File size: 10,162 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
from mmengine.model import ModuleList, Sequential

from mmseg.models.decode_heads.decode_head import BaseDecodeHead
from mmseg.models.utils import Upsample
from opencd.registry import MODELS


class CrossAttention(nn.Module):
    def __init__(self,
                 in_dims,
                 embed_dims,
                 num_heads,
                 dropout_rate=0.,
                 apply_softmax=True):
        super(CrossAttention, self).__init__()
        self.num_heads = num_heads
        self.scale = in_dims ** -0.5

        self.apply_softmax = apply_softmax

        self.to_q = nn.Linear(in_dims, embed_dims, bias=False)
        self.to_k = nn.Linear(in_dims, embed_dims, bias=False)
        self.to_v = nn.Linear(in_dims, embed_dims, bias=False)

        self.fc_out = nn.Sequential(
            nn.Linear(embed_dims, in_dims),
            nn.Dropout(dropout_rate)
        )

    def forward(self, x, ref):
        b, n = x.shape[:2]
        h = self.num_heads

        q = self.to_q(x)
        k = self.to_k(ref)
        v = self.to_v(ref)

        q = q.reshape((b, n, h, -1)).permute((0, 2, 1, 3))
        k = k.reshape((b, ref.shape[1], h, -1)).permute((0, 2, 1, 3))
        v = v.reshape((b, ref.shape[1], h, -1)).permute((0, 2, 1, 3))

        mult = torch.matmul(q, k.transpose(-1,-2)) * self.scale

        if self.apply_softmax:
            mult = F.softmax(mult, dim=-1)

        out = torch.matmul(mult, v)
        out = out.permute((0,2,1,3)).flatten(2)
        return self.fc_out(out)


class FeedForward(nn.Sequential):
    def __init__(self, dim, hidden_dim, dropout_rate=0.):
        super().__init__(
            # TODO:to be more mmlab
            nn.Linear(dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout_rate),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout_rate)
        )


class TransformerEncoder(nn.Module):
    def __init__(self,
                 in_dims,
                 embed_dims,
                 num_heads,
                 drop_rate,
                 norm_cfg,
                 apply_softmax=True):
        super(TransformerEncoder, self).__init__()
        self.attn = CrossAttention(
            in_dims,
            embed_dims,
            num_heads,
            dropout_rate=drop_rate,
            apply_softmax=apply_softmax)
        self.ff = FeedForward(
            in_dims,
            embed_dims,
            drop_rate
        )
        self.norm1 = build_norm_layer(norm_cfg, in_dims)[1]
        self.norm2 = build_norm_layer(norm_cfg, in_dims)[1]
    def forward(self, x):
        x_ = self.attn(self.norm1(x),self.norm1(x)) + x
        y = self.ff(self.norm2(x_)) + x_
        return y


class TransformerDecoder(nn.Module):
    def __init__(
            self,
            in_dims,
            embed_dims,
            num_heads,
            drop_rate,
            norm_cfg,
            apply_softmax=True
    ):
        super(TransformerDecoder, self).__init__()
        self.attn = CrossAttention(
            in_dims,
            embed_dims,
            num_heads,
            dropout_rate=drop_rate,
            apply_softmax=apply_softmax)
        self.ff = FeedForward(
            in_dims,
            embed_dims,
            drop_rate
        )
        self.norm1 = build_norm_layer(norm_cfg, in_dims)[1]
        self.norm1_ = build_norm_layer(norm_cfg, in_dims)[1]
        self.norm2 = build_norm_layer(norm_cfg, in_dims)[1]

    def forward(self, x, ref):
        x_ = self.attn(self.norm1(x),self.norm1_(ref)) + x
        y = self.ff(self.norm2(x_)) + x_
        return y


@MODELS.register_module()
class BITHead(BaseDecodeHead):
    """BIT Head

    This head is the improved implementation of'Remote Sensing Image
    Change Detection With Transformers<https://github.com/justchenhao/BIT_CD>'

    Args:
        in_channels (int): Number of input feature channels (from backbone). Default:  512
        channels (int): Number of output channels of pre_process. Default:  32.
        embed_dims (int): Number of expanded channels of Attention block. Default:  64.
        enc_depth (int): Depth of block of transformer encoder. Default:  1.
        enc_with_pos (bool): Using position embedding in transformer encoder.
            Default:  True
        dec_depth (int): Depth of block of transformer decoder. Default:  8.
        num_heads (int): Number of Multi-Head Cross-Attention Head of transformer encoder.
            Default:  8.
        use_tokenizer (bool),Using semantic token. Default:  True
        token_len (int): Number of dims of token. Default:  4.
        pre_upsample (int): Scale factor of upsample of pre_process.
            (default upsample to 64x64)
            Default: 2.
    """

