+
config.model.backbone.init_cfg = None
|
61 |
+
|
62 |
+
scope = config.get('default_scope', 'mmdet')
|
63 |
+
if scope is not None:
|
64 |
+
init_default_scope(config.get('default_scope', 'mmdet'))
|
65 |
+
|
66 |
+
model = MODELS.build(config.model)
|
67 |
+
model = revert_sync_batchnorm(model)
|
68 |
+
if checkpoint is None:
|
69 |
+
warnings.simplefilter('once')
|
70 |
+
warnings.warn('checkpoint is None, use COCO classes by default.')
|
71 |
+
model.dataset_meta = {'classes': get_classes('coco')}
|
72 |
+
else:
|
73 |
+
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
|
74 |
+
# Weights converted from elsewhere may not have meta fields.
|
75 |
+
checkpoint_meta = checkpoint.get('meta', {})
|
76 |
+
|
77 |
+
# save the dataset_meta in the model for convenience
|
78 |
+
if 'dataset_meta' in checkpoint_meta:
|
79 |
+
# mmdet 3.x, all keys should be lowercase
|
80 |
+
model.dataset_meta = {
|
81 |
+
k.lower(): v
|
82 |
+
for k, v in checkpoint_meta['dataset_meta'].items()
|
83 |
+
}
|
84 |
+
elif 'CLASSES' in checkpoint_meta:
|
85 |
+
# < mmdet 3.x
|
86 |
+
classes = checkpoint_meta['CLASSES']
|
87 |
+
model.dataset_meta = {'classes': classes}
|
88 |
+
else:
|
89 |
+
warnings.simplefilter('once')
|
90 |
+
warnings.warn(
|
91 |
+
'dataset_meta or class names are not saved in the '
|
92 |
+
'checkpoint\'s meta data, use COCO classes by default.')
|
93 |
+
model.dataset_meta = {'classes': get_classes('coco')}
|
94 |
+
|
95 |
+
# Priority: args.palette -> config -> checkpoint
|
96 |
+
if palette != 'none':
|
97 |
+
model.dataset_meta['palette'] = palette
|
98 |
+
else:
|
99 |
+
test_dataset_cfg = copy.deepcopy(config.test_dataloader.dataset)
|
100 |
+
# lazy init. We only need the metainfo.
|
101 |
+
test_dataset_cfg['lazy_init'] = True
|
102 |
+
metainfo = DATASETS.build(test_dataset_cfg).metainfo
|
103 |
+
cfg_palette = metainfo.get('palette', None)
|
104 |
+
if cfg_palette is not None:
|
105 |
+
model.dataset_meta['palette'] = cfg_palette
|
106 |
+
else:
|
107 |
+
if 'palette' not in model.dataset_meta:
|
108 |
+
warnings.warn(
|
109 |
+
'palette does not exist, random is used by default. '
|
110 |
+
'You can also set the palette to customize.')
|
111 |
+
model.dataset_meta['palette'] = 'random'
|
112 |
+
|
113 |
+
model.cfg = config # save the config in the model for convenience
|
114 |
+
model.to(device)
|
115 |
+
model.eval()
|
116 |
+
return model
|
117 |
+
|
118 |
+
|
119 |
+
ImagesType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]
|
120 |
+
|
121 |
+
|
122 |
+
def inference_detector(
|
123 |
+
model: nn.Module,
|
124 |
+
imgs: ImagesType,
|
125 |
+
test_pipeline: Optional[Compose] = None,
|
126 |
+
text_prompt: Optional[str] = None,
|
127 |
+
custom_entities: bool = False,
|
128 |
+
) -> Union[DetDataSample, SampleList]:
|
129 |
+
"""Inference image(s) with the detector.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
model (nn.Module): The loaded detector.
|
133 |
+
imgs (str, ndarray, Sequence[str/ndarray]):
|
134 |
+
Either image files or loaded images.
|
135 |
+
test_pipeline (:obj:`Compose`): Test pipeline.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
:obj:`DetDataSample` or list[:obj:`DetDataSample`]:
|
139 |
+
If imgs is a list or tuple, the same length list type results
|
140 |
+
will be returned, otherwise return the detection results directly.
|
141 |
+
"""
|
142 |
+
|
143 |
+
if isinstance(imgs, (list, tuple)):
|
144 |
+
is_batch = True
|
145 |
+
else:
|
146 |
+
imgs = [imgs]
|
147 |
+
is_batch = False
|
148 |
+
|
149 |
+
cfg = model.cfg
|
150 |
+
|
151 |
+
if test_pipeline is None:
|
152 |
+
cfg = cfg.copy()
|
153 |
+
test_pipeline = get_test_pipeline_cfg(cfg)
|
154 |
+
if isinstance(imgs[0], np.ndarray):
|
155 |
+
# Calling this method across libraries will result
|
156 |
+
# in module unregistered error if not prefixed with mmdet.
|
157 |
+
test_pipeline[0].type = 'mmdet.LoadImageFromNDArray'
|
158 |
+
|
159 |
+
test_pipeline = Compose(test_pipeline)
|
160 |
+
|
161 |
+
if model.data_preprocessor.device.type == 'cpu':
|
162 |
+
for m in model.modules():
|
163 |
+
assert not isinstance(
|
164 |
+
m, RoIPool
|
165 |
+
), 'CPU inference with RoIPool is not supported currently.'
|
166 |
+
|
167 |
+
result_list = []
|
168 |
+
for i, img in enumerate(imgs):
|
169 |
+
# prepare data
|
170 |
+
if isinstance(img, np.ndarray):
|
171 |
+
# TODO: remove img_id.
|
172 |
+
data_ = dict(img=img, img_id=0)
|
173 |
+
else:
|
174 |
+
# TODO: remove img_id.
|
175 |
+
data_ = dict(img_path=img, img_id=0)
|
176 |
+
|
177 |
+
if text_prompt:
|
178 |
+
data_['text'] = text_prompt
|
179 |
+
data_['custom_entities'] = custom_entities
|
180 |
+
|
181 |
+
# build the data pipeline
|
182 |
+
data_ = test_pipeline(data_)
|
183 |
+
|
184 |
+
data_['inputs'] = [data_['inputs']]
|
185 |
+
data_['data_samples'] = [data_['data_samples']]
|
186 |
+
|
187 |
+
# forward the model
|
188 |
+
with torch.no_grad():
|
189 |
+
results = model.test_step(data_)[0]
|
190 |
+
|
191 |
+
result_list.append(results)
|
192 |
+
|
193 |
+
if not is_batch:
|
194 |
+
return result_list[0]
|
195 |
+
else:
|
196 |
+
return result_list
|
197 |
+
|
198 |
+
|
199 |
+
# TODO: Awaiting refactoring
|
200 |
+
async def async_inference_detector(model, imgs):
|
201 |
+
"""Async inference image(s) with the detector.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
model (nn.Module): The loaded detector.
|
205 |
+
img (str | ndarray): Either image files or loaded images.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
Awaitable detection results.
|
209 |
+
"""
|
210 |
+
if not isinstance(imgs, (list, tuple)):
|
211 |
+
imgs = [imgs]
|
212 |
+
|
213 |
+
cfg = model.cfg
|
214 |
+
|
215 |
+
if isinstance(imgs[0], np.ndarray):
|
216 |
+
cfg = cfg.copy()
|
217 |
+
# set loading pipeline type
|
218 |
+
cfg.data.test.pipeline[0].type = 'LoadImageFromNDArray'
|
219 |
+
|
220 |
+
# cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
|
221 |
+
test_pipeline = Compose(cfg.data.test.pipeline)
|
222 |
+
|
223 |
+
datas = []
|
224 |
+
for img in imgs:
|
225 |
+
# prepare data
|
226 |
+
if isinstance(img, np.ndarray):
|
227 |
+
# directly add img
|
228 |
+
data = dict(img=img)
|
229 |
+
else:
|
230 |
+
# add information into dict
|
231 |
+
data = dict(img_info=dict(filename=img), img_prefix=None)
|
232 |
+
# build the data pipeline
|
233 |
+
data = test_pipeline(data)
|
234 |
+
datas.append(data)
|
235 |
+
|
236 |
+
for m in model.modules():
|
237 |
+
assert not isinstance(
|
238 |
+
m,
|
239 |
+
RoIPool), 'CPU inference with RoIPool is not supported currently.'
|
240 |
+
|
241 |
+
# We don't restore `torch.is_grad_enabled()` value during concurrent
|
242 |
+
# inference since execution can overlap
|
243 |
+
torch.set_grad_enabled(False)
|
244 |
+
results = await model.aforward_test(data, rescale=True)
|
245 |
+
return results
|
246 |
+
|
247 |
+
|
248 |
+
def build_test_pipeline(cfg: ConfigType) -> ConfigType:
|
249 |
+
"""Build test_pipeline for mot/vis demo. In mot/vis infer, original
|
250 |
+
test_pipeline should remove the "LoadImageFromFile" and
|
251 |
+
"LoadTrackAnnotations".
|
252 |
+
|
253 |
+
Args:
|
254 |
+
cfg (ConfigDict): The loaded config.
|
255 |
+
Returns:
|
256 |
+
ConfigType: new test_pipeline
|
257 |
+
"""
|
258 |
+
# remove the "LoadImageFromFile" and "LoadTrackAnnotations" in pipeline
|
259 |
+
transform_broadcaster = cfg.test_dataloader.dataset.pipeline[0].copy()
|
260 |
+
for transform in transform_broadcaster['transforms']:
|
261 |
+
if transform['type'] == 'Resize':
|
262 |
+
transform_broadcaster['transforms'] = transform
|
263 |
+
pack_track_inputs = cfg.test_dataloader.dataset.pipeline[-1].copy()
|
264 |
+
test_pipeline = Compose([transform_broadcaster, pack_track_inputs])
|
265 |
+
|
266 |
+
return test_pipeline
|
267 |
+
|
268 |
+
|
269 |
+
def inference_mot(model: nn.Module, img: np.ndarray, frame_id: int,
|
270 |
+
video_len: int) -> SampleList:
|
271 |
+
"""Inference image(s) with the mot model.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
model (nn.Module): The loaded mot model.
|
275 |
+
img (np.ndarray): Loaded image.
|
276 |
+
frame_id (int): frame id.
|
277 |
+
video_len (int): demo video length
|
278 |
+
Returns:
|
279 |
+
SampleList: The tracking data samples.
|
280 |
+
"""
|
281 |
+
cfg = model.cfg
|
282 |
+
data = dict(
|
283 |
+
img=[img.astype(np.float32)],
|
284 |
+
frame_id=[frame_id],
|
285 |
+
ori_shape=[img.shape[:2]],
|
286 |
+
img_id=[frame_id + 1],
|
287 |
+
ori_video_length=[video_len])
|
288 |
+
|
289 |
+
test_pipeline = build_test_pipeline(cfg)
|
290 |
+
data = test_pipeline(data)
|
291 |
+
|
292 |
+
if not next(model.parameters()).is_cuda:
|
293 |
+
for m in model.modules():
|
294 |
+
assert not isinstance(
|
295 |
+
m, RoIPool
|
296 |
+
), 'CPU inference with RoIPool is not supported currently.'
|
297 |
+
|
298 |
+
# forward the model
|
299 |
+
with torch.no_grad():
|
300 |
+
data = default_collate([data])
|
301 |
+
result = model.test_step(data)[0]
|
302 |
+
return result
|
303 |
+
|
304 |
+
|
305 |
+
def init_track_model(config: Union[str, Config],
|
306 |
+
checkpoint: Optional[str] = None,
|
307 |
+
detector: Optional[str] = None,
|
308 |
+
reid: Optional[str] = None,
|
309 |
+
device: str = 'cuda:0',
|
310 |
+
cfg_options: Optional[dict] = None) -> nn.Module:
|
311 |
+
"""Initialize a model from config file.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
config (str or :obj:`mmengine.Config`): Config file path or the config
|
315 |
+
object.
|
316 |
+
checkpoint (Optional[str], optional): Checkpoint path. Defaults to
|
317 |
+
None.
|
318 |
+
detector (Optional[str], optional): Detector Checkpoint path, use in
|
319 |
+
some tracking algorithms like sort. Defaults to None.
|
320 |
+
reid (Optional[str], optional): Reid checkpoint path. use in
|
321 |
+
some tracking algorithms like sort. Defaults to None.
|
322 |
+
device (str, optional): The device that the model inferences on.
|
323 |
+
Defaults to `cuda:0`.
|
324 |
+
cfg_options (Optional[dict], optional): Options to override some
|
325 |
+
settings in the used config. Defaults to None.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
nn.Module: The constructed model.
|
329 |
+
"""
|
330 |
+
if isinstance(config, str):
|
331 |
+
config = Config.fromfile(config)
|
332 |
+
elif not isinstance(config, Config):
|
333 |
+
raise TypeError('config must be a filename or Config object, '
|
334 |
+
f'but got {type(config)}')
|
335 |
+
if cfg_options is not None:
|
336 |
+
config.merge_from_dict(cfg_options)
|
337 |
+
|
338 |
+
model = MODELS.build(config.model)
|
339 |
+
|
340 |
+
if checkpoint is not None:
|
341 |
+
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
|
342 |
+
# Weights converted from elsewhere may not have meta fields.
|
343 |
+
checkpoint_meta = checkpoint.get('meta', {})
|
344 |
+
# save the dataset_meta in the model for convenience
|
345 |
+
if 'dataset_meta' in checkpoint_meta:
|
346 |
+
if 'CLASSES' in checkpoint_meta['dataset_meta']:
|
347 |
+
value = checkpoint_meta['dataset_meta'].pop('CLASSES')
|
348 |
+
checkpoint_meta['dataset_meta']['classes'] = value
|
349 |
+
model.dataset_meta = checkpoint_meta['dataset_meta']
|
350 |
+
|
351 |
+
if detector is not None:
|
352 |
+
assert not (checkpoint and detector), \
|
353 |
+
'Error: checkpoint and detector checkpoint cannot both exist'
|
354 |
+
load_checkpoint(model.detector, detector, map_location='cpu')
|
355 |
+
|
356 |
+
if reid is not None:
|
357 |
+
assert not (checkpoint and reid), \
|
358 |
+
'Error: checkpoint and reid checkpoint cannot both exist'
|
359 |
+
load_checkpoint(model.reid, reid, map_location='cpu')
|
360 |
+
|
361 |
+
# Some methods don't load checkpoints or checkpoints don't contain
|
362 |
+
# 'dataset_meta'
|
363 |
+
# VIS need dataset_meta, MOT don't need dataset_meta
|
364 |
+
if not hasattr(model, 'dataset_meta'):
|
365 |
+
warnings.warn('dataset_meta or class names are missed, '
|
366 |
+
'use None by default.')
