Spaces:
Runtime error
Runtime error
File size: 16,465 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# Copyright (c) OpenMMLab. All rights reserved.
import random
import re
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from mmengine.logging import MMLogger
from mmengine.model import BaseModel
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
@MODELS.register_module()
class MiniGPT4(BaseModel):
"""The multi-modality model of MiniGPT-4.
The implementation of `MiniGPT-4 <https://arxiv.org/abs/2304.10592>`_.
Modified from https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/models/mini_gpt4.py
Args:
vision_encoder (dict): The config for vision encoder.
q_former_model (dict): The config for Qformer.
lang_encoder (dict): The config for language model.
tokenizer (dict): The config for tokenizer.
task (str): To define the task, which control the processing of text.
Defaults to 'caption'.
freeze_vit (bool): Freeze the training of ViT. Defaults to True.
freeze_q_former (bool): Freeze the training of Qformer. Defaults to
True.
num_query_token (int): Number of query tokens of Qformer. Defaults to
32.
prompt_template (dict): Multi-language prompt template of the model. Defaults to dict([ ('en', '###Ask: {} ###Answer: '),
('zh', '###问:{} ###答:')])
raw_prompts (dict): Prompts for training. Defaults to dict().
max_txt_len (int): Max token length while doing tokenization. Defaults
to 32.
end_sym (str): Ended symbol of the sequence. Defaults to '###'.
generation_cfg (dict): The config of text generation. Defaults to
dict().
data_preprocessor (:obj:`BaseDataPreprocessor`): Used for
pre-processing data sampled by dataloader to the format accepted by
:meth:`forward`. Defaults to None.
init_cfg (dict): Initialization config dict. Defaults to None.
""" # noqa
def __init__(self,
vision_encoder: dict,
q_former_model: dict,
lang_encoder: dict,
tokenizer: dict,
task: str = 'caption',
freeze_vit: bool = True,
freeze_q_former: bool = True,
num_query_token: int = 32,
prompt_template: dict = dict([('en',
'###Ask: {} ###Answer: '),
('zh', '###问:{} ###答:')]),
raw_prompts: dict = dict(),
max_txt_len: int = 32,
end_sym: str = '###',
generation_cfg: dict = dict(),
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None):
if data_preprocessor is None:
data_preprocessor = {}
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
self.task = task
logger = MMLogger.get_current_instance()
# build vision model
vision_encoder_weight = vision_encoder.pop('pretrained', None)
self.vision_encoder = MODELS.build(vision_encoder)
self.ln_vision = nn.LayerNorm(self.vision_encoder.embed_dims)
if vision_encoder_weight is not None:
from mmengine.runner.checkpoint import load_checkpoint
load_checkpoint(self.vision_encoder, vision_encoder_weight)
self.vision_encoder.is_init = True
if freeze_vit:
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
else:
logger.warning('Please check `frozen_stages` in the dict of'
'`vision_encoder`. Also set it to be -1 if do not'
'freeze ViT.')
# build Qformer
q_former_model_weight = q_former_model.pop('pretrained', None)
self.q_former = MODELS.build(q_former_model)
self.q_former.cls = None
self.q_former.bert.embeddings.word_embeddings = None
self.q_former.bert.embeddings.position_embeddings = None
for layer in self.q_former.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, self.q_former.config.hidden_size))
self.query_tokens.data.normal_(
mean=0.0, std=self.q_former.config.initializer_range)
if q_former_model_weight is not None:
from mmengine.runner.checkpoint import CheckpointLoader
state_dict = CheckpointLoader.load_checkpoint(
q_former_model_weight)['state_dict']
self.load_state_dict(state_dict, strict=False)
# The ln_vision weights are also in the q-former checkpoint.
setattr(self.ln_vision, 'is_init', True)
setattr(self.q_former, 'is_init', True)
if freeze_q_former:
for name, param in self.q_former.named_parameters():
param.requires_grad = False
self.q_former.eval()
self.query_tokens.requires_grad = False
# build language model
self.llama_tokenizer = TOKENIZER.build(tokenizer)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_model = MODELS.build(lang_encoder)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
# build linear projection layer
self.llama_proj = nn.Linear(self.q_former.config.hidden_size,
self.llama_model.config.hidden_size)
self.max_txt_len = max_txt_len
self.end_sym = end_sym
self.end_token_id = self.llama_tokenizer.encode(end_sym)[-1]
# set prompts
self.en_prompt_list, self.zh_prompt_list = [], []
if raw_prompts.get('en') is not None:
en_filted_prompts = [
raw_prompt for raw_prompt in raw_prompts['en']
if '<ImageHere>' in raw_prompt
]
self.en_prompt_list = [
prompt_template['en'].format(p) for p in en_filted_prompts
]
if raw_prompts.get('zh') is not None:
zh_filted_prompts = [
raw_prompt for raw_prompt in raw_prompts['zh']
if '<ImageHere>' in raw_prompt
]
self.zh_prompt_list = [
prompt_template['zh'].format(p) for p in zh_filted_prompts
]
# update generation configs
self.generation_cfg = dict(
max_new_tokens=300,
num_beams=1,
do_sample=True,
min_length=1,
top_p=0.9,
repetition_penalty=1.1,
length_penalty=1.0,
temperature=1.0)
self.generation_cfg.update(**generation_cfg)
if hasattr(self, 'register_load_state_dict_post_hook'):
self.register_load_state_dict_post_hook(self._load_llama_proj_hook)
def half(self):
self.llama_model = self.llama_model.half()
return self
def encode_img(self,
images: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""The function to encode the images."""
