File size: 16,815 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Copyright (c) OpenMMLab. All rights reserved.
# Originally from https://github.com/visual-attention-network/segnext
# Licensed under the Apache License, Version 2.0 (the "License")
import math
import warnings

import torch
import torch.nn as nn
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmengine.model import BaseModule
from mmengine.model.weight_init import (constant_init, normal_init,
                                        trunc_normal_init)

from mmseg.registry import MODELS


class Mlp(BaseModule):
    """Multi Layer Perceptron (MLP) Module.

    Args:
        in_features (int): The dimension of input features.
        hidden_features (int): The dimension of hidden features.
            Defaults: None.
        out_features (int): The dimension of output features.
            Defaults: None.
        act_cfg (dict): Config dict for activation layer in block.
            Default: dict(type='GELU').
        drop (float): The number of dropout rate in MLP block.
            Defaults: 0.0.
    """

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_cfg=dict(type='GELU'),
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.dwconv = nn.Conv2d(
            hidden_features,
            hidden_features,
            3,
            1,
            1,
            bias=True,
            groups=hidden_features)
        self.act = build_activation_layer(act_cfg)
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        """Forward function."""

        x = self.fc1(x)

        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)

        return x


class StemConv(BaseModule):
    """Stem Block at the beginning of Semantic Branch.

    Args:
        in_channels (int): The dimension of input channels.
        out_channels (int): The dimension of output channels.
        act_cfg (dict): Config dict for activation layer in block.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Defaults: dict(type='SyncBN', requires_grad=True).
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='SyncBN', requires_grad=True)):
        super().__init__()

        self.proj = nn.Sequential(
            nn.Conv2d(
                in_channels,
                out_channels // 2,
                kernel_size=(3, 3),
                stride=(2, 2),
                padding=(1, 1)),
            build_norm_layer(norm_cfg, out_channels // 2)[1],
            build_activation_layer(act_cfg),
            nn.Conv2d(
                out_channels // 2,
                out_channels,
                kernel_size=(3, 3),
                stride=(2, 2),
                padding=(1, 1)),
            build_norm_layer(norm_cfg, out_channels)[1],
        )

    def forward(self, x):
        """Forward function."""

        x = self.proj(x)
        _, _, H, W = x.size()
        x = x.flatten(2).transpose(1, 2)
        return x, H, W


class MSCAAttention(BaseModule):
    """Attention Module in Multi-Scale Convolutional Attention Module (MSCA).

    Args:
        channels (int): The dimension of channels.
        kernel_sizes (list): The size of attention
            kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]].
        paddings (list): The number of
            corresponding padding value in attention module.
            Defaults: [2, [0, 3], [0, 5], [0, 10]].
    """

    def __init__(self,
                 channels,
                 kernel_sizes=[5, [1, 7], [1, 11], [1, 21]],
                 paddings=[2, [0, 3], [0, 5], [0, 10]]):
        super().__init__()
        self.conv0 = nn.Conv2d(
            channels,
            channels,
            kernel_size=kernel_sizes[0],
            padding=paddings[0],
            groups=channels)
        for i, (kernel_size,
                padding) in enumerate(zip(kernel_sizes[1:], paddings[1:])):
            kernel_size_ = [kernel_size, kernel_size[::-1]]
            padding_ = [padding, padding[::-1]]
            conv_name = [f'conv{i}_1', f'conv{i}_2']
            for i_kernel, i_pad, i_conv in zip(kernel_size_, padding_,
                                               conv_name):
                self.add_module(
                    i_conv,
                    nn.Conv2d(
                        channels,
                        channels,
                        tuple(i_kernel),
                        padding=i_pad,
                        groups=channels))
        self.conv3 = nn.Conv2d(channels, channels, 1)

    def forward(self, x):
        """Forward function."""

        u = x.clone()

        attn = self.conv0(x)

        # Multi-Scale Feature extraction
        attn_0 = self.conv0_1(attn)
        attn_0 = self.conv0_2(attn_0)

        attn_1 = self.conv1_1(attn)
        attn_1 = self.conv1_2(attn_1)

        attn_2 = self.conv2_1(attn)
        attn_2 = self.conv2_2(attn_2)

        attn = attn + attn_0 + attn_1 + attn_2
        # Channel Mixing
        attn = self.conv3(attn)

        # Convolutional Attention
        x = attn * u

        return x


class MSCASpatialAttention(BaseModule):
    """Spatial Attention Module in Multi-Scale Convolutional Attention Module
    (MSCA).

