Spaces:
Runtime error
Runtime error
File size: 7,471 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import re
from typing import Any, List
import torch
from mmengine.logging import print_log
from mmengine.model import BaseModule
from torch import nn
from mmpretrain.registry import MODELS
class LoRALinear(nn.Module):
r"""Implements LoRA in a linear layer.
Args:
original_layer (nn.Linear): The linear layer to be finetuned.
alpha (int): The scale factor of LoRA. Defaults to 1.
rank (int): The rank of LoRA. Defaults to 0.
drop_rate (float): The drop out rate for LoRA. Defaults to 0.
Note:
The forward process of LoRA linear layer is:
.. math::
`y = W_0 x + BAx * (\alpha / r)`
Where :math:`x` is the input, :math:`y` is the output,
:math:`W_0` is the parameter of the original layer,
:math:`A` and :math:`B` are the low-rank decomposition matrixs,
:math: `\alpha` is the scale factor and :math: `r` is the rank.
"""
def __init__(self,
original_layer: nn.Linear,
alpha: int = 1,
rank: int = 0,
drop_rate: float = 0.):
super(LoRALinear, self).__init__()
in_features = original_layer.in_features
out_features = original_layer.out_features
self.lora_dropout = nn.Dropout(drop_rate)
self.lora_down = nn.Linear(in_features, rank, bias=False)
self.lora_up = nn.Linear(rank, out_features, bias=False)
self.scaling = alpha / rank
nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_up.weight)
self.original_layer = original_layer
def forward(self, x: torch.Tensor):
out = self.original_layer(x)
lora_x = self.lora_dropout(x)
lora_out = self.lora_up(self.lora_down(lora_x)) * self.scaling
return out + lora_out
@MODELS.register_module()
class LoRAModel(BaseModule):
"""Implements LoRA in a module.
An PyTorch implement of : `LoRA: Low-Rank Adaptation
of Large Language Models <https://arxiv.org/abs/2106.09685>`_
Args:
module (dict): The config of the module to be finetuned. See
:mod:`mmpretrain.models`
alpha (int): The scale factor of LoRA. Defaults to 1.
rank (int): The rank of LoRA. Defaults to 0.
drop_rate (float): The drop out rate for LoRA. Defaults to 0.
targets (List[dict]): The target layers to be applied with the LoRA.
Defaults to a empty list. Specify by regular expression or suffix.
Examples:
>>> model = LoRAModel(
... module=dict(type='VisionTransformer', arch='b'),
... alpha=4,
... rank=4,
... drop_rate=0.1,
... targets=[
... dict(type='.*qkv'), # regular expression
... dict(type='proj', alpha=8, rank=8), # suffix
... ])
"""
def __init__(self,
module: dict,
alpha: int = 1,
rank: int = 0,
drop_rate: float = 0.,
targets: List[dict] = list()):
super().__init__()
module = MODELS.build(module)
module.init_weights()
self.module = module
self.alpha = alpha
self.rank = rank
self.drop_rate = drop_rate
assert len(targets) != 0, \
'The length of target layers should not be 0.'
self.targets = targets
self.applied = False
self.apply_lora()
if not self.applied:
raise ValueError(
'No lora layer is replaced. Please check targets.')
self._set_lora_trainable()
self._register_state_dict_hooks()
def apply_lora(self):
"""Apply LoRA to target layers."""
module_names = [k for k, _ in self.module.named_modules()]
for module_name in module_names:
for target in self.targets:
target_name = target['type']
target_alpha = target.get('alpha', self.alpha)
target_rank = target.get('rank', self.rank)
target_drop_rate = target.get('drop_rate', self.drop_rate)
if re.fullmatch(target_name, module_name) or \
module_name.endswith(target_name):
current_module = self.module.get_submodule(module_name)
if isinstance(current_module, nn.Linear):
print_log(
f'Set LoRA for {module_name} '
f'with alpha: {target_alpha}, '
f'rank: {target_rank}, '
f'drop rate: {target_drop_rate}',
logger='current')
self._replace_module(module_name, current_module,
target_alpha, target_rank,
target_drop_rate)
self.applied = True
def _replace_module(self, module_name: str, current_module: nn.Module,
alpha: int, rank: int, drop_rate: float):
"""Replace target layer with LoRA linear layer in place."""
parent_module_name = '.'.join(module_name.split('.')[:-1])
parent_module = self.module.get_submodule(parent_module_name)
target_name = module_name.split('.')[-1]
target_module = LoRALinear(current_module, alpha, rank, drop_rate)
setattr(parent_module, target_name, target_module)
def _set_lora_trainable(self):
"""Set only the lora parameters trainable."""
for name, param in self.named_parameters():
if '.lora_' in name:
param.requires_grad = True
else:
param.requires_grad = False
def _register_state_dict_hooks(self):
"""Register state dict hooks.
Register state dict saving hooks to save only the lora parameters to
the state dict. And register state dict loading hooks to handle the
incompatible keys while loading the state dict.
"""
def _state_dict_hook(module, state_dict, prefix, local_metadata):
"""Save only the lora parameters to the state dict."""
keys = [k for k, _ in state_dict.items()]
for key in keys:
if '.lora_' not in key:
state_dict.pop(key)
self._register_state_dict_hook(_state_dict_hook)
def _load_state_dict_post_hook(module, incompatible_keys):
"""Handle the incompatible keys while loading the state dict."""
missing_keys = incompatible_keys.missing_keys.copy()
for key in missing_keys:
if '.lora_' not in key:
incompatible_keys.missing_keys.remove(key)
unexpected_keys = incompatible_keys.unexpected_keys.copy()
for key in unexpected_keys:
if '.lora_' not in key:
incompatible_keys.unexpected_keys.remove(key)
self.register_load_state_dict_post_hook(_load_state_dict_post_hook)
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
def __getattr__(self, name: str) -> Any:
try:
return super(LoRAModel, self).__getattr__(name)
except AttributeError:
return self.module.__getattribute__(name)
|