|
367 |
+
model.dataset_meta = {'classes': None}
|
368 |
+
|
369 |
+
model.cfg = config # save the config in the model for convenience
|
370 |
+
model.to(device)
|
371 |
+
model.eval()
|
372 |
+
return model
|
mmdet/configs/.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
mmdet/configs/_base_/datasets/coco_detection.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.transforms import LoadImageFromFile
|
3 |
+
from mmengine.dataset.sampler import DefaultSampler
|
4 |
+
|
5 |
+
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset
|
6 |
+
from mmdet.datasets.transforms import (LoadAnnotations, PackDetInputs,
|
7 |
+
RandomFlip, Resize)
|
8 |
+
from mmdet.evaluation import CocoMetric
|
9 |
+
|
10 |
+
# dataset settings
|
11 |
+
dataset_type = CocoDataset
|
12 |
+
data_root = 'data/coco/'
|
13 |
+
|
14 |
+
# Example to use different file client
|
15 |
+
# Method 1: simply set the data root and let the file I/O module
|
16 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
17 |
+
|
18 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
19 |
+
|
20 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
21 |
+
# backend_args = dict(
|
22 |
+
# backend='petrel',
|
23 |
+
# path_mapping=dict({
|
24 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
25 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
26 |
+
# }))
|
27 |
+
backend_args = None
|
28 |
+
|
29 |
+
train_pipeline = [
|
30 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
31 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
32 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
33 |
+
dict(type=RandomFlip, prob=0.5),
|
34 |
+
dict(type=PackDetInputs)
|
35 |
+
]
|
36 |
+
test_pipeline = [
|
37 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
38 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
39 |
+
# If you don't have a gt annotation, delete the pipeline
|
40 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
41 |
+
dict(
|
42 |
+
type=PackDetInputs,
|
43 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
44 |
+
'scale_factor'))
|
45 |
+
]
|
46 |
+
train_dataloader = dict(
|
47 |
+
batch_size=2,
|
48 |
+
num_workers=2,
|
49 |
+
persistent_workers=True,
|
50 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
51 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
52 |
+
dataset=dict(
|
53 |
+
type=dataset_type,
|
54 |
+
data_root=data_root,
|
55 |
+
ann_file='annotations/instances_train2017.json',
|
56 |
+
data_prefix=dict(img='train2017/'),
|
57 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
58 |
+
pipeline=train_pipeline,
|
59 |
+
backend_args=backend_args))
|
60 |
+
val_dataloader = dict(
|
61 |
+
batch_size=1,
|
62 |
+
num_workers=2,
|
63 |
+
persistent_workers=True,
|
64 |
+
drop_last=False,
|
65 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
66 |
+
dataset=dict(
|
67 |
+
type=dataset_type,
|
68 |
+
data_root=data_root,
|
69 |
+
ann_file='annotations/instances_val2017.json',
|
70 |
+
data_prefix=dict(img='val2017/'),
|
71 |
+
test_mode=True,
|
72 |
+
pipeline=test_pipeline,
|
73 |
+
backend_args=backend_args))
|
74 |
+
test_dataloader = val_dataloader
|
75 |
+
|
76 |
+
val_evaluator = dict(
|
77 |
+
type=CocoMetric,
|
78 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
79 |
+
metric='bbox',
|
80 |
+
format_only=False,
|
81 |
+
backend_args=backend_args)
|
82 |
+
test_evaluator = val_evaluator
|
83 |
+
|
84 |
+
# inference on test dataset and
|
85 |
+
# format the output results for submission.
|
86 |
+
# test_dataloader = dict(
|
87 |
+
# batch_size=1,
|
88 |
+
# num_workers=2,
|
89 |
+
# persistent_workers=True,
|
90 |
+
# drop_last=False,
|
91 |
+
# sampler=dict(type=DefaultSampler, shuffle=False),
|
92 |
+
# dataset=dict(
|
93 |
+
# type=dataset_type,
|
94 |
+
# data_root=data_root,
|
95 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
96 |
+
# data_prefix=dict(img='test2017/'),
|
97 |
+
# test_mode=True,
|
98 |
+
# pipeline=test_pipeline))
|
99 |
+
# test_evaluator = dict(
|
100 |
+
# type=CocoMetric,
|
101 |
+
# metric='bbox',
|
102 |
+
# format_only=True,
|
103 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
104 |
+
# outfile_prefix='./work_dirs/coco_detection/test')
|
mmdet/configs/_base_/datasets/coco_instance.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.transforms.loading import LoadImageFromFile
|
3 |
+
from mmengine.dataset.sampler import DefaultSampler
|
4 |
+
|
5 |
+
from mmdet.datasets.coco import CocoDataset
|
6 |
+
from mmdet.datasets.samplers.batch_sampler import AspectRatioBatchSampler
|
7 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
8 |
+
from mmdet.datasets.transforms.loading import LoadAnnotations
|
9 |
+
from mmdet.datasets.transforms.transforms import RandomFlip, Resize
|
10 |
+
from mmdet.evaluation.metrics.coco_metric import CocoMetric
|
11 |
+
|
12 |
+
# dataset settings
|
13 |
+
dataset_type = 'CocoDataset'
|
14 |
+
data_root = 'data/coco/'
|
15 |
+
|
16 |
+
# Example to use different file client
|
17 |
+
# Method 1: simply set the data root and let the file I/O module
|
18 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
19 |
+
|
20 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
21 |
+
|
22 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
23 |
+
# backend_args = dict(
|
24 |
+
# backend='petrel',
|
25 |
+
# path_mapping=dict({
|
26 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
27 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
28 |
+
# }))
|
29 |
+
backend_args = None
|
30 |
+
|
31 |
+
train_pipeline = [
|
32 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
33 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
34 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
35 |
+
dict(type=RandomFlip, prob=0.5),
|
36 |
+
dict(type=PackDetInputs)
|
37 |
+
]
|
38 |
+
test_pipeline = [
|
39 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
40 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
41 |
+
# If you don't have a gt annotation, delete the pipeline
|
42 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
43 |
+
dict(
|
44 |
+
type=PackDetInputs,
|
45 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
46 |
+
'scale_factor'))
|
47 |
+
]
|
48 |
+
train_dataloader = dict(
|
49 |
+
batch_size=2,
|
50 |
+
num_workers=2,
|
51 |
+
persistent_workers=True,
|
52 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
53 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
54 |
+
dataset=dict(
|
55 |
+
type=CocoDataset,
|
56 |
+
data_root=data_root,
|
57 |
+
ann_file='annotations/instances_train2017.json',
|
58 |
+
data_prefix=dict(img='train2017/'),
|
59 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
60 |
+
pipeline=train_pipeline,
|
61 |
+
backend_args=backend_args))
|
62 |
+
val_dataloader = dict(
|
63 |
+
batch_size=1,
|
64 |
+
num_workers=2,
|
65 |
+
persistent_workers=True,
|
66 |
+
drop_last=False,
|
67 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
68 |
+
dataset=dict(
|
69 |
+
type=CocoDataset,
|
70 |
+
data_root=data_root,
|
71 |
+
ann_file='annotations/instances_val2017.json',
|
72 |
+
data_prefix=dict(img='val2017/'),
|
73 |
+
test_mode=True,
|
74 |
+
pipeline=test_pipeline,
|
75 |
+
backend_args=backend_args))
|
76 |
+
test_dataloader = val_dataloader
|
77 |
+
|
78 |
+
val_evaluator = dict(
|
79 |
+
type=CocoMetric,
|
80 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
81 |
+
metric=['bbox', 'segm'],
|
82 |
+
format_only=False,
|
83 |
+
backend_args=backend_args)
|
84 |
+
test_evaluator = val_evaluator
|
85 |
+
|
86 |
+
# inference on test dataset and
|
87 |
+
# format the output results for submission.
|
88 |
+
# test_dataloader = dict(
|
89 |
+
# batch_size=1,
|
90 |
+
# num_workers=2,
|
91 |
+
# persistent_workers=True,
|
92 |
+
# drop_last=False,
|
93 |
+
# sampler=dict(type=DefaultSampler, shuffle=False),
|
94 |
+
# dataset=dict(
|
95 |
+
# type=CocoDataset,
|
96 |
+
# data_root=data_root,
|
97 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
98 |
+
# data_prefix=dict(img='test2017/'),
|
99 |
+
# test_mode=True,
|
100 |
+
# pipeline=test_pipeline))
|
101 |
+
# test_evaluator = dict(
|
102 |
+
# type=CocoMetric,
|
103 |
+
# metric=['bbox', 'segm'],
|
104 |
+
# format_only=True,
|
105 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
106 |
+
# outfile_prefix='./work_dirs/coco_instance/test')
|
mmdet/configs/_base_/datasets/coco_instance_semantic.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.transforms.loading import LoadImageFromFile
|
3 |
+
from mmengine.dataset.sampler import DefaultSampler
|
4 |
+
|
5 |
+
from mmdet.datasets.coco import CocoDataset
|
6 |
+
from mmdet.datasets.samplers.batch_sampler import AspectRatioBatchSampler
|
7 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
8 |
+
from mmdet.datasets.transforms.loading import LoadAnnotations
|
9 |
+
from mmdet.datasets.transforms.transforms import RandomFlip, Resize
|
10 |
+
from mmdet.evaluation.metrics.coco_metric import CocoMetric
|
11 |
+
|
12 |
+
# dataset settings
|
13 |
+
dataset_type = 'CocoDataset'
|
14 |
+
data_root = 'data/coco/'
|
15 |
+
|
16 |
+
# Example to use different file client
|
17 |
+
# Method 1: simply set the data root and let the file I/O module
|
18 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
19 |
+
|
20 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
21 |
+
|
22 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
23 |
+
# backend_args = dict(
|
24 |
+
# backend='petrel',
|
25 |
+
# path_mapping=dict({
|
26 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
27 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
28 |
+
# }))
|
29 |
+
backend_args = None
|
30 |
+
|
31 |
+
train_pipeline = [
|
32 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
33 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True, with_seg=True),
|
34 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
35 |
+
dict(type=RandomFlip, prob=0.5),
|
36 |
+
dict(type=PackDetInputs)
|
37 |
+
]
|
38 |
+
test_pipeline = [
|
39 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
40 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
41 |
+
# If you don't have a gt annotation, delete the pipeline
|
42 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True, with_seg=True),
|
43 |
+
dict(
|
44 |
+
type=PackDetInputs,
|
45 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
46 |
+
'scale_factor'))
|
47 |
+
]
|
48 |
+
|
49 |
+
train_dataloader = dict(
|
50 |
+
batch_size=2,
|
51 |
+
num_workers=2,
|
52 |
+
persistent_workers=True,
|
53 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
54 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
55 |
+
dataset=dict(
|
56 |
+
type=CocoDataset,
|
57 |
+
data_root=data_root,
|
58 |
+
ann_file='annotations/instances_train2017.json',
|
59 |
+
data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'),
|
60 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
61 |
+
pipeline=train_pipeline,
|
62 |
+
backend_args=backend_args))
|
63 |
+
|
64 |
+
val_dataloader = dict(
|
65 |
+
batch_size=1,
|
66 |
+
num_workers=2,
|
67 |
+
persistent_workers=True,
|
68 |
+
drop_last=False,
|
69 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
70 |
+
dataset=dict(
|
71 |
+
type=CocoDataset,
|
72 |
+
data_root=data_root,
|
73 |
+
ann_file='annotations/instances_val2017.json',
|
74 |
+
data_prefix=dict(img='val2017/'),
|
75 |
+
test_mode=True,
|
76 |
+
pipeline=test_pipeline,
|
77 |
+
backend_args=backend_args))
|
78 |
+
|
79 |
+
test_dataloader = val_dataloader
|
80 |
+
|
81 |
+
val_evaluator = dict(
|
82 |
+
type=CocoMetric,
|
83 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
84 |
+
metric=['bbox', 'segm'],
|
85 |
+
format_only=False,
|
86 |
+
backend_args=backend_args)
|
87 |
+
test_evaluator = val_evaluator
|
mmdet/configs/_base_/datasets/coco_panoptic.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.transforms.loading import LoadImageFromFile
|
3 |
+
from mmengine.dataset.sampler import DefaultSampler
|
4 |
+
|
5 |
+
from mmdet.datasets.coco_panoptic import CocoPanopticDataset
|
6 |
+
from mmdet.datasets.samplers.batch_sampler import AspectRatioBatchSampler
|
7 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
8 |
+
from mmdet.datasets.transforms.loading import LoadPanopticAnnotations
|
9 |
+
from mmdet.datasets.transforms.transforms import RandomFlip, Resize
|
10 |
+
from mmdet.evaluation.metrics.coco_panoptic_metric import CocoPanopticMetric
|
11 |
+
|
12 |
+
# dataset settings
|
13 |
+
dataset_type = 'CocoPanopticDataset'
|
14 |
+
data_root = 'data/coco/'
|
15 |
+
|
16 |
+
# Example to use different file client
|
17 |
+
# Method 1: simply set the data root and let the file I/O module
|
18 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
19 |
+
|
20 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
21 |
+
|
22 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
23 |
+
# backend_args = dict(
|
24 |
+
# backend='petrel',
|
25 |
+
# path_mapping=dict({
|
26 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
27 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
28 |
+
# }))
|
29 |
+
backend_args = None
|
30 |
+
|
31 |
+
train_pipeline = [
|
32 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
33 |
+
dict(type=LoadPanopticAnnotations, backend_args=backend_args),
|
34 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
35 |
+
dict(type=RandomFlip, prob=0.5),
|
36 |
+
dict(type=PackDetInputs)
|
37 |
+
]
|
38 |
+
test_pipeline = [
|
39 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
40 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
41 |
+
dict(type=LoadPanopticAnnotations, backend_args=backend_args),
|
42 |
+
dict(
|
43 |
+
type=PackDetInputs,
|
44 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
45 |
+
'scale_factor'))
|
46 |
+
]
|
47 |
+
|
48 |
+
train_dataloader = dict(
|
49 |
+
batch_size=2,
|
50 |
+
num_workers=2,
|
51 |
+
persistent_workers=True,
|
52 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
53 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
54 |
+
dataset=dict(
|
55 |
+
type=CocoPanopticDataset,
|
56 |
+
data_root=data_root,
|
57 |
+
ann_file='annotations/panoptic_train2017.json',
|
58 |
+
data_prefix=dict(
|
59 |
+
img='train2017/', seg='annotations/panoptic_train2017/'),
|
60 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
61 |
+
pipeline=train_pipeline,
|
62 |
+
backend_args=backend_args))
|
63 |
+
val_dataloader = dict(
|
64 |
+
batch_size=1,
|
65 |
+
num_workers=2,
|
66 |
+
persistent_workers=True,
|
67 |
+
drop_last=False,
|
68 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
69 |
+
dataset=dict(
|
70 |
+
type=CocoPanopticDataset,
|
71 |
+
data_root=data_root,
|
72 |
+
ann_file='annotations/panoptic_val2017.json',
|
73 |
+
data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'),
|
74 |
+
test_mode=True,
|
75 |
+
pipeline=test_pipeline,
|
76 |
+
backend_args=backend_args))
|
77 |
+
test_dataloader = val_dataloader
|
78 |
+
|
79 |
+
val_evaluator = dict(
|
80 |
+
type=CocoPanopticMetric,
|
81 |
+
ann_file=data_root + 'annotations/panoptic_val2017.json',
|
82 |
+
seg_prefix=data_root + 'annotations/panoptic_val2017/',
|
83 |
+
backend_args=backend_args)