device = images.device
x = self.vision_encoder(images)[0]
image_embeds = self.ln_vision(x).to(device)
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.q_former.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
atts_llama = torch.ones(
inputs_llama.size()[:-1], dtype=torch.long).to(images.device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds: torch.Tensor, atts_img: torch.Tensor,
prompt: List[str]) -> Tuple[torch.Tensor, torch.Tensor]:
"""The function to wrap the image and prompt.
Make sure that len(prompt) == img_embeds.shape[0].
Args:
img_embeds (torch.Tensor): The embedding of the input images.
atts_img (torch.Tensor): Attention map of the image embeddings.
prompt (List[str]): The prompt of the batch data.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The embedding and attention map.
"""
if len(prompt) > 0:
p_before_list, p_after_list = [], []
for pro in prompt:
p_before, p_after = pro.split('<ImageHere>')
p_before_list.append(p_before)
p_after_list.append(p_after)
p_before_tokens = self.llama_tokenizer(
p_before_list,
return_tensors='pt',
padding='longest',
add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after_list,
return_tensors='pt',
padding='longest',
add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(
p_before_tokens.input_ids)
p_after_embeds = self.llama_model.model.embed_tokens(
p_after_tokens.input_ids)
wrapped_img_embeds = torch.cat(
[p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(
-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
else:
return img_embeds, atts_img
def loss(self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None) -> dict:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
img_embeds, atts_img = self.encode_img(images)
self.llama_tokenizer.padding_side = 'right'
prompts, texts = [], []
for t in data_samples:
chat_content = t.chat_content
split_mark = '###Answer: ' if t.lang == 'en' else '###答:'
prompt, text = chat_content.split(split_mark)
prompt += split_mark
text += self.end_sym
prompts.append(prompt)
texts.append(text)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompts)
to_regress_tokens = self.llama_tokenizer(
texts,
return_tensors='pt',
padding='longest',
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False).to(images.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id,
-100)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1] + 1],
dtype=torch.long).to(images.device).fill_(
-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device
) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(
to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds],
dim=1)
attention_mask = torch.cat(
[atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return dict(loss=loss)
def predict(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None
) -> List[DataSample]:
with torch.no_grad():
img_embeds, atts_img = self.encode_img(images)
prompts = [
random.choice(self.zh_prompt_list) if hasattr(t, 'lang')
and t.lang == 'zh' else random.choice(self.en_prompt_list)
for t in data_samples
]
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompts)
batch_size = img_embeds.shape[0]
bos = torch.ones(
[batch_size, 1], dtype=torch.long,
device=img_embeds.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
outputs = self.llama_model.generate(
inputs_embeds=inputs_embeds,
eos_token_id=self.end_token_id,
**self.generation_cfg)
return self.post_process(outputs, data_samples)
def post_process(
self, outputs: torch.Tensor,
data_samples: Optional[List[DataSample]]) -> List[DataSample]:
"""Perform post process for outputs for different task.
Args:
outputs (torch.Tensor): The generated outputs.
data_samples (List[DataSample], optional): The annotation
data of every samples.
Returns:
List[DataSample]: Return list of data samples.
"""
outputs = self.llama_tokenizer.batch_decode(
outputs, skip_special_tokens=True)
if data_samples is None:
data_samples = [DataSample() for _ in range(len(outputs))]
for output, data_sample in zip(outputs, data_samples):
if self.task == 'caption':
output = output.split('###')[0]
data_sample.pred_caption = output
else:
# raw output
data_sample.pred_output = output
return data_samples
def forward(
self,
images: torch.Tensor,
data_samples: Optional[list] = None,
mode: str = 'predict',
**kwargs,
):
"""The unified entry for a forward process in both training and test.
The method accepts the following modes:
- "predict": Forward and return a list of data samples contain the
predict results.
Args:
images (torch.Tensor): the preprocessed image tensor of shape
``(N, C, H, W)``.
data_samples (List[DataSample], optional): The annotation data
of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to 'predict'.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
@staticmethod
def _load_llama_proj_hook(module, incompatible_keys):
"""Avoid warning missing keys except LLaMA projection keys."""
proj_patterns = [
'vision_encoder.*',
'ln_vision.*',
'q_former.*',
'query_tokens',
'llama_model.*',
]
for key in list(incompatible_keys.missing_keys):
if any(re.match(pattern, key) for pattern in proj_patterns):
incompatible_keys.missing_keys.remove(key)
|