File size: 4,494 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule

from mmseg.registry import MODELS
from ..utils import resize
from .decode_head import BaseDecodeHead
from .psp_head import PPM


@MODELS.register_module()
class UPerHead(BaseDecodeHead):
    """Unified Perceptual Parsing for Scene Understanding.

    This head is the implementation of `UPerNet
    <https://arxiv.org/abs/1807.10221>`_.

    Args:
        pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module applied on the last feature. Default: (1, 2, 3, 6).
    """

    def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
        super().__init__(input_transform='multiple_select', **kwargs)
        # PSP Module
        self.psp_modules = PPM(
            pool_scales,
            self.in_channels[-1],
            self.channels,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg,
            align_corners=self.align_corners)
        self.bottleneck = ConvModule(
            self.in_channels[-1] + len(pool_scales) * self.channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        # FPN Module
        self.lateral_convs = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()
        for in_channels in self.in_channels[:-1]:  # skip the top layer
            l_conv = ConvModule(
                in_channels,
                self.channels,
                1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg,
                inplace=False)
            fpn_conv = ConvModule(
                self.channels,
                self.channels,
                3,
                padding=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg,
                inplace=False)
            self.lateral_convs.append(l_conv)
            self.fpn_convs.append(fpn_conv)

        self.fpn_bottleneck = ConvModule(
            len(self.in_channels) * self.channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def psp_forward(self, inputs):
        """Forward function of PSP module."""
        x = inputs[-1]
        psp_outs = [x]
        psp_outs.extend(self.psp_modules(x))
        psp_outs = torch.cat(psp_outs, dim=1)
        output = self.bottleneck(psp_outs)

        return output

    def _forward_feature(self, inputs):
        """Forward function for feature maps before classifying each pixel with
        ``self.cls_seg`` fc.

        Args:
            inputs (list[Tensor]): List of multi-level img features.

        Returns:
            feats (Tensor): A tensor of shape (batch_size, self.channels,
                H, W) which is feature map for last layer of decoder head.
        """
        inputs = self._transform_inputs(inputs)

        # build laterals
        laterals = [
            lateral_conv(inputs[i])
            for i, lateral_conv in enumerate(self.lateral_convs)
        ]

        laterals.append(self.psp_forward(inputs))

        # build top-down path
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            prev_shape = laterals[i - 1].shape[2:]
            laterals[i - 1] = laterals[i - 1] + resize(
                laterals[i],
                size=prev_shape,
                mode='bilinear',
                align_corners=self.align_corners)

        # build outputs
        fpn_outs = [
            self.fpn_convs[i](laterals[i])
            for i in range(used_backbone_levels - 1)
        ]
        # append psp feature
        fpn_outs.append(laterals[-1])

        for i in range(used_backbone_levels - 1, 0, -1):
            fpn_outs[i] = resize(
                fpn_outs[i],
                size=fpn_outs[0].shape[2:],
                mode='bilinear',
                align_corners=self.align_corners)
        fpn_outs = torch.cat(fpn_outs, dim=1)
        feats = self.fpn_bottleneck(fpn_outs)
        return feats

    def forward(self, inputs):
        """Forward function."""
        output = self._forward_feature(inputs)
        output = self.cls_seg(output)
        return output