|
84 |
+
test_evaluator = val_evaluator
|
85 |
+
|
86 |
+
# inference on test dataset and
|
87 |
+
# format the output results for submission.
|
88 |
+
# test_dataloader = dict(
|
89 |
+
# batch_size=1,
|
90 |
+
# num_workers=1,
|
91 |
+
# persistent_workers=True,
|
92 |
+
# drop_last=False,
|
93 |
+
# sampler=dict(type=DefaultSampler, shuffle=False),
|
94 |
+
# dataset=dict(
|
95 |
+
# type=CocoPanopticDataset,
|
96 |
+
# data_root=data_root,
|
97 |
+
# ann_file='annotations/panoptic_image_info_test-dev2017.json',
|
98 |
+
# data_prefix=dict(img='test2017/'),
|
99 |
+
# test_mode=True,
|
100 |
+
# pipeline=test_pipeline))
|
101 |
+
# test_evaluator = dict(
|
102 |
+
# type=CocoPanopticMetric,
|
103 |
+
# format_only=True,
|
104 |
+
# ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
|
105 |
+
# outfile_prefix='./work_dirs/coco_panoptic/test')
|
mmdet/configs/_base_/datasets/mot_challenge.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.transforms import (LoadImageFromFile, RandomResize,
|
3 |
+
TransformBroadcaster)
|
4 |
+
|
5 |
+
from mmdet.datasets import MOTChallengeDataset
|
6 |
+
from mmdet.datasets.samplers import TrackImgSampler
|
7 |
+
from mmdet.datasets.transforms import (LoadTrackAnnotations, PackTrackInputs,
|
8 |
+
PhotoMetricDistortion, RandomCrop,
|
9 |
+
RandomFlip, Resize,
|
10 |
+
UniformRefFrameSample)
|
11 |
+
from mmdet.evaluation import MOTChallengeMetric
|
12 |
+
|
13 |
+
# dataset settings
|
14 |
+
dataset_type = MOTChallengeDataset
|
15 |
+
data_root = 'data/MOT17/'
|
16 |
+
img_scale = (1088, 1088)
|
17 |
+
|
18 |
+
backend_args = None
|
19 |
+
# data pipeline
|
20 |
+
train_pipeline = [
|
21 |
+
dict(
|
22 |
+
type=UniformRefFrameSample,
|
23 |
+
num_ref_imgs=1,
|
24 |
+
frame_range=10,
|
25 |
+
filter_key_img=True),
|
26 |
+
dict(
|
27 |
+
type=TransformBroadcaster,
|
28 |
+
share_random_params=True,
|
29 |
+
transforms=[
|
30 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
31 |
+
dict(type=LoadTrackAnnotations),
|
32 |
+
dict(
|
33 |
+
type=RandomResize,
|
34 |
+
scale=img_scale,
|
35 |
+
ratio_range=(0.8, 1.2),
|
36 |
+
keep_ratio=True,
|
37 |
+
clip_object_border=False),
|
38 |
+
dict(type=PhotoMetricDistortion)
|
39 |
+
]),
|
40 |
+
dict(
|
41 |
+
type=TransformBroadcaster,
|
42 |
+
# different cropped positions for different frames
|
43 |
+
share_random_params=False,
|
44 |
+
transforms=[
|
45 |
+
dict(type=RandomCrop, crop_size=img_scale, bbox_clip_border=False)
|
46 |
+
]),
|
47 |
+
dict(
|
48 |
+
type=TransformBroadcaster,
|
49 |
+
share_random_params=True,
|
50 |
+
transforms=[
|
51 |
+
dict(type=RandomFlip, prob=0.5),
|
52 |
+
]),
|
53 |
+
dict(type=PackTrackInputs)
|
54 |
+
]
|
55 |
+
|
56 |
+
test_pipeline = [
|
57 |
+
dict(
|
58 |
+
type=TransformBroadcaster,
|
59 |
+
transforms=[
|
60 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
61 |
+
dict(type=Resize, scale=img_scale, keep_ratio=True),
|
62 |
+
dict(type=LoadTrackAnnotations)
|
63 |
+
]),
|
64 |
+
dict(type=PackTrackInputs)
|
65 |
+
]
|
66 |
+
|
67 |
+
# dataloader
|
68 |
+
train_dataloader = dict(
|
69 |
+
batch_size=2,
|
70 |
+
num_workers=2,
|
71 |
+
persistent_workers=True,
|
72 |
+
sampler=dict(type=TrackImgSampler), # image-based sampling
|
73 |
+
dataset=dict(
|
74 |
+
type=dataset_type,
|
75 |
+
data_root=data_root,
|
76 |
+
visibility_thr=-1,
|
77 |
+
ann_file='annotations/half-train_cocoformat.json',
|
78 |
+
data_prefix=dict(img_path='train'),
|
79 |
+
metainfo=dict(classes=('pedestrian', )),
|
80 |
+
pipeline=train_pipeline))
|
81 |
+
val_dataloader = dict(
|
82 |
+
batch_size=1,
|
83 |
+
num_workers=2,
|
84 |
+
persistent_workers=True,
|
85 |
+
# Now we support two ways to test, image_based and video_based
|
86 |
+
# if you want to use video_based sampling, you can use as follows
|
87 |
+
# sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
|
88 |
+
sampler=dict(type=TrackImgSampler), # image-based sampling
|
89 |
+
dataset=dict(
|
90 |
+
type=dataset_type,
|
91 |
+
data_root=data_root,
|
92 |
+
ann_file='annotations/half-val_cocoformat.json',
|
93 |
+
data_prefix=dict(img_path='train'),
|
94 |
+
test_mode=True,
|
95 |
+
pipeline=test_pipeline))
|
96 |
+
test_dataloader = val_dataloader
|
97 |
+
|
98 |
+
# evaluator
|
99 |
+
val_evaluator = dict(
|
100 |
+
type=MOTChallengeMetric, metric=['HOTA', 'CLEAR', 'Identity'])
|
101 |
+
test_evaluator = val_evaluator
|
mmdet/configs/_base_/default_runtime.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
3 |
+
LoggerHook, ParamSchedulerHook)
|
4 |
+
from mmengine.runner import LogProcessor
|
5 |
+
from mmengine.visualization import LocalVisBackend
|
6 |
+
|
7 |
+
from mmdet.engine.hooks import DetVisualizationHook
|
8 |
+
from mmdet.visualization import DetLocalVisualizer
|
9 |
+
|
10 |
+
default_scope = None
|
11 |
+
|
12 |
+
default_hooks = dict(
|
13 |
+
timer=dict(type=IterTimerHook),
|
14 |
+
logger=dict(type=LoggerHook, interval=50),
|
15 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
16 |
+
checkpoint=dict(type=CheckpointHook, interval=1),
|
17 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
18 |
+
visualization=dict(type=DetVisualizationHook))
|
19 |
+
|
20 |
+
env_cfg = dict(
|
21 |
+
cudnn_benchmark=False,
|
22 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
23 |
+
dist_cfg=dict(backend='nccl'),
|
24 |
+
)
|
25 |
+
|
26 |
+
vis_backends = [dict(type=LocalVisBackend)]
|
27 |
+
visualizer = dict(
|
28 |
+
type=DetLocalVisualizer, vis_backends=vis_backends, name='visualizer')
|
29 |
+
log_processor = dict(type=LogProcessor, window_size=50, by_epoch=True)
|
30 |
+
|
31 |
+
log_level = 'INFO'
|
32 |
+
load_from = None
|
33 |
+
resume = False
|
mmdet/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.ops import RoIAlign, nms
|
3 |
+
from torch.nn import BatchNorm2d
|
4 |
+
|
5 |
+
from mmdet.models.backbones.resnet import ResNet
|
6 |
+
from mmdet.models.data_preprocessors.data_preprocessor import \
|
7 |
+
DetDataPreprocessor
|
8 |
+
from mmdet.models.dense_heads.rpn_head import RPNHead
|
9 |
+
from mmdet.models.detectors.cascade_rcnn import CascadeRCNN
|
10 |
+
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
|
11 |
+
from mmdet.models.losses.smooth_l1_loss import SmoothL1Loss
|
12 |
+
from mmdet.models.necks.fpn import FPN
|
13 |
+
from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \
|
14 |
+
Shared2FCBBoxHead
|
15 |
+
from mmdet.models.roi_heads.cascade_roi_head import CascadeRoIHead
|
16 |
+
from mmdet.models.roi_heads.mask_heads.fcn_mask_head import FCNMaskHead
|
17 |
+
from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
|
18 |
+
SingleRoIExtractor
|
19 |
+
from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
|
20 |
+
from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
|
21 |
+
DeltaXYWHBBoxCoder
|
22 |
+
from mmdet.models.task_modules.prior_generators.anchor_generator import \
|
23 |
+
AnchorGenerator
|
24 |
+
from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
|
25 |
+
|
26 |
+
# model settings
|
27 |
+
model = dict(
|
28 |
+
type=CascadeRCNN,
|
29 |
+
data_preprocessor=dict(
|
30 |
+
type=DetDataPreprocessor,
|
31 |
+
mean=[123.675, 116.28, 103.53],
|
32 |
+
std=[58.395, 57.12, 57.375],
|
33 |
+
bgr_to_rgb=True,
|
34 |
+
pad_mask=True,
|
35 |
+
pad_size_divisor=32),
|
36 |
+
backbone=dict(
|
37 |
+
type=ResNet,
|
38 |
+
depth=50,
|
39 |
+
num_stages=4,
|
40 |
+
out_indices=(0, 1, 2, 3),
|
41 |
+
frozen_stages=1,
|
42 |
+
norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
|
43 |
+
norm_eval=True,
|
44 |
+
style='pytorch',
|
45 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
46 |
+
neck=dict(
|
47 |
+
type=FPN,
|
48 |
+
in_channels=[256, 512, 1024, 2048],
|
49 |
+
out_channels=256,
|
50 |
+
num_outs=5),
|
51 |
+
rpn_head=dict(
|
52 |
+
type=RPNHead,
|
53 |
+
in_channels=256,
|
54 |
+
feat_channels=256,
|
55 |
+
anchor_generator=dict(
|
56 |
+
type=AnchorGenerator,
|
57 |
+
scales=[8],
|
58 |
+
ratios=[0.5, 1.0, 2.0],
|
59 |
+
strides=[4, 8, 16, 32, 64]),
|
60 |
+
bbox_coder=dict(
|
61 |
+
type=DeltaXYWHBBoxCoder,
|
62 |
+
target_means=[.0, .0, .0, .0],
|
63 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
64 |
+
loss_cls=dict(
|
65 |
+
type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
|
66 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0 / 9.0, loss_weight=1.0)),
|
67 |
+
roi_head=dict(
|
68 |
+
type=CascadeRoIHead,
|
69 |
+
num_stages=3,
|
70 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
71 |
+
bbox_roi_extractor=dict(
|
72 |
+
type=SingleRoIExtractor,
|
73 |
+
roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0),
|
74 |
+
out_channels=256,
|
75 |
+
featmap_strides=[4, 8, 16, 32]),
|
76 |
+
bbox_head=[
|
77 |
+
dict(
|
78 |
+
type=Shared2FCBBoxHead,
|
79 |
+
in_channels=256,
|
80 |
+
fc_out_channels=1024,
|
81 |
+
roi_feat_size=7,
|
82 |
+
num_classes=80,
|
83 |
+
bbox_coder=dict(
|
84 |
+
type=DeltaXYWHBBoxCoder,
|
85 |
+
target_means=[0., 0., 0., 0.],
|
86 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
87 |
+
reg_class_agnostic=True,
|
88 |
+
loss_cls=dict(
|
89 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
90 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0, loss_weight=1.0)),
|
91 |
+
dict(
|
92 |
+
type=Shared2FCBBoxHead,
|
93 |
+
in_channels=256,
|
94 |
+
fc_out_channels=1024,
|
95 |
+
roi_feat_size=7,
|
96 |
+
num_classes=80,
|
97 |
+
bbox_coder=dict(
|
98 |
+
type=DeltaXYWHBBoxCoder,
|
99 |
+
target_means=[0., 0., 0., 0.],
|
100 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
101 |
+
reg_class_agnostic=True,
|
102 |
+
loss_cls=dict(
|
103 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
104 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0, loss_weight=1.0)),
|
105 |
+
dict(
|
106 |
+
type=Shared2FCBBoxHead,
|
107 |
+
in_channels=256,
|
108 |
+
fc_out_channels=1024,
|
109 |
+
roi_feat_size=7,
|
110 |
+
num_classes=80,
|
111 |
+
bbox_coder=dict(
|
112 |
+
type=DeltaXYWHBBoxCoder,
|
113 |
+
target_means=[0., 0., 0., 0.],
|
114 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
115 |
+
reg_class_agnostic=True,
|
116 |
+
loss_cls=dict(
|
117 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
118 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0, loss_weight=1.0))
|
119 |
+
],
|
120 |
+
mask_roi_extractor=dict(
|
121 |
+
type=SingleRoIExtractor,
|
122 |
+
roi_layer=dict(type=RoIAlign, output_size=14, sampling_ratio=0),
|
123 |
+
out_channels=256,
|
124 |
+
featmap_strides=[4, 8, 16, 32]),
|
125 |
+
mask_head=dict(
|
126 |
+
type=FCNMaskHead,
|
127 |
+
num_convs=4,
|
128 |
+
in_channels=256,
|
129 |
+
conv_out_channels=256,
|
130 |
+
num_classes=80,
|
131 |
+
loss_mask=dict(
|
132 |
+
type=CrossEntropyLoss, use_mask=True, loss_weight=1.0))),
|
133 |
+
# model training and testing settings
|
134 |
+
train_cfg=dict(
|
135 |
+
rpn=dict(
|
136 |
+
assigner=dict(
|
137 |
+
type=MaxIoUAssigner,
|
138 |
+
pos_iou_thr=0.7,
|
139 |
+
neg_iou_thr=0.3,
|
140 |
+
min_pos_iou=0.3,
|
141 |
+
match_low_quality=True,
|
142 |
+
ignore_iof_thr=-1),
|
143 |
+
sampler=dict(
|
144 |
+
type=RandomSampler,
|
145 |
+
num=256,
|
146 |
+
pos_fraction=0.5,
|
147 |
+
neg_pos_ub=-1,
|
148 |
+
add_gt_as_proposals=False),
|
149 |
+
allowed_border=0,
|
150 |
+
pos_weight=-1,
|
151 |
+
debug=False),
|
152 |
+
rpn_proposal=dict(
|
153 |
+
nms_pre=2000,
|
154 |
+
max_per_img=2000,
|
155 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
156 |
+
min_bbox_size=0),
|
157 |
+
rcnn=[
|
158 |
+
dict(
|
159 |
+
assigner=dict(
|
160 |
+
type=MaxIoUAssigner,
|
161 |
+
pos_iou_thr=0.5,
|
162 |
+
neg_iou_thr=0.5,
|
163 |
+
min_pos_iou=0.5,
|
164 |
+
match_low_quality=False,
|
165 |
+
ignore_iof_thr=-1),
|
166 |
+
sampler=dict(
|
167 |
+
type=RandomSampler,
|
168 |
+
num=512,
|
169 |
+
pos_fraction=0.25,
|
170 |
+
neg_pos_ub=-1,
|
171 |
+
add_gt_as_proposals=True),
|
172 |
+
mask_size=28,
|
173 |
+
pos_weight=-1,
|
174 |
+
debug=False),
|
175 |
+
dict(
|
176 |
+
assigner=dict(
|
177 |
+
type=MaxIoUAssigner,
|
178 |
+