    Args:
        in_channels (int): The dimension of channels.
        attention_kernel_sizes (list): The size of attention
            kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]].
        attention_kernel_paddings (list): The number of
            corresponding padding value in attention module.
            Defaults: [2, [0, 3], [0, 5], [0, 10]].
        act_cfg (dict): Config dict for activation layer in block.
            Default: dict(type='GELU').
    """

    def __init__(self,
                 in_channels,
                 attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]],
                 attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]],
                 act_cfg=dict(type='GELU')):
        super().__init__()
        self.proj_1 = nn.Conv2d(in_channels, in_channels, 1)
        self.activation = build_activation_layer(act_cfg)
        self.spatial_gating_unit = MSCAAttention(in_channels,
                                                 attention_kernel_sizes,
                                                 attention_kernel_paddings)
        self.proj_2 = nn.Conv2d(in_channels, in_channels, 1)

    def forward(self, x):
        """Forward function."""

        shorcut = x.clone()
        x = self.proj_1(x)
        x = self.activation(x)
        x = self.spatial_gating_unit(x)
        x = self.proj_2(x)
        x = x + shorcut
        return x


class MSCABlock(BaseModule):
    """Basic Multi-Scale Convolutional Attention Block. It leverage the large-
    kernel attention (LKA) mechanism to build both channel and spatial
    attention. In each branch, it uses two depth-wise strip convolutions to
    approximate standard depth-wise convolutions with large kernels. The kernel
    size for each branch is set to 7, 11, and 21, respectively.

    Args:
        channels (int): The dimension of channels.
        attention_kernel_sizes (list): The size of attention
            kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]].
        attention_kernel_paddings (list): The number of
            corresponding padding value in attention module.
            Defaults: [2, [0, 3], [0, 5], [0, 10]].
        mlp_ratio (float): The ratio of multiple input dimension to
            calculate hidden feature in MLP layer. Defaults: 4.0.
        drop (float): The number of dropout rate in MLP block.
            Defaults: 0.0.
        drop_path (float): The ratio of drop paths.
            Defaults: 0.0.
        act_cfg (dict): Config dict for activation layer in block.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Defaults: dict(type='SyncBN', requires_grad=True).
    """

    def __init__(self,
                 channels,
                 attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]],
                 attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]],
                 mlp_ratio=4.,
                 drop=0.,
                 drop_path=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='SyncBN', requires_grad=True)):
        super().__init__()
        self.norm1 = build_norm_layer(norm_cfg, channels)[1]
        self.attn = MSCASpatialAttention(channels, attention_kernel_sizes,
                                         attention_kernel_paddings, act_cfg)
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = build_norm_layer(norm_cfg, channels)[1]
        mlp_hidden_channels = int(channels * mlp_ratio)
        self.mlp = Mlp(
            in_features=channels,
            hidden_features=mlp_hidden_channels,
            act_cfg=act_cfg,
            drop=drop)
        layer_scale_init_value = 1e-2
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones(channels), requires_grad=True)
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones(channels), requires_grad=True)

    def forward(self, x, H, W):
        """Forward function."""

        B, N, C = x.shape
        x = x.permute(0, 2, 1).view(B, C, H, W)
        x = x + self.drop_path(
            self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
            self.attn(self.norm1(x)))
        x = x + self.drop_path(
            self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
            self.mlp(self.norm2(x)))
        x = x.view(B, C, N).permute(0, 2, 1)
        return x


class OverlapPatchEmbed(BaseModule):
    """Image to Patch Embedding.

    Args:
        patch_size (int): The patch size.
            Defaults: 7.
        stride (int): Stride of the convolutional layer.
            Default: 4.
        in_channels (int): The number of input channels.
            Defaults: 3.
        embed_dims (int): The dimensions of embedding.
            Defaults: 768.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults: dict(type='SyncBN', requires_grad=True).
    """

    def __init__(self,
                 patch_size=7,
                 stride=4,
                 in_channels=3,
                 embed_dim=768,
                 norm_cfg=dict(type='SyncBN', requires_grad=True)):
        super().__init__()

        self.proj = nn.Conv2d(
            in_channels,
            embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=patch_size // 2)
        self.norm = build_norm_layer(norm_cfg, embed_dim)[1]

    def forward(self, x):
        """Forward function."""

        x = self.proj(x)
        _, _, H, W = x.shape
        x = self.norm(x)

        x = x.flatten(2).transpose(1, 2)

        return x, H, W


@MODELS.register_module()
class MSCAN(BaseModule):
    """SegNeXt Multi-Scale Convolutional Attention Network (MCSAN) backbone.

