File size: 10,915 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) Open-CD. All rights reserved.
from numbers import Number
from typing import Any, Dict, List, Optional, Sequence, Union

import numpy as np
import torch
import torch.nn.functional as F
from mmengine.model import BaseDataPreprocessor

from mmseg.utils import SampleList
from opencd.registry import MODELS


def stack_batch(inputs: List[torch.Tensor],
                data_samples: Optional[SampleList] = None,
                size: Optional[tuple] = None,
                size_divisor: Optional[int] = None,
                pad_val: Union[int, float] = 0,
                seg_pad_val: Union[int, float] = 255) -> torch.Tensor:
    """Stack multiple inputs to form a batch and pad the images and gt_sem_segs
    to the max shape use the right bottom padding mode.

    Args:
        inputs (List[Tensor]): The input multiple tensors. each is a
            CHW 3D-tensor.
        data_samples (list[:obj:`SegDataSample`]): The list of data samples.
            It usually includes information such as `gt_sem_seg`.
        size (tuple, optional): Fixed padding size.
        size_divisor (int, optional): The divisor of padded size.
        pad_val (int, float): The padding value. Defaults to 0
        seg_pad_val (int, float): The padding value. Defaults to 255

    Returns:
       Tensor: The 4D-tensor.
       List[:obj:`SegDataSample`]: After the padding of the gt_seg_map.
    """
    assert isinstance(inputs, list), \
        f'Expected input type to be list, but got {type(inputs)}'
    assert len({tensor.ndim for tensor in inputs}) == 1, \
        f'Expected the dimensions of all inputs must be the same, ' \
        f'but got {[tensor.ndim for tensor in inputs]}'
    assert inputs[0].ndim == 3, f'Expected tensor dimension to be 3, ' \
        f'but got {inputs[0].ndim}'
    assert len({tensor.shape[0] for tensor in inputs}) == 1, \
        f'Expected the channels of all inputs must be the same, ' \
        f'but got {[tensor.shape[0] for tensor in inputs]}'

    # only one of size and size_divisor should be valid
    assert (size is not None) ^ (size_divisor is not None), \
        'only one of size and size_divisor should be valid'

    padded_inputs = []
    padded_samples = []
    inputs_sizes = [(img.shape[-2], img.shape[-1]) for img in inputs]
    max_size = np.stack(inputs_sizes).max(0)
    if size_divisor is not None and size_divisor > 1:
        # the last two dims are H,W, both subject to divisibility requirement
        max_size = (max_size +
                    (size_divisor - 1)) // size_divisor * size_divisor

    for i in range(len(inputs)):
        tensor = inputs[i]
        if size is not None:
            width = max(size[-1] - tensor.shape[-1], 0)
            height = max(size[-2] - tensor.shape[-2], 0)
            # (padding_left, padding_right, padding_top, padding_bottom)
            padding_size = (0, width, 0, height)
        elif size_divisor is not None:
            width = max(max_size[-1] - tensor.shape[-1], 0)
            height = max(max_size[-2] - tensor.shape[-2], 0)
            padding_size = (0, width, 0, height)
        else:
            padding_size = [0, 0, 0, 0]

        # pad img
        pad_img = F.pad(tensor, padding_size, value=pad_val)
        padded_inputs.append(pad_img)
        # pad gt_sem_seg
        if data_samples is not None:
            data_sample = data_samples[i]
            gt_sem_seg = data_sample.gt_sem_seg.data
            del data_sample.gt_sem_seg.data
            data_sample.gt_sem_seg.data = F.pad(
                gt_sem_seg, padding_size, value=seg_pad_val)
            if 'gt_edge_map' in data_sample:
                gt_edge_map = data_sample.gt_edge_map.data
                del data_sample.gt_edge_map.data
                data_sample.gt_edge_map.data = F.pad(
                    gt_edge_map, padding_size, value=seg_pad_val)
            if 'gt_seg_map_from' in data_sample:
                gt_seg_map_from = data_sample.gt_seg_map_from.data
                del data_sample.gt_seg_map_from.data
                data_sample.gt_seg_map_from.data = F.pad(
                    gt_seg_map_from, padding_size, value=seg_pad_val)
            if 'gt_seg_map_to' in data_sample:
                gt_seg_map_to = data_sample.gt_seg_map_to.data
                del data_sample.gt_seg_map_to.data
                data_sample.gt_seg_map_to.data = F.pad(
                    gt_seg_map_to, padding_size, value=seg_pad_val)
            data_sample.set_metainfo({
                'img_shape': tensor.shape[-2:],
                'pad_shape': data_sample.gt_sem_seg.shape,
                'padding_size': padding_size
            })
            padded_samples.append(data_sample)
        else:
            padded_samples.append(
                dict(
                    img_padding_size=padding_size,
                    pad_shape=pad_img.shape[-2:]))

    return torch.stack(padded_inputs, dim=0), padded_samples


@MODELS.register_module()
class DualInputSegDataPreProcessor(BaseDataPreprocessor):
    """Image pre-processor for change detection tasks.