pos_iou_thr=0.6,
|
179 |
+
neg_iou_thr=0.6,
|
180 |
+
min_pos_iou=0.6,
|
181 |
+
match_low_quality=False,
|
182 |
+
ignore_iof_thr=-1),
|
183 |
+
sampler=dict(
|
184 |
+
type=RandomSampler,
|
185 |
+
num=512,
|
186 |
+
pos_fraction=0.25,
|
187 |
+
neg_pos_ub=-1,
|
188 |
+
add_gt_as_proposals=True),
|
189 |
+
mask_size=28,
|
190 |
+
pos_weight=-1,
|
191 |
+
debug=False),
|
192 |
+
dict(
|
193 |
+
assigner=dict(
|
194 |
+
type=MaxIoUAssigner,
|
195 |
+
pos_iou_thr=0.7,
|
196 |
+
neg_iou_thr=0.7,
|
197 |
+
min_pos_iou=0.7,
|
198 |
+
match_low_quality=False,
|
199 |
+
ignore_iof_thr=-1),
|
200 |
+
sampler=dict(
|
201 |
+
type=RandomSampler,
|
202 |
+
num=512,
|
203 |
+
pos_fraction=0.25,
|
204 |
+
neg_pos_ub=-1,
|
205 |
+
add_gt_as_proposals=True),
|
206 |
+
mask_size=28,
|
207 |
+
pos_weight=-1,
|
208 |
+
debug=False)
|
209 |
+
]),
|
210 |
+
test_cfg=dict(
|
211 |
+
rpn=dict(
|
212 |
+
nms_pre=1000,
|
213 |
+
max_per_img=1000,
|
214 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
215 |
+
min_bbox_size=0),
|
216 |
+
rcnn=dict(
|
217 |
+
score_thr=0.05,
|
218 |
+
nms=dict(type=nms, iou_threshold=0.5),
|
219 |
+
max_per_img=100,
|
220 |
+
mask_thr_binary=0.5)))
|
mmdet/configs/_base_/models/cascade_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.ops import RoIAlign, nms
|
3 |
+
from torch.nn import BatchNorm2d
|
4 |
+
|
5 |
+
from mmdet.models.backbones.resnet import ResNet
|
6 |
+
from mmdet.models.data_preprocessors.data_preprocessor import \
|
7 |
+
DetDataPreprocessor
|
8 |
+
from mmdet.models.dense_heads.rpn_head import RPNHead
|
9 |
+
from mmdet.models.detectors.cascade_rcnn import CascadeRCNN
|
10 |
+
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
|
11 |
+
from mmdet.models.losses.smooth_l1_loss import SmoothL1Loss
|
12 |
+
from mmdet.models.necks.fpn import FPN
|
13 |
+
from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \
|
14 |
+
Shared2FCBBoxHead
|
15 |
+
from mmdet.models.roi_heads.cascade_roi_head import CascadeRoIHead
|
16 |
+
from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
|
17 |
+
SingleRoIExtractor
|
18 |
+
from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
|
19 |
+
from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
|
20 |
+
DeltaXYWHBBoxCoder
|
21 |
+
from mmdet.models.task_modules.prior_generators.anchor_generator import \
|
22 |
+
AnchorGenerator
|
23 |
+
from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
|
24 |
+
|
25 |
+
# model settings
|
26 |
+
model = dict(
|
27 |
+
type=CascadeRCNN,
|
28 |
+
data_preprocessor=dict(
|
29 |
+
type=DetDataPreprocessor,
|
30 |
+
mean=[123.675, 116.28, 103.53],
|
31 |
+
std=[58.395, 57.12, 57.375],
|
32 |
+
bgr_to_rgb=True,
|
33 |
+
pad_size_divisor=32),
|
34 |
+
backbone=dict(
|
35 |
+
type=ResNet,
|
36 |
+
depth=50,
|
37 |
+
num_stages=4,
|
38 |
+
out_indices=(0, 1, 2, 3),
|
39 |
+
frozen_stages=1,
|
40 |
+
norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
|
41 |
+
norm_eval=True,
|
42 |
+
style='pytorch',
|
43 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
44 |
+
neck=dict(
|
45 |
+
type=FPN,
|
46 |
+
in_channels=[256, 512, 1024, 2048],
|
47 |
+
out_channels=256,
|
48 |
+
num_outs=5),
|
49 |
+
rpn_head=dict(
|
50 |
+
type=RPNHead,
|
51 |
+
in_channels=256,
|
52 |
+
feat_channels=256,
|
53 |
+
anchor_generator=dict(
|
54 |
+
type=AnchorGenerator,
|
55 |
+
scales=[8],
|
56 |
+
ratios=[0.5, 1.0, 2.0],
|
57 |
+
strides=[4, 8, 16, 32, 64]),
|
58 |
+
bbox_coder=dict(
|
59 |
+
type=DeltaXYWHBBoxCoder,
|
60 |
+
target_means=[.0, .0, .0, .0],
|
61 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
62 |
+
loss_cls=dict(
|
63 |
+
type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
|
64 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0 / 9.0, loss_weight=1.0)),
|
65 |
+
roi_head=dict(
|
66 |
+
type=CascadeRoIHead,
|
67 |
+
num_stages=3,
|
68 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
69 |
+
bbox_roi_extractor=dict(
|
70 |
+
type=SingleRoIExtractor,
|
71 |
+
roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0),
|
72 |
+
out_channels=256,
|
73 |
+
featmap_strides=[4, 8, 16, 32]),
|
74 |
+
bbox_head=[
|
75 |
+
dict(
|
76 |
+
type=Shared2FCBBoxHead,
|
77 |
+
in_channels=256,
|
78 |
+
fc_out_channels=1024,
|
79 |
+
roi_feat_size=7,
|
80 |
+
num_classes=80,
|
81 |
+
bbox_coder=dict(
|
82 |
+
type=DeltaXYWHBBoxCoder,
|
83 |
+
target_means=[0., 0., 0., 0.],
|
84 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
85 |
+
reg_class_agnostic=True,
|
86 |
+
loss_cls=dict(
|
87 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
88 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0, loss_weight=1.0)),
|
89 |
+
dict(
|
90 |
+
type=Shared2FCBBoxHead,
|
91 |
+
in_channels=256,
|
92 |
+
fc_out_channels=1024,
|
93 |
+
roi_feat_size=7,
|
94 |
+
num_classes=80,
|
95 |
+
bbox_coder=dict(
|
96 |
+
type=DeltaXYWHBBoxCoder,
|
97 |
+
target_means=[0., 0., 0., 0.],
|
98 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
99 |
+
reg_class_agnostic=True,
|
100 |
+
loss_cls=dict(
|
101 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
102 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0, loss_weight=1.0)),
|
103 |
+
dict(
|
104 |
+
type=Shared2FCBBoxHead,
|
105 |
+
in_channels=256,
|
106 |
+
fc_out_channels=1024,
|
107 |
+
roi_feat_size=7,
|
108 |
+
num_classes=80,
|
109 |
+
bbox_coder=dict(
|
110 |
+
type=DeltaXYWHBBoxCoder,
|
111 |
+
target_means=[0., 0., 0., 0.],
|
112 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
113 |
+
reg_class_agnostic=True,
|
114 |
+
loss_cls=dict(
|
115 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
116 |
+
loss_bbox=dict(type=SmoothL1Loss, beta=1.0, loss_weight=1.0))
|
117 |
+
]),
|
118 |
+
# model training and testing settings
|
119 |
+
train_cfg=dict(
|
120 |
+
rpn=dict(
|
121 |
+
assigner=dict(
|
122 |
+
type=MaxIoUAssigner,
|
123 |
+
pos_iou_thr=0.7,
|
124 |
+
neg_iou_thr=0.3,
|
125 |
+
min_pos_iou=0.3,
|
126 |
+
match_low_quality=True,
|
127 |
+
ignore_iof_thr=-1),
|
128 |
+
sampler=dict(
|
129 |
+
type=RandomSampler,
|
130 |
+
num=256,
|
131 |
+
pos_fraction=0.5,
|
132 |
+
neg_pos_ub=-1,
|
133 |
+
add_gt_as_proposals=False),
|
134 |
+
allowed_border=0,
|
135 |
+
pos_weight=-1,
|
136 |
+
debug=False),
|
137 |
+
rpn_proposal=dict(
|
138 |
+
nms_pre=2000,
|
139 |
+
max_per_img=2000,
|
140 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
141 |
+
min_bbox_size=0),
|
142 |
+
rcnn=[
|
143 |
+
dict(
|
144 |
+
assigner=dict(
|
145 |
+
type=MaxIoUAssigner,
|
146 |
+
pos_iou_thr=0.5,
|
147 |
+
neg_iou_thr=0.5,
|
148 |
+
min_pos_iou=0.5,
|
149 |
+
match_low_quality=False,
|
150 |
+
ignore_iof_thr=-1),
|
151 |
+
sampler=dict(
|
152 |
+
type=RandomSampler,
|
153 |
+
num=512,
|
154 |
+
pos_fraction=0.25,
|
155 |
+
neg_pos_ub=-1,
|
156 |
+
add_gt_as_proposals=True),
|
157 |
+
pos_weight=-1,
|
158 |
+
debug=False),
|
159 |
+
dict(
|
160 |
+
assigner=dict(
|
161 |
+
type=MaxIoUAssigner,
|
162 |
+
pos_iou_thr=0.6,
|
163 |
+
neg_iou_thr=0.6,
|
164 |
+
min_pos_iou=0.6,
|
165 |
+
match_low_quality=False,
|
166 |
+
ignore_iof_thr=-1),
|
167 |
+
sampler=dict(
|
168 |
+
type=RandomSampler,
|
169 |
+
num=512,
|
170 |
+
pos_fraction=0.25,
|
171 |
+
neg_pos_ub=-1,
|
172 |
+
add_gt_as_proposals=True),
|
173 |
+
pos_weight=-1,
|
174 |
+
debug=False),
|
175 |
+
dict(
|
176 |
+
assigner=dict(
|
177 |
+
type=MaxIoUAssigner,
|
178 |
+
pos_iou_thr=0.7,
|
179 |
+
neg_iou_thr=0.7,
|
180 |
+
min_pos_iou=0.7,
|
181 |
+
match_low_quality=False,
|
182 |
+
ignore_iof_thr=-1),
|
183 |
+
sampler=dict(
|
184 |
+
type=RandomSampler,
|
185 |
+
num=512,
|
186 |
+
pos_fraction=0.25,
|
187 |
+
neg_pos_ub=-1,
|
188 |
+
add_gt_as_proposals=True),
|
189 |
+
pos_weight=-1,
|
190 |
+
debug=False)
|
191 |
+
]),
|
192 |
+
test_cfg=dict(
|
193 |
+
rpn=dict(
|
194 |
+
nms_pre=1000,
|
195 |
+
max_per_img=1000,
|
196 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
197 |
+
min_bbox_size=0),
|
198 |
+
rcnn=dict(
|
199 |
+
score_thr=0.05,
|
200 |
+
nms=dict(type=nms, iou_threshold=0.5),
|
201 |
+
max_per_img=100)))
|
mmdet/configs/_base_/models/faster_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.ops import RoIAlign, nms
|
3 |
+
from torch.nn import BatchNorm2d
|
4 |
+
|
5 |
+
from mmdet.models.backbones.resnet import ResNet
|
6 |
+
from mmdet.models.data_preprocessors.data_preprocessor import \
|
7 |
+
DetDataPreprocessor
|
8 |
+
from mmdet.models.dense_heads.rpn_head import RPNHead
|
9 |
+
from mmdet.models.detectors.faster_rcnn import FasterRCNN
|
10 |
+
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
|
11 |
+
from mmdet.models.losses.smooth_l1_loss import L1Loss
|
12 |
+
from mmdet.models.necks.fpn import FPN
|
13 |
+
from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \
|
14 |
+
Shared2FCBBoxHead
|
15 |
+
from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
|
16 |
+
SingleRoIExtractor
|
17 |
+
from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead
|
18 |
+
from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
|
19 |
+
from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
|
20 |
+
DeltaXYWHBBoxCoder
|
21 |
+
from mmdet.models.task_modules.prior_generators.anchor_generator import \
|
22 |
+
AnchorGenerator
|
23 |
+
from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
|
24 |
+
|
25 |
+
# model settings
|
26 |
+
model = dict(
|
27 |
+
type=FasterRCNN,
|
28 |
+
data_preprocessor=dict(
|
29 |
+
type=DetDataPreprocessor,
|
30 |
+
mean=[123.675, 116.28, 103.53],
|
31 |
+
std=[58.395, 57.12, 57.375],
|
32 |
+
bgr_to_rgb=True,
|
33 |
+
pad_size_divisor=32),
|
34 |
+
backbone=dict(
|
35 |
+
type=ResNet,
|
36 |
+
depth=50,
|
37 |
+
num_stages=4,
|
38 |
+
out_indices=(0, 1, 2, 3),
|
39 |
+
frozen_stages=1,
|
40 |
+
norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
|
41 |
+
norm_eval=True,
|
42 |
+
style='pytorch',
|
43 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
44 |
+
neck=dict(
|
45 |
+
type=FPN,
|
46 |
+
in_channels=[256, 512, 1024, 2048],
|
47 |
+
out_channels=256,
|
48 |
+
num_outs=5),
|
49 |
+
rpn_head=dict(
|
50 |
+
type=RPNHead,
|
51 |
+
in_channels=256,
|
52 |
+
feat_channels=256,
|
53 |
+
anchor_generator=dict(
|
54 |
+
type=AnchorGenerator,
|
55 |
+
scales=[8],
|
56 |
+
ratios=[0.5, 1.0, 2.0],
|
57 |
+
strides=[4, 8, 16, 32, 64]),
|
58 |
+
bbox_coder=dict(
|
59 |
+
type=DeltaXYWHBBoxCoder,
|
60 |
+
target_means=[.0, .0, .0, .0],
|
61 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
62 |
+
loss_cls=dict(
|
63 |
+
type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
|
64 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
|
65 |
+
roi_head=dict(
|
66 |
+
type=StandardRoIHead,
|
67 |
+
bbox_roi_extractor=dict(
|
68 |
+
type=SingleRoIExtractor,
|
69 |
+
roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0),
|
70 |
+
out_channels=256,
|
71 |
+
featmap_strides=[4, 8, 16, 32]),
|
72 |
+
bbox_head=dict(
|
73 |
+
type=Shared2FCBBoxHead,
|
74 |
+
in_channels=256,
|
75 |
+
fc_out_channels=1024,
|
76 |
+
roi_feat_size=7,
|
77 |
+
num_classes=80,
|
78 |
+
bbox_coder=dict(
|
79 |
+
type=DeltaXYWHBBoxCoder,
|
80 |
+
target_means=[0., 0., 0., 0.],
|
81 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
82 |
+
reg_class_agnostic=False,
|
83 |
+
loss_cls=dict(
|
84 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
85 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0))),
|
86 |
+
# model training and testing settings
|
87 |
+
train_cfg=dict(
|
88 |
+
rpn=dict(
|
89 |
+
assigner=dict(
|
90 |
+
type=MaxIoUAssigner,
|
91 |
+
pos_iou_thr=0.7,
|
92 |
+
neg_iou_thr=0.3,
|
93 |
+
min_pos_iou=0.3,
|
94 |
+
match_low_quality=True,
|
95 |
+
ignore_iof_thr=-1),
|
96 |
+
sampler=dict(
|
97 |
+
type=RandomSampler,
|
98 |
+
num=256,
|
99 |
+
pos_fraction=0.5,
|
100 |
+
neg_pos_ub=-1,
|
101 |
+
add_gt_as_proposals=False),
|
102 |
+
allowed_border=-1,
|
103 |
+
pos_weight=-1,
|
104 |
+
debug=False),
|
105 |
+
rpn_proposal=dict(
|
106 |
+
nms_pre=2000,
|
107 |
+
max_per_img=1000,
|
108 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