    This backbone is the implementation of `SegNeXt: Rethinking
    Convolutional Attention Design for Semantic
    Segmentation <https://arxiv.org/abs/2209.08575>`_.
    Inspiration from https://github.com/visual-attention-network/segnext.

    Args:
        in_channels (int): The number of input channels. Defaults: 3.
        embed_dims (list[int]): Embedding dimension.
            Defaults: [64, 128, 256, 512].
        mlp_ratios (list[int]): Ratio of mlp hidden dim to embedding dim.
            Defaults: [4, 4, 4, 4].
        drop_rate (float): Dropout rate. Defaults: 0.
        drop_path_rate (float): Stochastic depth rate. Defaults: 0.
        depths (list[int]): Depths of each Swin Transformer stage.
            Default: [3, 4, 6, 3].
        num_stages (int): MSCAN stages. Default: 4.
        attention_kernel_sizes (list): Size of attention kernel in
            Attention Module (Figure 2(b) of original paper).
            Defaults: [5, [1, 7], [1, 11], [1, 21]].
        attention_kernel_paddings (list): Size of attention paddings
            in Attention Module (Figure 2(b) of original paper).
            Defaults: [2, [0, 3], [0, 5], [0, 10]].
        norm_cfg (dict): Config of norm layers.
            Defaults: dict(type='SyncBN', requires_grad=True).
        pretrained (str, optional): model pretrained path.
            Default: None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 in_channels=3,
                 embed_dims=[64, 128, 256, 512],
                 mlp_ratios=[4, 4, 4, 4],
                 drop_rate=0.,
                 drop_path_rate=0.,
                 depths=[3, 4, 6, 3],
                 num_stages=4,
                 attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]],
                 attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]],
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='SyncBN', requires_grad=True),
                 pretrained=None,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be set at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is not None:
            raise TypeError('pretrained must be a str or None')

        self.depths = depths
        self.num_stages = num_stages

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
        ]  # stochastic depth decay rule
        cur = 0

        for i in range(num_stages):
            if i == 0:
                patch_embed = StemConv(3, embed_dims[0], norm_cfg=norm_cfg)
            else:
                patch_embed = OverlapPatchEmbed(
                    patch_size=7 if i == 0 else 3,
                    stride=4 if i == 0 else 2,
                    in_channels=in_channels if i == 0 else embed_dims[i - 1],
                    embed_dim=embed_dims[i],
                    norm_cfg=norm_cfg)

            block = nn.ModuleList([
                MSCABlock(
                    channels=embed_dims[i],
                    attention_kernel_sizes=attention_kernel_sizes,
                    attention_kernel_paddings=attention_kernel_paddings,
                    mlp_ratio=mlp_ratios[i],
                    drop=drop_rate,
                    drop_path=dpr[cur + j],
                    act_cfg=act_cfg,
                    norm_cfg=norm_cfg) for j in range(depths[i])
            ])
            norm = nn.LayerNorm(embed_dims[i])
            cur += depths[i]

            setattr(self, f'patch_embed{i + 1}', patch_embed)
            setattr(self, f'block{i + 1}', block)
            setattr(self, f'norm{i + 1}', norm)

    def init_weights(self):
        """Initialize modules of MSCAN."""

        print('init cfg', self.init_cfg)
        if self.init_cfg is None:
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_init(m, std=.02, bias=0.)
                elif isinstance(m, nn.LayerNorm):
                    constant_init(m, val=1.0, bias=0.)
                elif isinstance(m, nn.Conv2d):
                    fan_out = m.kernel_size[0] * m.kernel_size[
                        1] * m.out_channels
                    fan_out //= m.groups
                    normal_init(
                        m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0)
        else:
            super().init_weights()

    def forward(self, x):
        """Forward function."""

        B = x.shape[0]
        outs = []

        for i in range(self.num_stages):
            patch_embed = getattr(self, f'patch_embed{i + 1}')
            block = getattr(self, f'block{i + 1}')
            norm = getattr(self, f'norm{i + 1}')
            x, H, W = patch_embed(x)
            for blk in block:
                x = blk(x, H, W)
            x = norm(x)
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            outs.append(x)

        return outs