    def __init__(self,
                 in_channels=256,
                 channels=32,
                 embed_dims=64,
                 enc_depth=1,
                 enc_with_pos=True,
                 dec_depth=8,
                 num_heads=8,
                 drop_rate=0.,
                 pool_size=2,
                 pool_mode='max',
                 use_tokenizer=True,
                 token_len=4,
                 pre_upsample=2,
                 upsample_size=4,
                 norm_cfg=dict(type='LN'),
                 act_cfg=dict(type='ReLU', inplace=True),
                 **kwargs):
        super().__init__(in_channels, channels, **kwargs)
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.embed_dims=embed_dims
        self.use_tokenizer = use_tokenizer
        self.num_heads=num_heads
        if not use_tokenizer:
            # If a tokenzier is not to be used,then downsample the feature maps
            self.pool_size = pool_size
            self.pool_mode = pool_mode
            self.token_len = pool_size * pool_size
        else:
            self.token_len = token_len
            self.conv_att = ConvModule(
                self.channels,
                self.token_len,
                1,
                conv_cfg=self.conv_cfg,
            )

        self.enc_with_pos = enc_with_pos
        if enc_with_pos:
            self.enc_pos_embedding = nn.Parameter(torch.randn(1, self.token_len * 2, self.channels))

        # pre_process to backbone feature
        self.pre_process = Sequential(
            Upsample(scale_factor=pre_upsample, mode='bilinear', align_corners=self.align_corners),
            ConvModule(
                self.in_channels,
                self.channels,
                3,
                padding=1,
                conv_cfg=self.conv_cfg
            )
        )

        # Transformer Encoder
        self.encoder = ModuleList()
        for _ in range(enc_depth):
            block = TransformerEncoder(
                self.channels,
                self.embed_dims,
                self.num_heads,
                drop_rate=drop_rate,
                norm_cfg=self.norm_cfg,
            )
            self.encoder.append(block)

        # Transformer Decoder
        self.decoder = ModuleList()
        for _ in range(dec_depth):
            block = TransformerDecoder(
                self.channels,
                self.embed_dims,
                self.num_heads,
                drop_rate=drop_rate,
                norm_cfg=self.norm_cfg,
            )
            self.decoder.append(block)

        self.upsample = Upsample(scale_factor=upsample_size,mode='bilinear',align_corners=self.align_corners)

    # Token
    def _forward_semantic_tokens(self, x):
        b, c = x.shape[:2]
        att_map = self.conv_att(x)
        att_map = att_map.reshape((b, self.token_len, 1, -1))
        att_map = F.softmax(att_map, dim=-1)
        x = x.reshape((b, 1, c, -1))
        tokens = (x * att_map).sum(-1)
        return tokens

    def _forward_reshaped_tokens(self, x):
        if self.pool_mode == 'max':
            x = F.adaptive_max_pool2d(x, (self.pool_size, self.pool_size))
        elif self.pool_mode == 'avg':
            x = F.adaptive_avg_pool2d(x, (self.pool_size, self.pool_size))
        else:
            x = x
        tokens = x.permute((0, 2, 3, 1)).flatten(1, 2)
        return tokens


    def _forward_feature(self, inputs):
        """Forward function for feature maps before classifying each pixel with
        ``self.cls_seg`` fc.

        Args:
            inputs (list[Tensor]): List of multi-level img features.

        Returns:
            feats (Tensor): A tensor of shape (batch_size, self.channels,
                H, W) which is feature map for last layer of decoder head.
        """
        inputs = self._transform_inputs(inputs)
        x1, x2 = torch.chunk(inputs, 2, dim=1)
        x1 = self.pre_process(x1)
        x2 = self.pre_process(x2)
        # Tokenization
        if self.use_tokenizer:
            token1 = self._forward_semantic_tokens(x1)
            token2 = self._forward_semantic_tokens(x2)
        else:
            token1 = self._forward_reshaped_tokens(x1)
            token2 = self._forward_reshaped_tokens(x2)

        # Transformer encoder forward
        token = torch.cat([token1, token2], dim=1)
        if self.enc_with_pos:
            token += self.enc_pos_embedding
        for i, _encoder in enumerate(self.encoder):
            token = _encoder(token)
        token1, token2 = torch.chunk(token, 2, dim=1)

        # Transformer decoder forward
        for _decoder in self.decoder:
            b, c, h, w = x1.shape
            x1 = x1.permute((0, 2, 3, 1)).flatten(1, 2)
            x2 = x2.permute((0, 2, 3, 1)).flatten(1, 2)
            
            x1 = _decoder(x1, token1)
            x2 = _decoder(x2, token2)
            
            x1 = x1.transpose(1, 2).reshape((b, c, h, w))
            x2 = x2.transpose(1, 2).reshape((b, c, h, w))

        # Feature differencing
        y = torch.abs(x1 - x2)
        y = self.upsample(y)

        return y

    def forward(self, inputs):
        """Forward function."""
        output = self._forward_feature(inputs)
        output = self.cls_seg(output)
        return output