109 |
+
min_bbox_size=0),
|
110 |
+
rcnn=dict(
|
111 |
+
assigner=dict(
|
112 |
+
type=MaxIoUAssigner,
|
113 |
+
pos_iou_thr=0.5,
|
114 |
+
neg_iou_thr=0.5,
|
115 |
+
min_pos_iou=0.5,
|
116 |
+
match_low_quality=False,
|
117 |
+
ignore_iof_thr=-1),
|
118 |
+
sampler=dict(
|
119 |
+
type=RandomSampler,
|
120 |
+
num=512,
|
121 |
+
pos_fraction=0.25,
|
122 |
+
neg_pos_ub=-1,
|
123 |
+
add_gt_as_proposals=True),
|
124 |
+
pos_weight=-1,
|
125 |
+
debug=False)),
|
126 |
+
test_cfg=dict(
|
127 |
+
rpn=dict(
|
128 |
+
nms_pre=1000,
|
129 |
+
max_per_img=1000,
|
130 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
131 |
+
min_bbox_size=0),
|
132 |
+
rcnn=dict(
|
133 |
+
score_thr=0.05,
|
134 |
+
nms=dict(type=nms, iou_threshold=0.5),
|
135 |
+
max_per_img=100)
|
136 |
+
# soft-nms is also supported for rcnn testing
|
137 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
138 |
+
))
|
mmdet/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.ops import RoIAlign, nms
|
3 |
+
from mmengine.model.weight_init import PretrainedInit
|
4 |
+
from torch.nn import BatchNorm2d
|
5 |
+
|
6 |
+
from mmdet.models.backbones.resnet import ResNet
|
7 |
+
from mmdet.models.data_preprocessors.data_preprocessor import \
|
8 |
+
DetDataPreprocessor
|
9 |
+
from mmdet.models.dense_heads.rpn_head import RPNHead
|
10 |
+
from mmdet.models.detectors.mask_rcnn import MaskRCNN
|
11 |
+
from mmdet.models.layers import ResLayer
|
12 |
+
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
|
13 |
+
from mmdet.models.losses.smooth_l1_loss import L1Loss
|
14 |
+
from mmdet.models.roi_heads.bbox_heads.bbox_head import BBoxHead
|
15 |
+
from mmdet.models.roi_heads.mask_heads.fcn_mask_head import FCNMaskHead
|
16 |
+
from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
|
17 |
+
SingleRoIExtractor
|
18 |
+
from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead
|
19 |
+
from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
|
20 |
+
from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
|
21 |
+
DeltaXYWHBBoxCoder
|
22 |
+
from mmdet.models.task_modules.prior_generators.anchor_generator import \
|
23 |
+
AnchorGenerator
|
24 |
+
from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
|
25 |
+
|
26 |
+
# model settings
|
27 |
+
norm_cfg = dict(type=BatchNorm2d, requires_grad=False)
|
28 |
+
# model settings
|
29 |
+
model = dict(
|
30 |
+
type=MaskRCNN,
|
31 |
+
data_preprocessor=dict(
|
32 |
+
type=DetDataPreprocessor,
|
33 |
+
mean=[103.530, 116.280, 123.675],
|
34 |
+
std=[1.0, 1.0, 1.0],
|
35 |
+
bgr_to_rgb=False,
|
36 |
+
pad_mask=True,
|
37 |
+
pad_size_divisor=32),
|
38 |
+
backbone=dict(
|
39 |
+
type=ResNet,
|
40 |
+
depth=50,
|
41 |
+
num_stages=3,
|
42 |
+
strides=(1, 2, 2),
|
43 |
+
dilations=(1, 1, 1),
|
44 |
+
out_indices=(2, ),
|
45 |
+
frozen_stages=1,
|
46 |
+
norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
|
47 |
+
norm_eval=True,
|
48 |
+
style='caffe',
|
49 |
+
init_cfg=dict(
|
50 |
+
type=PretrainedInit,
|
51 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
52 |
+
rpn_head=dict(
|
53 |
+
type=RPNHead,
|
54 |
+
in_channels=1024,
|
55 |
+
feat_channels=1024,
|
56 |
+
anchor_generator=dict(
|
57 |
+
type=AnchorGenerator,
|
58 |
+
scales=[2, 4, 8, 16, 32],
|
59 |
+
ratios=[0.5, 1.0, 2.0],
|
60 |
+
strides=[16]),
|
61 |
+
bbox_coder=dict(
|
62 |
+
type=DeltaXYWHBBoxCoder,
|
63 |
+
target_means=[.0, .0, .0, .0],
|
64 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
65 |
+
loss_cls=dict(
|
66 |
+
type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
|
67 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
|
68 |
+
roi_head=dict(
|
69 |
+
type=StandardRoIHead,
|
70 |
+
shared_head=dict(
|
71 |
+
type=ResLayer,
|
72 |
+
depth=50,
|
73 |
+
stage=3,
|
74 |
+
stride=2,
|
75 |
+
dilation=1,
|
76 |
+
style='caffe',
|
77 |
+
norm_cfg=norm_cfg,
|
78 |
+
norm_eval=True),
|
79 |
+
bbox_roi_extractor=dict(
|
80 |
+
type=SingleRoIExtractor,
|
81 |
+
roi_layer=dict(type=RoIAlign, output_size=14, sampling_ratio=0),
|
82 |
+
out_channels=1024,
|
83 |
+
featmap_strides=[16]),
|
84 |
+
bbox_head=dict(
|
85 |
+
type=BBoxHead,
|
86 |
+
with_avg_pool=True,
|
87 |
+
roi_feat_size=7,
|
88 |
+
in_channels=2048,
|
89 |
+
num_classes=80,
|
90 |
+
bbox_coder=dict(
|
91 |
+
type=DeltaXYWHBBoxCoder,
|
92 |
+
target_means=[0., 0., 0., 0.],
|
93 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
94 |
+
reg_class_agnostic=False,
|
95 |
+
loss_cls=dict(
|
96 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
97 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
|
98 |
+
mask_roi_extractor=None,
|
99 |
+
mask_head=dict(
|
100 |
+
type=FCNMaskHead,
|
101 |
+
num_convs=0,
|
102 |
+
in_channels=2048,
|
103 |
+
conv_out_channels=256,
|
104 |
+
num_classes=80,
|
105 |
+
loss_mask=dict(
|
106 |
+
type=CrossEntropyLoss, use_mask=True, loss_weight=1.0))),
|
107 |
+
# model training and testing settings
|
108 |
+
train_cfg=dict(
|
109 |
+
rpn=dict(
|
110 |
+
assigner=dict(
|
111 |
+
type=MaxIoUAssigner,
|
112 |
+
pos_iou_thr=0.7,
|
113 |
+
neg_iou_thr=0.3,
|
114 |
+
min_pos_iou=0.3,
|
115 |
+
match_low_quality=True,
|
116 |
+
ignore_iof_thr=-1),
|
117 |
+
sampler=dict(
|
118 |
+
type=RandomSampler,
|
119 |
+
num=256,
|
120 |
+
pos_fraction=0.5,
|
121 |
+
neg_pos_ub=-1,
|
122 |
+
add_gt_as_proposals=False),
|
123 |
+
allowed_border=0,
|
124 |
+
pos_weight=-1,
|
125 |
+
debug=False),
|
126 |
+
rpn_proposal=dict(
|
127 |
+
nms_pre=12000,
|
128 |
+
max_per_img=2000,
|
129 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
130 |
+
min_bbox_size=0),
|
131 |
+
rcnn=dict(
|
132 |
+
assigner=dict(
|
133 |
+
type=MaxIoUAssigner,
|
134 |
+
pos_iou_thr=0.5,
|
135 |
+
neg_iou_thr=0.5,
|
136 |
+
min_pos_iou=0.5,
|
137 |
+
match_low_quality=False,
|
138 |
+
ignore_iof_thr=-1),
|
139 |
+
sampler=dict(
|
140 |
+
type=RandomSampler,
|
141 |
+
num=512,
|
142 |
+
pos_fraction=0.25,
|
143 |
+
neg_pos_ub=-1,
|
144 |
+
add_gt_as_proposals=True),
|
145 |
+
mask_size=14,
|
146 |
+
pos_weight=-1,
|
147 |
+
debug=False)),
|
148 |
+
test_cfg=dict(
|
149 |
+
rpn=dict(
|
150 |
+
nms_pre=6000,
|
151 |
+
max_per_img=1000,
|
152 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
153 |
+
min_bbox_size=0),
|
154 |
+
rcnn=dict(
|
155 |
+
score_thr=0.05,
|
156 |
+
nms=dict(type=nms, iou_threshold=0.5),
|
157 |
+
max_per_img=100,
|
158 |
+
mask_thr_binary=0.5)))
|
mmdet/configs/_base_/models/mask_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.ops import RoIAlign, nms
|
3 |
+
from mmengine.model.weight_init import PretrainedInit
|
4 |
+
from torch.nn import BatchNorm2d
|
5 |
+
|
6 |
+
from mmdet.models.backbones.resnet import ResNet
|
7 |
+
from mmdet.models.data_preprocessors.data_preprocessor import \
|
8 |
+
DetDataPreprocessor
|
9 |
+
from mmdet.models.dense_heads.rpn_head import RPNHead
|
10 |
+
from mmdet.models.detectors.mask_rcnn import MaskRCNN
|
11 |
+
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
|
12 |
+
from mmdet.models.losses.smooth_l1_loss import L1Loss
|
13 |
+
from mmdet.models.necks.fpn import FPN
|
14 |
+
from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \
|
15 |
+
Shared2FCBBoxHead
|
16 |
+
from mmdet.models.roi_heads.mask_heads.fcn_mask_head import FCNMaskHead
|
17 |
+
from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
|
18 |
+
SingleRoIExtractor
|
19 |
+
from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead
|
20 |
+
from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
|
21 |
+
from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
|
22 |
+
DeltaXYWHBBoxCoder
|
23 |
+
from mmdet.models.task_modules.prior_generators.anchor_generator import \
|
24 |
+
AnchorGenerator
|
25 |
+
from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
|
26 |
+
|
27 |
+
# model settings
|
28 |
+
model = dict(
|
29 |
+
type=MaskRCNN,
|
30 |
+
data_preprocessor=dict(
|
31 |
+
type=DetDataPreprocessor,
|
32 |
+
mean=[123.675, 116.28, 103.53],
|
33 |
+
std=[58.395, 57.12, 57.375],
|
34 |
+
bgr_to_rgb=True,
|
35 |
+
pad_mask=True,
|
36 |
+
pad_size_divisor=32),
|
37 |
+
backbone=dict(
|
38 |
+
type=ResNet,
|
39 |
+
depth=50,
|
40 |
+
num_stages=4,
|
41 |
+
out_indices=(0, 1, 2, 3),
|
42 |
+
frozen_stages=1,
|
43 |
+
norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
|
44 |
+
norm_eval=True,
|
45 |
+
style='pytorch',
|
46 |
+
init_cfg=dict(
|
47 |
+
type=PretrainedInit, checkpoint='torchvision://resnet50')),
|
48 |
+
neck=dict(
|
49 |
+
type=FPN,
|
50 |
+
in_channels=[256, 512, 1024, 2048],
|
51 |
+
out_channels=256,
|
52 |
+
num_outs=5),
|
53 |
+
rpn_head=dict(
|
54 |
+
type=RPNHead,
|
55 |
+
in_channels=256,
|
56 |
+
feat_channels=256,
|
57 |
+
anchor_generator=dict(
|
58 |
+
type=AnchorGenerator,
|
59 |
+
scales=[8],
|
60 |
+
ratios=[0.5, 1.0, 2.0],
|
61 |
+
strides=[4, 8, 16, 32, 64]),
|
62 |
+
bbox_coder=dict(
|
63 |
+
type=DeltaXYWHBBoxCoder,
|
64 |
+
target_means=[.0, .0, .0, .0],
|
65 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
66 |
+
loss_cls=dict(
|
67 |
+
type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
|
68 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
|
69 |
+
roi_head=dict(
|
70 |
+
type=StandardRoIHead,
|
71 |
+
bbox_roi_extractor=dict(
|
72 |
+
type=SingleRoIExtractor,
|
73 |
+
roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0),
|
74 |
+
out_channels=256,
|
75 |
+
featmap_strides=[4, 8, 16, 32]),
|
76 |
+
bbox_head=dict(
|
77 |
+
type=Shared2FCBBoxHead,
|
78 |
+
in_channels=256,
|
79 |
+
fc_out_channels=1024,
|
80 |
+
roi_feat_size=7,
|
81 |
+
num_classes=80,
|
82 |
+
bbox_coder=dict(
|
83 |
+
type=DeltaXYWHBBoxCoder,
|
84 |
+
target_means=[0., 0., 0., 0.],
|
85 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
86 |
+
reg_class_agnostic=False,
|
87 |
+
loss_cls=dict(
|
88 |
+
type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
|
89 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
|
90 |
+
mask_roi_extractor=dict(
|
91 |
+
type=SingleRoIExtractor,
|
92 |
+
roi_layer=dict(type=RoIAlign, output_size=14, sampling_ratio=0),
|
93 |
+
out_channels=256,
|
94 |
+
featmap_strides=[4, 8, 16, 32]),
|
95 |
+
mask_head=dict(
|
96 |
+
type=FCNMaskHead,
|
97 |
+
num_convs=4,
|
98 |
+
in_channels=256,
|
99 |
+
conv_out_channels=256,
|
100 |
+
num_classes=80,
|
101 |
+
loss_mask=dict(
|
102 |
+
type=CrossEntropyLoss, use_mask=True, loss_weight=1.0))),
|
103 |
+
# model training and testing settings
|
104 |
+
train_cfg=dict(
|
105 |
+
rpn=dict(
|
106 |
+
assigner=dict(
|
107 |
+
type=MaxIoUAssigner,
|
108 |
+
pos_iou_thr=0.7,
|
109 |
+
neg_iou_thr=0.3,
|
110 |
+
min_pos_iou=0.3,
|
111 |
+
match_low_quality=True,
|
112 |
+
ignore_iof_thr=-1),
|
113 |
+
sampler=dict(
|
114 |
+
type=RandomSampler,
|
115 |
+
num=256,
|
116 |
+
pos_fraction=0.5,
|
117 |
+
neg_pos_ub=-1,
|
118 |
+
add_gt_as_proposals=False),
|
119 |
+
allowed_border=-1,
|
120 |
+
pos_weight=-1,
|
121 |
+
debug=False),
|
122 |
+
rpn_proposal=dict(
|
123 |
+
nms_pre=2000,
|
124 |
+
max_per_img=1000,
|
125 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
126 |
+
min_bbox_size=0),
|
127 |
+
rcnn=dict(
|
128 |
+
assigner=dict(
|
129 |
+
type=MaxIoUAssigner,
|
130 |
+
pos_iou_thr=0.5,
|
131 |
+
neg_iou_thr=0.5,
|
132 |
+
min_pos_iou=0.5,
|
133 |
+
match_low_quality=True,
|
134 |
+
ignore_iof_thr=-1),
|
135 |
+
sampler=dict(
|
136 |
+
type=RandomSampler,
|
137 |
+
num=512,
|
138 |
+
pos_fraction=0.25,
|
139 |
+
neg_pos_ub=-1,
|
140 |
+
add_gt_as_proposals=True),
|
141 |
+
mask_size=28,
|
142 |
+
pos_weight=-1,
|
143 |
+
debug=False)),
|
144 |
+
test_cfg=dict(
|
145 |
+
rpn=dict(
|
146 |
+
nms_pre=1000,
|
147 |
+
max_per_img=1000,
|
148 |
+
nms=dict(type=nms, iou_threshold=0.7),
|
149 |
+
min_bbox_size=0),
|
150 |
+
rcnn=dict(
|
151 |
+
score_thr=0.05,
|
152 |
+
nms=dict(type=nms, iou_threshold=0.5),
|
153 |
+
max_per_img=100,
|
154 |
+
mask_thr_binary=0.5)))
|
mmdet/configs/_base_/models/retinanet_r50_fpn.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.ops import nms
|
3 |
+
from torch.nn import BatchNorm2d