    Comparing with the :class:`mmengine.ImgDataPreprocessor`,

    1. It won't do normalization if ``mean`` is not specified.
    2. It does normalization and color space conversion after stacking batch.
    3. It supports batch augmentations like mixup and cutmix.


    It provides the data pre-processing as follows

    - Collate and move data to the target device.
    - Pad inputs to the input size with defined ``pad_val``, and pad seg map
        with defined ``seg_pad_val``.
    - Stack inputs to batch_inputs.
    - Convert inputs from bgr to rgb if the shape of input is (3, H, W).
    - Normalize image with defined std and mean.
    - Do batch augmentations like Mixup and Cutmix during training.

    Args:
        mean (Sequence[Number], optional): The pixel mean of R, G, B channels.
            Defaults to None.
        std (Sequence[Number], optional): The pixel standard deviation of
            R, G, B channels. Defaults to None.
        size (tuple, optional): Fixed padding size.
        size_divisor (int, optional): The divisor of padded size.
        pad_val (float, optional): Padding value. Default: 0.
        seg_pad_val (float, optional): Padding value of segmentation map.
            Default: 255.
        padding_mode (str): Type of padding. Default: constant.
            - constant: pads with a constant value, this value is specified
              with pad_val.
        bgr_to_rgb (bool): whether to convert image from BGR to RGB.
            Defaults to False.
        rgb_to_bgr (bool): whether to convert image from RGB to RGB.
            Defaults to False.
        batch_augments (list[dict], optional): Batch-level augmentations
        test_cfg (dict, optional): The padding size config in testing, if not
            specify, will use `size` and `size_divisor` params as default.
            Defaults to None, only supports keys `size` or `size_divisor`.
    """

    def __init__(
        self,
        mean: Sequence[Number] = None,
        std: Sequence[Number] = None,
        size: Optional[tuple] = None,
        size_divisor: Optional[int] = None,
        pad_val: Number = 0,
        seg_pad_val: Number = 255,
        bgr_to_rgb: bool = False,
        rgb_to_bgr: bool = False,
        batch_augments: Optional[List[dict]] = None,
        test_cfg: dict = None,
    ):
        super().__init__()
        self.size = size
        self.size_divisor = size_divisor
        self.pad_val = pad_val
        self.seg_pad_val = seg_pad_val

        assert not (bgr_to_rgb and rgb_to_bgr), (
            '`bgr2rgb` and `rgb2bgr` cannot be set to True at the same time')
        self.channel_conversion = rgb_to_bgr or bgr_to_rgb

        if mean is not None:
            assert std is not None, 'To enable the normalization in ' \
                                    'preprocessing, please specify both ' \
                                    '`mean` and `std`.'
            # Enable the normalization in preprocessing.
            self._enable_normalize = True
            self.register_buffer('mean',
                                 torch.tensor(mean).view(-1, 1, 1), False)
            self.register_buffer('std',
                                 torch.tensor(std).view(-1, 1, 1), False)
        else:
            self._enable_normalize = False

        # TODO: support batch augmentations.
        self.batch_augments = batch_augments

        # Support different padding methods in testing
        self.test_cfg = test_cfg

    def forward(self, data: dict, training: bool = False) -> Dict[str, Any]:
        """Perform normalization、padding and bgr2rgb conversion based on
        ``BaseDataPreprocessor``.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation.

        Returns:
            Dict: Data in the same format as the model input.
        """
        data = self.cast_data(data)  # type: ignore
        inputs = data['inputs']
        data_samples = data.get('data_samples', None)
        # TODO: whether normalize should be after stack_batch
        if self.channel_conversion and inputs[0].size(0) == 6:
            inputs = [_input[[2, 1, 0, 5, 4, 3], ...] for _input in inputs]

        inputs = [_input.float() for _input in inputs]
        if self._enable_normalize:
            inputs = [(_input - self.mean) / self.std for _input in inputs]

        if training:
            assert data_samples is not None, ('During training, ',
                                              '`data_samples` must be define.')
            inputs, data_samples = stack_batch(
                inputs=inputs,
                data_samples=data_samples,
                size=self.size,
                size_divisor=self.size_divisor,
                pad_val=self.pad_val,
                seg_pad_val=self.seg_pad_val)

            if self.batch_augments is not None:
                inputs, data_samples = self.batch_augments(
                    inputs, data_samples)
        else:
            assert len(inputs) == 1, (
                'Batch inference is not support currently, '
                'as the image size might be different in a batch')
            # pad images when testing
            if self.test_cfg:
                inputs, padded_samples = stack_batch(
                    inputs=inputs,
                    size=self.test_cfg.get('size', None),
                    size_divisor=self.test_cfg.get('size_divisor', None),
                    pad_val=self.pad_val,
                    seg_pad_val=self.seg_pad_val)
                for data_sample, pad_info in zip(data_samples, padded_samples):
                    data_sample.set_metainfo({**pad_info})
            else:
                inputs = torch.stack(inputs, dim=0)

        return dict(inputs=inputs, data_samples=data_samples)