|
4 |
+
|
5 |
+
from mmdet.models import (FPN, DetDataPreprocessor, FocalLoss, L1Loss, ResNet,
|
6 |
+
RetinaHead, RetinaNet)
|
7 |
+
from mmdet.models.task_modules import (AnchorGenerator, DeltaXYWHBBoxCoder,
|
8 |
+
MaxIoUAssigner, PseudoSampler)
|
9 |
+
|
10 |
+
# model settings
|
11 |
+
model = dict(
|
12 |
+
type=RetinaNet,
|
13 |
+
data_preprocessor=dict(
|
14 |
+
type=DetDataPreprocessor,
|
15 |
+
mean=[123.675, 116.28, 103.53],
|
16 |
+
std=[58.395, 57.12, 57.375],
|
17 |
+
bgr_to_rgb=True,
|
18 |
+
pad_size_divisor=32),
|
19 |
+
backbone=dict(
|
20 |
+
type=ResNet,
|
21 |
+
depth=50,
|
22 |
+
num_stages=4,
|
23 |
+
out_indices=(0, 1, 2, 3),
|
24 |
+
frozen_stages=1,
|
25 |
+
norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
|
26 |
+
norm_eval=True,
|
27 |
+
style='pytorch',
|
28 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
29 |
+
neck=dict(
|
30 |
+
type=FPN,
|
31 |
+
in_channels=[256, 512, 1024, 2048],
|
32 |
+
out_channels=256,
|
33 |
+
start_level=1,
|
34 |
+
add_extra_convs='on_input',
|
35 |
+
num_outs=5),
|
36 |
+
bbox_head=dict(
|
37 |
+
type=RetinaHead,
|
38 |
+
num_classes=80,
|
39 |
+
in_channels=256,
|
40 |
+
stacked_convs=4,
|
41 |
+
feat_channels=256,
|
42 |
+
anchor_generator=dict(
|
43 |
+
type=AnchorGenerator,
|
44 |
+
octave_base_scale=4,
|
45 |
+
scales_per_octave=3,
|
46 |
+
ratios=[0.5, 1.0, 2.0],
|
47 |
+
strides=[8, 16, 32, 64, 128]),
|
48 |
+
bbox_coder=dict(
|
49 |
+
type=DeltaXYWHBBoxCoder,
|
50 |
+
target_means=[.0, .0, .0, .0],
|
51 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
52 |
+
loss_cls=dict(
|
53 |
+
type=FocalLoss,
|
54 |
+
use_sigmoid=True,
|
55 |
+
gamma=2.0,
|
56 |
+
alpha=0.25,
|
57 |
+
loss_weight=1.0),
|
58 |
+
loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
|
59 |
+
# model training and testing settings
|
60 |
+
train_cfg=dict(
|
61 |
+
assigner=dict(
|
62 |
+
type=MaxIoUAssigner,
|
63 |
+
pos_iou_thr=0.5,
|
64 |
+
neg_iou_thr=0.4,
|
65 |
+
min_pos_iou=0,
|
66 |
+
ignore_iof_thr=-1),
|
67 |
+
sampler=dict(
|
68 |
+
type=PseudoSampler), # Focal loss should use PseudoSampler
|
69 |
+
allowed_border=-1,
|
70 |
+
pos_weight=-1,
|
71 |
+
debug=False),
|
72 |
+
test_cfg=dict(
|
73 |
+
nms_pre=1000,
|
74 |
+
min_bbox_size=0,
|
75 |
+
score_thr=0.05,
|
76 |
+
nms=dict(type=nms, iou_threshold=0.5),
|
77 |
+
max_per_img=100))
|
mmdet/configs/_base_/schedules/schedule_1x.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
|
3 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
4 |
+
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
|
5 |
+
from torch.optim.sgd import SGD
|
6 |
+
|
7 |
+
# training schedule for 1x
|
8 |
+
train_cfg = dict(type=EpochBasedTrainLoop, max_epochs=12, val_interval=1)
|
9 |
+
val_cfg = dict(type=ValLoop)
|
10 |
+
test_cfg = dict(type=TestLoop)
|
11 |
+
|
12 |
+
# learning rate
|
13 |
+
param_scheduler = [
|
14 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=500),
|
15 |
+
dict(
|
16 |
+
type=MultiStepLR,
|
17 |
+
begin=0,
|
18 |
+
end=12,
|
19 |
+
by_epoch=True,
|
20 |
+
milestones=[8, 11],
|
21 |
+
gamma=0.1)
|
22 |
+
]
|
23 |
+
|
24 |
+
# optimizer
|
25 |
+
optim_wrapper = dict(
|
26 |
+
type=OptimWrapper,
|
27 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001))
|
28 |
+
|
29 |
+
# Default setting for scaling LR automatically
|
30 |
+
# - `enable` means enable scaling LR automatically
|
31 |
+
# or not by default.
|
32 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
33 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
mmdet/configs/_base_/schedules/schedule_2x.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
|
3 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
4 |
+
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
|
5 |
+
from torch.optim.sgd import SGD
|
6 |
+
|
7 |
+
# training schedule for 1x
|
8 |
+
train_cfg = dict(type=EpochBasedTrainLoop, max_epochs=24, val_interval=1)
|
9 |
+
val_cfg = dict(type=ValLoop)
|
10 |
+
test_cfg = dict(type=TestLoop)
|
11 |
+
|
12 |
+
# learning rate
|
13 |
+
param_scheduler = [
|
14 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=500),
|
15 |
+
dict(
|
16 |
+
type=MultiStepLR,
|
17 |
+
begin=0,
|
18 |
+
end=24,
|
19 |
+
by_epoch=True,
|
20 |
+
milestones=[16, 22],
|
21 |
+
gamma=0.1)
|
22 |
+
]
|
23 |
+
|
24 |
+
# optimizer
|
25 |
+
optim_wrapper = dict(
|
26 |
+
type=OptimWrapper,
|
27 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001))
|
28 |
+
|
29 |
+
# Default setting for scaling LR automatically
|
30 |
+
# - `enable` means enable scaling LR automatically
|
31 |
+
# or not by default.
|
32 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
33 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
mmdet/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.datasets.coco_instance import *
|
11 |
+
from .._base_.default_runtime import *
|
12 |
+
from .._base_.models.cascade_mask_rcnn_r50_fpn import *
|
13 |
+
from .._base_.schedules.schedule_1x import *
|
mmdet/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.datasets.coco_detection import *
|
11 |
+
from .._base_.default_runtime import *
|
12 |
+
from .._base_.models.cascade_rcnn_r50_fpn import *
|
13 |
+
from .._base_.schedules.schedule_1x import *
|
mmdet/configs/common/lsj_100e_coco_detection.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmengine.dataset.sampler import DefaultSampler
|
13 |
+
from mmengine.optim import OptimWrapper
|
14 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
15 |
+
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
|
16 |
+
from torch.optim import SGD
|
17 |
+
|
18 |
+
from mmdet.datasets import CocoDataset, RepeatDataset
|
19 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
20 |
+
from mmdet.datasets.transforms.loading import (FilterAnnotations,
|
21 |
+
LoadAnnotations,
|
22 |
+
LoadImageFromFile)
|
23 |
+
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
|
24 |
+
Pad, RandomCrop, RandomFlip,
|
25 |
+
RandomResize, Resize)
|
26 |
+
from mmdet.evaluation import CocoMetric
|
27 |
+
|
28 |
+
# dataset settings
|
29 |
+
dataset_type = CocoDataset
|
30 |
+
data_root = 'data/coco/'
|
31 |
+
image_size = (1024, 1024)
|
32 |
+
|
33 |
+
backend_args = None
|
34 |
+
|
35 |
+
train_pipeline = [
|
36 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
37 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
38 |
+
dict(
|
39 |
+
type=RandomResize,
|
40 |
+
scale=image_size,
|
41 |
+
ratio_range=(0.1, 2.0),
|
42 |
+
keep_ratio=True),
|
43 |
+
dict(
|
44 |
+
type=RandomCrop,
|
45 |
+
crop_type='absolute_range',
|
46 |
+
crop_size=image_size,
|
47 |
+
recompute_bbox=True,
|
48 |
+
allow_negative_crop=True),
|
49 |
+
dict(type=FilterAnnotations, min_gt_bbox_wh=(1e-2, 1e-2)),
|
50 |
+
dict(type=RandomFlip, prob=0.5),
|
51 |
+
dict(type=PackDetInputs)
|
52 |
+
]
|
53 |
+
test_pipeline = [
|
54 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
55 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
56 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
57 |
+
dict(
|
58 |
+
type=PackDetInputs,
|
59 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
60 |
+
'scale_factor'))
|
61 |
+
]
|
62 |
+
|
63 |
+
# Use RepeatDataset to speed up training
|
64 |
+
train_dataloader = dict(
|
65 |
+
batch_size=2,
|
66 |
+
num_workers=2,
|
67 |
+
persistent_workers=True,
|
68 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
69 |
+
dataset=dict(
|
70 |
+
type=RepeatDataset,
|
71 |
+
times=4, # simply change this from 2 to 16 for 50e - 400e training.
|
72 |
+
dataset=dict(
|
73 |
+
type=dataset_type,
|
74 |
+
data_root=data_root,
|
75 |
+
ann_file='annotations/instances_train2017.json',
|
76 |
+
data_prefix=dict(img='train2017/'),
|
77 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
78 |
+
pipeline=train_pipeline,
|
79 |
+
backend_args=backend_args)))
|
80 |
+
val_dataloader = dict(
|
81 |
+
batch_size=1,
|
82 |
+
num_workers=2,
|
83 |
+
persistent_workers=True,
|
84 |
+
drop_last=False,
|
85 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
86 |
+
dataset=dict(
|
87 |
+
type=dataset_type,
|
88 |
+
data_root=data_root,
|
89 |
+
ann_file='annotations/instances_val2017.json',
|
90 |
+
data_prefix=dict(img='val2017/'),
|
91 |
+
test_mode=True,
|
92 |
+
pipeline=test_pipeline,
|
93 |
+
backend_args=backend_args))
|
94 |
+
test_dataloader = val_dataloader
|
95 |
+
|
96 |
+
val_evaluator = dict(
|
97 |
+
type=CocoMetric,
|
98 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
99 |
+
metric=['bbox', 'segm'],
|
100 |
+
format_only=False,
|
101 |
+
backend_args=backend_args)
|
102 |
+
test_evaluator = val_evaluator
|
103 |
+
|
104 |
+
max_epochs = 25
|
105 |
+
|
106 |
+
train_cfg = dict(
|
107 |
+
type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=5)
|
108 |
+
val_cfg = dict(type=ValLoop)
|
109 |
+
test_cfg = dict(type=TestLoop)
|
110 |
+
|
111 |
+
# optimizer assumes bs=64
|
112 |
+
optim_wrapper = dict(
|
113 |
+
type=OptimWrapper,
|
114 |
+
optimizer=dict(type=SGD, lr=0.1, momentum=0.9, weight_decay=0.00004))
|
115 |
+
|
116 |
+
# learning rate
|
117 |
+
param_scheduler = [
|
118 |
+
dict(type=LinearLR, start_factor=0.067, by_epoch=False, begin=0, end=500),
|
119 |
+
dict(
|
120 |
+
type=MultiStepLR,
|
121 |
+
begin=0,
|
122 |
+
end=max_epochs,
|
123 |
+
by_epoch=True,
|
124 |
+
milestones=[22, 24],
|
125 |
+
gamma=0.1)
|
126 |
+
]
|
127 |
+
|
128 |
+
# only keep latest 2 checkpoints
|
129 |
+
default_hooks.update(dict(checkpoint=dict(max_keep_ckpts=2)))
|
130 |
+
|
131 |
+
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
132 |
+
# USER SHOULD NOT CHANGE ITS VALUES.
|
133 |
+
# base_batch_size = (32 GPUs) x (2 samples per GPU)
|
134 |
+
auto_scale_lr = dict(base_batch_size=64)
|
mmdet/configs/common/lsj_100e_coco_instance.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmengine.dataset.sampler import DefaultSampler
|
13 |
+
from mmengine.optim import OptimWrapper
|
14 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
15 |
+
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
|
16 |
+
from torch.optim import SGD
|
17 |
+
|
18 |
+
from mmdet.datasets import CocoDataset, RepeatDataset
|
19 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
20 |
+
from mmdet.datasets.transforms.loading import (FilterAnnotations,
|
21 |
+
LoadAnnotations,
|
22 |
+
LoadImageFromFile)
|
23 |
+
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
|
24 |
+
Pad, RandomCrop, RandomFlip,
|
25 |
+
RandomResize, Resize)
|
26 |
+
from mmdet.evaluation import CocoMetric
|
27 |
+
|
28 |
+
# dataset settings
|
29 |
+
dataset_type = CocoDataset
|
30 |
+
data_root = 'data/coco/'
|
31 |
+
image_size = (1024, 1024)
|
32 |
+
|
33 |
+
backend_args = None
|
34 |
+
|
35 |
+
train_pipeline = [
|
36 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
37 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
38 |
+
dict(
|
39 |
+
type=RandomResize,
|
40 |
+
scale=image_size,
|
41 |
+
ratio_range=(0.1, 2.0),
|
42 |
+
keep_ratio=True),
|
43 |
+
dict(
|
44 |
+
type=RandomCrop,
|
45 |
+
crop_type='absolute_range',
|
46 |
+
crop_size=image_size,
|
47 |
+
recompute_bbox=True,
|
48 |
+
allow_negative_crop=True),
|
49 |
+
dict(type=FilterAnnotations, min_gt_bbox_wh=(1e-2, 1e-2)),
|
50 |
+
dict(type=RandomFlip, prob=0.5),
|
51 |
+
dict(type=PackDetInputs)
|
52 |
+
]
|
53 |
+
test_pipeline = [
|
54 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
55 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
56 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
57 |
+
dict(
|
58 |
+
type=PackDetInputs,
|
59 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
60 |
+
'scale_factor'))
|
61 |
+
]
|
62 |
+
|
63 |
+
# Use RepeatDataset to speed up training
|
64 |
+
train_dataloader = dict(
|
65 |
+
batch_size=2,
|
66 |
+
num_workers=2,
|
67 |
+
persistent_workers=True,
|
68 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
69 |
+
dataset=dict(
|
70 |
+
type=RepeatDataset,
|
71 |
+
times=4, # simply change this from 2 to 16 for 50e - 400e training.
|
72 |
+
dataset=dict(
|
73 |
+
type=dataset_type,
|
74 |
+
data_root=data_root,
|
75 |
+
ann_file='annotations/instances_train2017.json',
|
76 |
+
data_prefix=dict(img='train2017/'),
|
77 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
78 |
+
pipeline=train_pipeline,
|
79 |
+
backend_args=backend_args)))
|
80 |
+
val_dataloader = dict(
|
81 |
+
batch_size=1,
|
82 |
+
num_workers=2,
|
83 |
+
persistent_workers=True,
|
84 |
+
drop_last=False,
|
85 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
86 |
+
dataset=dict(
|
87 |
+
type=dataset_type,
|
88 |
+
data_root=data_root,
|
89 |
+
ann_file='annotations/instances_val2017.json',
|
90 |
+
data_prefix=dict(img='val2017/'),
|
91 |
+
test_mode=True,
|
92 |
+
pipeline=test_pipeline,
|
93 |
+
backend_args=backend_args))
|
94 |
+
test_dataloader = val_dataloader
|
95 |
+
|
96 |
+
val_evaluator = dict(
|
97 |
+
type=CocoMetric,
|
98 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
99 |
+
metric=['bbox', 'segm'],
|
100 |
+
format_only=False,
|
101 |
+
backend_args=backend_args)
|
102 |
+
test_evaluator = val_evaluator
|
103 |
+
|
104 |
+
max_epochs = 25
|
105 |
+
|
106 |
+
train_cfg = dict(
|
107 |
+
type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=5)
|
108 |
+
val_cfg = dict(type=ValLoop)
|
109 |
+
test_cfg = dict(type=TestLoop)
|
110 |
+
|
111 |
+
# optimizer assumes bs=64
|
112 |
+
optim_wrapper = dict(
|
113 |
+
type=OptimWrapper,
|
114 |
+
optimizer=dict(type=SGD, lr=0.1, momentum=0.9, weight_decay=0.00004))
|
115 |
+
|
116 |
+
# learning rate
|
117 |
+
param_scheduler = [
|
118 |
+
dict(type=LinearLR, start_factor=0.067, by_epoch=False, begin=0, end=500),
|
119 |
+
dict(
|
120 |
+
type=MultiStepLR,
|
121 |
+
begin=0,
|
122 |
+
end=max_epochs,
|
123 |
+
by_epoch=True,
|
124 |
+
milestones=[22, 24],
|
125 |
+
gamma=0.1)
|
126 |
+
]
|
127 |
+
|
128 |
+
# only keep latest 2 checkpoints
|
129 |
+
default_hooks.update(dict(checkpoint=dict(max_keep_ckpts=2)))
|
130 |
+
|
131 |
+
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
132 |
+
# USER SHOULD NOT CHANGE ITS VALUES.
|
133 |
+
# base_batch_size = (32 GPUs) x (2 samples per GPU)
|
134 |
+
auto_scale_lr = dict(base_batch_size=64)
|
mmdet/configs/common/lsj_200e_coco_detection.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .lsj_100e_coco_detection import *
|
11 |
+
|
12 |
+
# 8x25=200e
|
13 |
+
train_dataloader.update(dict(dataset=dict(times=8)))
|
14 |
+
|
15 |
+
# learning rate
|
16 |
+
param_scheduler = [
|
17 |
+
dict(type=LinearLR, start_factor=0.067, by_epoch=False, begin=0, end=1000),
|
18 |
+
dict(
|
19 |
+
type=MultiStepLR,
|
20 |
+
begin=0,
|
21 |
+
end=25,
|
22 |
+
by_epoch=True,
|
23 |
+
milestones=[22, 24],
|
24 |
+
gamma=0.1)
|
25 |
+
]
|
mmdet/configs/common/lsj_200e_coco_instance.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .lsj_100e_coco_instance import *
|
11 |
+
|
12 |
+
# 8x25=200e
|
13 |
+
train_dataloader.update(dict(dataset=dict(times=8)))
|
14 |
+
|
15 |
+
# learning rate
|
16 |
+
param_scheduler = [
|
17 |
+
dict(type=LinearLR, start_factor=0.067, by_epoch=False, begin=0, end=1000),
|
18 |
+
dict(
|
19 |
+
type=MultiStepLR,
|
20 |
+
begin=0,
|
21 |
+
end=25,
|
22 |
+
by_epoch=True,
|
23 |
+
milestones=[22, 24],
|
24 |
+
gamma=0.1)
|
25 |
+
]
|
mmdet/configs/common/ms_3x_coco.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmcv.transforms import RandomResize
|
13 |
+
from mmengine.dataset import RepeatDataset
|
14 |
+
from mmengine.dataset.sampler import DefaultSampler
|
15 |
+
from mmengine.optim import OptimWrapper
|
16 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
17 |
+
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
|
18 |
+
from torch.optim import SGD
|
19 |
+
|
20 |
+
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset
|
21 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
22 |
+
from mmdet.datasets.transforms.loading import (LoadAnnotations,
|
23 |
+
LoadImageFromFile)
|
24 |
+
from mmdet.datasets.transforms.transforms import RandomFlip, Resize
|
25 |
+
from mmdet.evaluation import CocoMetric
|
26 |
+
|
27 |
+
# dataset settings
|
28 |
+
dataset_type = CocoDataset
|
29 |
+
data_root = 'data/coco/'
|
30 |
+
|
31 |
+
# Example to use different file client
|
32 |
+
# Method 1: simply set the data root and let the file I/O module
|
33 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
34 |
+
|
35 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
36 |
+
|
37 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
38 |
+
# backend_args = dict(
|
39 |
+
# backend='petrel',
|
40 |
+
# path_mapping=dict({
|
41 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
42 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
43 |
+
# }))
|
44 |
+
backend_args = None
|
45 |
+
|
46 |
+
# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
|
47 |
+
# multiscale_mode='range'
|
48 |
+
train_pipeline = [
|
49 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
50 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
51 |
+
dict(type=RandomResize, scale=[(1333, 640), (1333, 800)], keep_ratio=True),
|
52 |
+
dict(type=RandomFlip, prob=0.5),
|
53 |
+
dict(type=PackDetInputs)
|
54 |
+
]
|
55 |
+
test_pipeline = [
|
56 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
57 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
58 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
59 |
+
dict(
|
60 |
+
type=PackDetInputs,
|
61 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
62 |
+
'scale_factor'))
|
63 |
+
]
|
64 |
+
train_dataloader = dict(
|
65 |
+
batch_size=2,
|
66 |
+
num_workers=2,
|
67 |
+
persistent_workers=True,
|
68 |
+
pin_memory=True,
|
69 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
70 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
71 |
+
dataset=dict(
|
72 |
+
type=RepeatDataset,
|
73 |
+
times=3,
|
74 |
+
dataset=dict(
|
75 |
+
type=dataset_type,
|
76 |
+
data_root=data_root,
|
77 |
+
ann_file='annotations/instances_train2017.json',
|
78 |
+
data_prefix=dict(img='train2017/'),
|
79 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
80 |
+
pipeline=train_pipeline,
|
81 |
+
backend_args=backend_args)))
|
82 |
+
val_dataloader = dict(
|
83 |
+
batch_size=1,
|
84 |
+
num_workers=2,
|
85 |
+
persistent_workers=True,
|
86 |
+
drop_last=False,
|
87 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
88 |
+
dataset=dict(
|
89 |
+
type=dataset_type,
|
90 |
+
data_root=data_root,
|
91 |
+
ann_file='annotations/instances_val2017.json',
|
92 |
+
data_prefix=dict(img='val2017/'),
|
93 |
+
test_mode=True,
|
94 |
+
pipeline=test_pipeline,
|
95 |
+
backend_args=backend_args))
|
96 |
+
test_dataloader = val_dataloader
|
97 |
+
|
98 |
+
val_evaluator = dict(
|
99 |
+
type=CocoMetric,
|
100 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
101 |
+
metric='bbox',
|
102 |
+
backend_args=backend_args)
|
103 |
+
test_evaluator = val_evaluator
|
104 |
+
|
105 |
+
# training schedule for 3x with `RepeatDataset`
|
106 |
+
train_cfg = dict(type=EpochBasedTrainLoop, max_iters=12, val_interval=1)
|
107 |
+
val_cfg = dict(type=ValLoop)
|
108 |
+
test_cfg = dict(type=TestLoop)
|
109 |
+
|
110 |
+
# learning rate
|
111 |
+
param_scheduler = [
|
112 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=500),
|
113 |
+
dict(
|
114 |
+
type=MultiStepLR,
|
115 |
+
begin=0,
|
116 |
+
end=12,
|
117 |
+
by_epoch=False,
|
118 |
+
milestones=[9, 11],
|
119 |
+
gamma=0.1)
|
120 |
+
]
|
121 |
+
|
122 |
+
# optimizer
|
123 |
+
optim_wrapper = dict(
|
124 |
+
type=OptimWrapper,
|
125 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001))
|
126 |
+
# Default setting for scaling LR automatically
|
127 |
+
# - `enable` means enable scaling LR automatically
|
128 |
+
# or not by default.
|
129 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
130 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
mmdet/configs/common/ms_3x_coco_instance.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmcv.transforms import RandomChoiceResize
|
13 |
+
from mmengine.dataset import RepeatDataset
|
14 |
+
from mmengine.dataset.sampler import DefaultSampler, InfiniteSampler
|
15 |
+
from mmengine.optim import OptimWrapper
|
16 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
17 |
+
from mmengine.runner.loops import IterBasedTrainLoop, TestLoop, ValLoop
|
18 |
+
from torch.optim import SGD
|
19 |
+
|
20 |
+
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset
|
21 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
22 |
+
from mmdet.datasets.transforms.loading import (FilterAnnotations,
|
23 |
+
LoadAnnotations,
|
24 |
+
LoadImageFromFile)
|
25 |
+
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
|
26 |
+
Pad, RandomCrop, RandomFlip,
|
27 |
+
RandomResize, Resize)
|
28 |
+
from mmdet.evaluation import CocoMetric
|
29 |
+
|
30 |
+
# dataset settings
|
31 |
+
dataset_type = CocoDataset
|
32 |
+
data_root = 'data/coco/'
|
33 |
+
|
34 |
+
# Example to use different file client
|
35 |
+
# Method 1: simply set the data root and let the file I/O module
|
36 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
37 |
+
|
38 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
39 |
+
|
40 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
41 |
+
# backend_args = dict(
|
42 |
+
# backend='petrel',
|
43 |
+
# path_mapping=dict({
|
44 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
45 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
46 |
+
# }))
|
47 |
+
backend_args = None
|
48 |
+
|
49 |
+
train_pipeline = [
|
50 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
51 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
52 |
+
dict(
|
53 |
+
type='RandomResize', scale=[(1333, 640), (1333, 800)],
|
54 |
+
keep_ratio=True),
|
55 |
+
dict(type=RandomFlip, prob=0.5),
|
56 |
+
dict(type=PackDetInputs)
|
57 |
+
]
|
58 |
+
test_pipeline = [
|
59 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
60 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
61 |
+
dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
|
62 |
+
dict(
|
63 |
+
type=PackDetInputs,
|
64 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
65 |
+
'scale_factor'))
|
66 |
+
]
|
67 |
+
train_dataloader.update(
|
68 |
+
dict(
|
69 |
+
batch_size=2,
|
70 |
+
num_workers=2,
|
71 |
+
persistent_workers=True,
|
72 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
73 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
74 |
+
dataset=dict(
|
75 |
+
type=RepeatDataset,
|
76 |
+
times=3,
|
77 |
+
dataset=dict(
|
78 |
+
type=dataset_type,
|
79 |
+
data_root=data_root,
|
80 |
+
ann_file='annotations/instances_train2017.json',
|
81 |
+
data_prefix=dict(img='train2017/'),
|
82 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
83 |
+
pipeline=train_pipeline,
|
84 |
+
backend_args=backend_args))))
|
85 |
+
val_dataloader.update(
|
86 |
+
dict(
|
87 |
+
batch_size=1,
|
88 |
+
num_workers=2,
|
89 |
+
persistent_workers=True,
|
90 |
+
drop_last=False,
|
91 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
92 |
+
dataset=dict(
|
93 |
+
type=dataset_type,
|
94 |
+
data_root=data_root,
|
95 |
+
ann_file='annotations/instances_val2017.json',
|
96 |
+
data_prefix=dict(img='val2017/'),
|
97 |
+
test_mode=True,
|
98 |
+
pipeline=test_pipeline,
|
99 |
+
backend_args=backend_args)))
|
100 |
+
test_dataloader = val_dataloader
|
101 |
+
|
102 |
+
val_evaluator.update(
|
103 |
+
dict(
|
104 |
+
type=CocoMetric,
|
105 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
106 |
+
metric='bbox',
|
107 |
+
backend_args=backend_args))
|
108 |
+
test_evaluator = val_evaluator
|
109 |
+
|
110 |
+
# training schedule for 3x with `RepeatDataset`
|
111 |
+
train_cfg.update(dict(type=EpochBasedTrainLoop, max_epochs=12, val_interval=1))
|
112 |
+
val_cfg.update(dict(type=ValLoop))
|
113 |
+
test_cfg.update(dict(type=TestLoop))
|
114 |
+
|
115 |
+
# learning rate
|
116 |
+
param_scheduler = [
|
117 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=500),
|
118 |
+
dict(
|
119 |
+
type=MultiStepLR,
|
120 |
+
begin=0,
|
121 |
+
end=12,
|
122 |
+
by_epoch=False,
|
123 |
+
milestones=[9, 11],
|
124 |
+
gamma=0.1)
|
125 |
+
]
|
126 |
+
|
127 |
+
# optimizer
|
128 |
+
optim_wrapper.update(
|
129 |
+
dict(
|
130 |
+
type=OptimWrapper,
|
131 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001)))
|
132 |
+
# Default setting for scaling LR automatically
|
133 |
+
# - `enable` means enable scaling LR automatically
|
134 |
+
# or not by default.
|
135 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
136 |
+
auto_scale_lr.update(dict(enable=False, base_batch_size=16))
|
mmdet/configs/common/ms_90k_coco.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmcv.transforms import RandomChoiceResize
|
13 |
+
from mmengine.dataset import RepeatDataset
|
14 |
+
from mmengine.dataset.sampler import DefaultSampler, InfiniteSampler
|
15 |
+
from mmengine.optim import OptimWrapper
|
16 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
17 |
+
from mmengine.runner.loops import IterBasedTrainLoop, TestLoop, ValLoop
|
18 |
+
from torch.optim import SGD
|
19 |
+
|
20 |
+
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset
|
21 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
22 |
+
from mmdet.datasets.transforms.loading import (FilterAnnotations,
|
23 |
+
LoadAnnotations,
|
24 |
+
LoadImageFromFile)
|
25 |
+
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
|
26 |
+
Pad, RandomCrop, RandomFlip,
|
27 |
+
RandomResize, Resize)
|
28 |
+
from mmdet.evaluation import CocoMetric
|
29 |
+
|
30 |
+
# dataset settings
|
31 |
+
dataset_type = CocoDataset
|
32 |
+
data_root = 'data/coco/'
|
33 |
+
# Example to use different file client
|
34 |
+
# Method 1: simply set the data root and let the file I/O module
|
35 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
36 |
+
|
37 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
38 |
+
|
39 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
40 |
+
# backend_args = dict(
|
41 |
+
# backend='petrel',
|
42 |
+
# path_mapping=dict({
|
43 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
44 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
45 |
+
# }))
|
46 |
+
backend_args = None
|
47 |
+
|
48 |
+
# Align with Detectron2
|
49 |
+
backend = 'pillow'
|
50 |
+
train_pipeline = [
|
51 |
+
dict(
|
52 |
+
type=LoadImageFromFile,
|
53 |
+
backend_args=backend_args,
|
54 |
+
imdecode_backend=backend),
|
55 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
56 |
+
dict(
|
57 |
+
type=RandomChoiceResize,
|
58 |
+
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
|
59 |
+
(1333, 768), (1333, 800)],
|
60 |
+
keep_ratio=True,
|
61 |
+
backend=backend),
|
62 |
+
dict(type=RandomFlip, prob=0.5),
|
63 |
+
dict(type=PackDetInputs)
|
64 |
+
]
|
65 |
+
test_pipeline = [
|
66 |
+
dict(
|
67 |
+
type=LoadImageFromFile,
|
68 |
+
backend_args=backend_args,
|
69 |
+
imdecode_backend=backend),
|
70 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True, backend=backend),
|
71 |
+
dict(type=LoadAnnotations, with_bbox=True),
|
72 |
+
dict(
|
73 |
+
type=PackDetInputs,
|
74 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
75 |
+
'scale_factor'))
|
76 |
+
]
|
77 |
+
train_dataloader.update(
|
78 |
+
dict(
|
79 |
+
batch_size=2,
|
80 |
+
num_workers=2,
|
81 |
+
persistent_workers=True,
|
82 |
+
pin_memory=True,
|
83 |
+
sampler=dict(type=InfiniteSampler, shuffle=True),
|
84 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
85 |
+
dataset=dict(
|
86 |
+
type=dataset_type,
|
87 |
+
data_root=data_root,
|
88 |
+
ann_file='annotations/instances_train2017.json',
|
89 |
+
data_prefix=dict(img='train2017/'),
|
90 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
91 |
+
pipeline=train_pipeline,
|
92 |
+
backend_args=backend_args)))
|
93 |
+
val_dataloader.update(
|
94 |
+
dict(
|
95 |
+
batch_size=1,
|
96 |
+
num_workers=2,
|
97 |
+
persistent_workers=True,
|
98 |
+
drop_last=False,
|
99 |
+
pin_memory=True,
|
100 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
101 |
+
dataset=dict(
|
102 |
+
type=dataset_type,
|
103 |
+
data_root=data_root,
|
104 |
+
ann_file='annotations/instances_val2017.json',
|
105 |
+
data_prefix=dict(img='val2017/'),
|
106 |
+
test_mode=True,
|
107 |
+
pipeline=test_pipeline,
|
108 |
+
backend_args=backend_args)))
|
109 |
+
test_dataloader = val_dataloader
|
110 |
+
|
111 |
+
val_evaluator.update(
|
112 |
+
dict(
|
113 |
+
type=CocoMetric,
|
114 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
115 |
+
metric='bbox',
|
116 |
+
format_only=False,
|
117 |
+
backend_args=backend_args))
|
118 |
+
test_evaluator = val_evaluator
|
119 |
+
|
120 |
+
# training schedule for 90k
|
121 |
+
max_iter = 90000
|
122 |
+
train_cfg.update(
|
123 |
+
dict(type=IterBasedTrainLoop, max_iters=max_iter, val_interval=10000))
|
124 |
+
val_cfg.update(dict(type=ValLoop))
|
125 |
+
test_cfg.update(dict(type=TestLoop))
|
126 |
+
|
127 |
+
# learning rate
|
128 |
+
param_scheduler = [
|
129 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=1000),
|
130 |
+
dict(
|
131 |
+
type=MultiStepLR,
|
132 |
+
begin=0,
|
133 |
+
end=max_iter,
|
134 |
+
by_epoch=False,
|
135 |
+
milestones=[60000, 80000],
|
136 |
+
gamma=0.1)
|
137 |
+
]
|
138 |
+
|
139 |
+
# optimizer
|
140 |
+
optim_wrapper.update(
|
141 |
+
dict(
|
142 |
+
type=OptimWrapper,
|
143 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001)))
|
144 |
+
# Default setting for scaling LR automatically
|
145 |
+
# - `enable` means enable scaling LR automatically
|
146 |
+
# or not by default.
|
147 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
148 |
+
auto_scale_lr.update(dict(enable=False, base_batch_size=16))
|
149 |
+
|
150 |
+
default_hooks.update(dict(checkpoint=dict(by_epoch=False, interval=10000)))
|
151 |
+
log_processor.update(dict(by_epoch=False))
|
mmdet/configs/common/ms_poly_3x_coco_instance.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmcv.transforms import RandomChoiceResize
|
13 |
+
from mmengine.dataset import RepeatDataset
|
14 |
+
from mmengine.dataset.sampler import DefaultSampler, InfiniteSampler
|
15 |
+
from mmengine.optim import OptimWrapper
|
16 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
17 |
+
from mmengine.runner.loops import IterBasedTrainLoop, TestLoop, ValLoop
|
18 |
+
from torch.optim import SGD
|
19 |
+
|
20 |
+
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset
|
21 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
22 |
+
from mmdet.datasets.transforms.loading import (FilterAnnotations,
|
23 |
+
LoadAnnotations,
|
24 |
+
LoadImageFromFile)
|
25 |
+
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
|
26 |
+
Pad, RandomCrop, RandomFlip,
|
27 |
+
RandomResize, Resize)
|
28 |
+
from mmdet.evaluation import CocoMetric
|
29 |
+
|
30 |
+
# dataset settings
|
31 |
+
dataset_type = CocoDataset
|
32 |
+
data_root = 'data/coco/'
|
33 |
+
# Example to use different file client
|
34 |
+
# Method 1: simply set the data root and let the file I/O module
|
35 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
36 |
+
|
37 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
38 |
+
|
39 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
40 |
+
# backend_args = dict(
|
41 |
+
# backend='petrel',
|
42 |
+
# path_mapping=dict({
|
43 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
44 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
45 |
+
# }))
|
46 |
+
backend_args = None
|
47 |
+
|
48 |
+
# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
|
49 |
+
# multiscale_mode='range'
|
50 |
+
train_pipeline = [
|
51 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
52 |
+
dict(
|
53 |
+
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False),
|
54 |
+
dict(
|
55 |
+
type='RandomResize', scale=[(1333, 640), (1333, 800)],
|
56 |
+
keep_ratio=True),
|
57 |
+
dict(type=RandomFlip, prob=0.5),
|
58 |
+
dict(type=PackDetInputs)
|
59 |
+
]
|
60 |
+
test_pipeline = [
|
61 |
+
dict(type=LoadImageFromFile, backend_args=backend_args),
|
62 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True),
|
63 |
+
dict(
|
64 |
+
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False),
|
65 |
+
dict(
|
66 |
+
type=PackDetInputs,
|
67 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
68 |
+
'scale_factor'))
|
69 |
+
]
|
70 |
+
train_dataloader.update(
|
71 |
+
dict(
|
72 |
+
batch_size=2,
|
73 |
+
num_workers=2,
|
74 |
+
persistent_workers=True,
|
75 |
+
pin_memory=True,
|
76 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
77 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
78 |
+
dataset=dict(
|
79 |
+
type=RepeatDataset,
|
80 |
+
data_root=data_root,
|
81 |
+
ann_file='annotations/instances_train2017.json',
|
82 |
+
data_prefix=dict(img='train2017/'),
|
83 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
84 |
+
pipeline=train_pipeline,
|
85 |
+
backend_args=backend_args)))
|
86 |
+
val_dataloader.update(
|
87 |
+
dict(
|
88 |
+
batch_size=2,
|
89 |
+
num_workers=2,
|
90 |
+
persistent_workers=True,
|
91 |
+
drop_last=False,
|
92 |
+
pin_memory=True,
|
93 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
94 |
+
dataset=dict(
|
95 |
+
type=dataset_type,
|
96 |
+
data_root=data_root,
|
97 |
+
ann_file='annotations/instances_val2017.json',
|
98 |
+
data_prefix=dict(img='val2017/'),
|
99 |
+
test_mode=True,
|
100 |
+
pipeline=test_pipeline,
|
101 |
+
backend_args=backend_args)))
|
102 |
+
test_dataloader = val_dataloader
|
103 |
+
|
104 |
+
val_evaluator.update(
|
105 |
+
dict(
|
106 |
+
type=CocoMetric,
|
107 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
108 |
+
metric=['bbox', 'segm'],
|
109 |
+
backend_args=backend_args))
|
110 |
+
test_evaluator = val_evaluator
|
111 |
+
|
112 |
+
# training schedule for 3x with `RepeatDataset`
|
113 |
+
train_cfg.update(dict(type=EpochBasedTrainLoop, max_iters=12, val_interval=1))
|
114 |
+
val_cfg.update(dict(type=ValLoop))
|
115 |
+
test_cfg.update(dict(type=TestLoop))
|
116 |
+
|
117 |
+
# learning rate
|
118 |
+
param_scheduler = [
|
119 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=500),
|
120 |
+
dict(
|
121 |
+
type=MultiStepLR,
|
122 |
+
begin=0,
|
123 |
+
end=12,
|
124 |
+
by_epoch=False,
|
125 |
+
milestones=[9, 11],
|
126 |
+
gamma=0.1)
|
127 |
+
]
|
128 |
+
|
129 |
+
# optimizer
|
130 |
+
optim_wrapper.update(
|
131 |
+
dict(
|
132 |
+
type=OptimWrapper,
|
133 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001)))
|
134 |
+
# Default setting for scaling LR automatically
|
135 |
+
# - `enable` means enable scaling LR automatically
|
136 |
+
# or not by default.
|
137 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
138 |
+
auto_scale_lr.update(dict(enable=False, base_batch_size=16))
|
mmdet/configs/common/ms_poly_90k_coco_instance.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
|
3 |
+
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
|
4 |
+
# mmcv >= 2.0.1
|
5 |
+
# mmengine >= 0.8.0
|
6 |
+
|
7 |
+
from mmengine.config import read_base
|
8 |
+
|
9 |
+
with read_base():
|
10 |
+
from .._base_.default_runtime import *
|
11 |
+
|
12 |
+
from mmcv.transforms import RandomChoiceResize
|
13 |
+
from mmengine.dataset import RepeatDataset
|
14 |
+
from mmengine.dataset.sampler import DefaultSampler, InfiniteSampler
|
15 |
+
from mmengine.optim import OptimWrapper
|
16 |
+
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR
|
17 |
+
from mmengine.runner.loops import IterBasedTrainLoop, TestLoop, ValLoop
|
18 |
+
from torch.optim import SGD
|
19 |
+
|
20 |
+
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset
|
21 |
+
from mmdet.datasets.transforms.formatting import PackDetInputs
|
22 |
+
from mmdet.datasets.transforms.loading import (FilterAnnotations,
|
23 |
+
LoadAnnotations,
|
24 |
+
LoadImageFromFile)
|
25 |
+
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
|
26 |
+
Pad, RandomCrop, RandomFlip,
|
27 |
+
RandomResize, Resize)
|
28 |
+
from mmdet.evaluation import CocoMetric
|
29 |
+
|
30 |
+
# dataset settings
|
31 |
+
dataset_type = CocoDataset
|
32 |
+
data_root = 'data/coco/'
|
33 |
+
# Example to use different file client
|
34 |
+
# Method 1: simply set the data root and let the file I/O module
|
35 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
36 |
+
|
37 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
38 |
+
|
39 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
40 |
+
# backend_args = dict(
|
41 |
+
# backend='petrel',
|
42 |
+
# path_mapping=dict({
|
43 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
44 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
45 |
+
# }))
|
46 |
+
backend_args = None
|
47 |
+
|
48 |
+
# Align with Detectron2
|
49 |
+
backend = 'pillow'
|
50 |
+
train_pipeline = [
|
51 |
+
dict(
|
52 |
+
type=LoadImageFromFile,
|
53 |
+
backend_args=backend_args,
|
54 |
+
imdecode_backend=backend),
|
55 |
+
dict(
|
56 |
+
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False),
|
57 |
+
dict(
|
58 |
+
type=RandomChoiceResize,
|
59 |
+
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
|
60 |
+
(1333, 768), (1333, 800)],
|
61 |
+
keep_ratio=True,
|
62 |
+
backend=backend),
|
63 |
+
dict(type=RandomFlip, prob=0.5),
|
64 |
+
dict(type=PackDetInputs)
|
65 |
+
]
|
66 |
+
test_pipeline = [
|
67 |
+
dict(
|
68 |
+
type=LoadImageFromFile,
|
69 |
+
backend_args=backend_args,
|
70 |
+
imdecode_backend=backend),
|
71 |
+
dict(type=Resize, scale=(1333, 800), keep_ratio=True, backend=backend),
|
72 |
+
dict(
|
73 |
+
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False),
|
74 |
+
dict(
|
75 |
+
type=PackDetInputs,
|
76 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
77 |
+
'scale_factor'))
|
78 |
+
]
|
79 |
+
train_dataloader.update(
|
80 |
+
dict(
|
81 |
+
batch_size=2,
|
82 |
+
num_workers=2,
|
83 |
+
persistent_workers=True,
|
84 |
+
pin_memory=True,
|
85 |
+
sampler=dict(type=InfiniteSampler, shuffle=True),
|
86 |
+
batch_sampler=dict(type=AspectRatioBatchSampler),
|
87 |
+
dataset=dict(
|
88 |
+
type=dataset_type,
|
89 |
+
data_root=data_root,
|
90 |
+
ann_file='annotations/instances_train2017.json',
|
91 |
+
data_prefix=dict(img='train2017/'),
|
92 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
93 |
+
pipeline=train_pipeline,
|
94 |
+
backend_args=backend_args)))
|
95 |
+
val_dataloader.update(
|
96 |
+
dict(
|
97 |
+
batch_size=1,
|
98 |
+
num_workers=2,
|
99 |
+
persistent_workers=True,
|
100 |
+
drop_last=False,
|
101 |
+
pin_memory=True,
|
102 |
+
sampler=dict(type=DefaultSampler, shuffle=False),
|
103 |
+
dataset=dict(
|
104 |
+
type=dataset_type,
|
105 |
+
data_root=data_root,
|
106 |
+
ann_file='annotations/instances_val2017.json',
|
107 |
+
data_prefix=dict(img='val2017/'),
|
108 |
+
test_mode=True,
|
109 |
+
pipeline=test_pipeline,
|
110 |
+
backend_args=backend_args)))
|
111 |
+
test_dataloader = val_dataloader
|
112 |
+
|
113 |
+
val_evaluator.update(
|
114 |
+
dict(
|
115 |
+
type=CocoMetric,
|
116 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
117 |
+
metric=['bbox', 'segm'],
|
118 |
+
format_only=False,
|
119 |
+
backend_args=backend_args))
|
120 |
+
test_evaluator = val_evaluator
|
121 |
+
|
122 |
+
# training schedule for 90k
|
123 |
+
max_iter = 90000
|
124 |
+
train_cfg.update(
|
125 |
+
dict(type=IterBasedTrainLoop, max_iters=max_iter, val_interval=10000))
|
126 |
+
val_cfg.update(dict(type=ValLoop))
|
127 |
+
test_cfg.update(dict(type=TestLoop))
|
128 |
+
|
129 |
+
# learning rate
|
130 |
+
param_scheduler = [
|
131 |
+
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=1000),
|
132 |
+
dict(
|
133 |
+
type=MultiStepLR,
|
134 |
+
begin=0,
|
135 |
+
end=max_iter,
|
136 |
+
by_epoch=False,
|
137 |
+
milestones=[60000, 80000],
|
138 |
+
gamma=0.1)
|
139 |
+
]
|
140 |
+
|
141 |
+
# optimizer
|
142 |
+
optim_wrapper.update(
|
143 |
+
dict(
|
144 |
+
type=OptimWrapper,
|
145 |
+
optimizer=dict(type=SGD, lr=0.02, momentum=0.9, weight_decay=0.0001)))
|
146 |
+
# Default setting for scaling LR automatically
|
147 |
+
# - `enable` means enable scaling LR automatically
|
148 |
+
# or not by default.
|
149 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
150 |
+
auto_scale_lr.update(dict(enable=False, base_batch_size=16))
|
151 |
+
|
152 |
+
default_hooks.update(dict(checkpoint=dict(by_epoch=False, interval=10000)))
|
153 |
+
log_processor.update(dict(by_epoch=False))
|