File size: 20,376 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_

from mmpretrain.registry import MODELS
from ..utils import (MultiheadAttention, SwiGLUFFNFused, build_norm_layer,
                     resize_pos_embed, to_2tuple)
from .base_backbone import BaseBackbone


class TransformerEncoderLayer(BaseModule):
    """Implements one encoder layer in Vision Transformer.

    Args:
        embed_dims (int): The feature dimension
        num_heads (int): Parallel attention heads
        feedforward_channels (int): The hidden dimension for FFNs
        layer_scale_init_value (float or torch.Tensor): Init value of layer
            scale. Defaults to 0.
        drop_rate (float): Probability of an element to be zeroed
            after the feed forward layer. Defaults to 0.
        attn_drop_rate (float): The drop out rate for attention output weights.
            Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        num_fcs (int): The number of fully-connected layers for FFNs.
            Defaults to 2.
        qkv_bias (bool): enable bias for qkv if True. Defaults to True.
        ffn_type (str): Select the type of ffn layers. Defaults to 'origin'.
        act_cfg (dict): The activation config for FFNs.
            Defaults to ``dict(type='GELU')``.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 layer_scale_init_value=0.,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 num_fcs=2,
                 qkv_bias=True,
                 ffn_type='origin',
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 init_cfg=None):
        super(TransformerEncoderLayer, self).__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims

        self.ln1 = build_norm_layer(norm_cfg, self.embed_dims)

        self.attn = MultiheadAttention(
            embed_dims=embed_dims,
            num_heads=num_heads,
            attn_drop=attn_drop_rate,
            proj_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            qkv_bias=qkv_bias,
            layer_scale_init_value=layer_scale_init_value)

        self.ln2 = build_norm_layer(norm_cfg, self.embed_dims)

        if ffn_type == 'origin':
            self.ffn = FFN(
                embed_dims=embed_dims,
                feedforward_channels=feedforward_channels,
                num_fcs=num_fcs,
                ffn_drop=drop_rate,
                dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
                act_cfg=act_cfg,
                layer_scale_init_value=layer_scale_init_value)
        elif ffn_type == 'swiglu_fused':
            self.ffn = SwiGLUFFNFused(
                embed_dims=embed_dims,
                feedforward_channels=feedforward_channels,
                layer_scale_init_value=layer_scale_init_value)
        else:
            raise NotImplementedError

    @property
    def norm1(self):
        return self.ln1

    @property
    def norm2(self):
        return self.ln2

    def init_weights(self):
        super(TransformerEncoderLayer, self).init_weights()
        for m in self.ffn.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.normal_(m.bias, std=1e-6)

    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = self.ffn(self.ln2(x), identity=x)
        return x


@MODELS.register_module()
class VisionTransformer(BaseBackbone):
    """Vision Transformer.

    A PyTorch implement of : `An Image is Worth 16x16 Words: Transformers
    for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_

    Args:
        arch (str | dict): Vision Transformer architecture. If use string,
            choose from 'small', 'base', 'large', 'deit-tiny', 'deit-small'
            and 'deit-base'. If use dict, it should have below keys:

            - **embed_dims** (int): The dimensions of embedding.
            - **num_layers** (int): The number of transformer encoder layers.
            - **num_heads** (int): The number of heads in attention modules.
            - **feedforward_channels** (int): The hidden dimensions in
              feedforward modules.

            Defaults to 'base'.
        img_size (int | tuple): The expected input image shape. Because we
            support dynamic input shape, just set the argument to the most
            common input image shape. Defaults to 224.
        patch_size (int | tuple): The patch size in patch embedding.
            Defaults to 16.
        in_channels (int): The num of input channels. Defaults to 3.
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Defaults to True.
        out_type (str): The type of output features. Please choose from

            - ``"cls_token"``: The class token tensor with shape (B, C).
            - ``"featmap"``: The feature map tensor from the patch tokens
              with shape (B, C, H, W).
            - ``"avg_featmap"``: The global averaged feature map tensor
              with shape (B, C).
            - ``"raw"``: The raw feature tensor includes patch tokens and
              class tokens with shape (B, L, C).

            Defaults to ``"cls_token"``.
        with_cls_token (bool): Whether concatenating class token into image
            tokens as transformer input. Defaults to True.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Defaults to -1.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Defaults to "bicubic".
        layer_scale_init_value (float or torch.Tensor): Init value of layer
            scale. Defaults to 0.
        patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
        layer_cfgs (Sequence | dict): Configs of each transformer layer in
            encoder. Defaults to an empty dict.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """
    arch_zoo = {
        **dict.fromkeys(
            ['s', 'small'], {
                'embed_dims': 768,
                'num_layers': 8,
                'num_heads': 8,
                'feedforward_channels': 768 * 3,
            }),
        **dict.fromkeys(
            ['b', 'base'], {
                'embed_dims': 768,
                'num_layers': 12,
                'num_heads': 12,
                'feedforward_channels': 3072
            }),
        **dict.fromkeys(
            ['l', 'large'], {
                'embed_dims': 1024,
                'num_layers': 24,
                'num_heads': 16,
                'feedforward_channels': 4096
            }),
        **dict.fromkeys(
            ['h', 'huge'],
            {
                # The same as the implementation in MAE
                # <https://arxiv.org/abs/2111.06377>
                'embed_dims': 1280,
                'num_layers': 32,
                'num_heads': 16,
                'feedforward_channels': 5120
            }),
        **dict.fromkeys(
            ['eva-g', 'eva-giant'],
            {
                # The implementation in EVA
                # <https://arxiv.org/abs/2211.07636>
                'embed_dims': 1408,
                'num_layers': 40,
                'num_heads': 16,
                'feedforward_channels': 6144
            }),
        **dict.fromkeys(
            ['deit-t', 'deit-tiny'], {
                'embed_dims': 192,
                'num_layers': 12,
                'num_heads': 3,
                'feedforward_channels': 192 * 4
            }),
        **dict.fromkeys(
            ['deit-s', 'deit-small', 'dinov2-s', 'dinov2-small'], {
                'embed_dims': 384,
                'num_layers': 12,
                'num_heads': 6,
                'feedforward_channels': 384 * 4
            }),
        **dict.fromkeys(
            ['deit-b', 'deit-base'], {
                'embed_dims': 768,
                'num_layers': 12,
                'num_heads': 12,
                'feedforward_channels': 768 * 4
            }),
        **dict.fromkeys(
            ['dinov2-g', 'dinov2-giant'], {
                'embed_dims': 1536,
                'num_layers': 40,
                'num_heads': 24,
                'feedforward_channels': 6144
            }),
    }
    num_extra_tokens = 1  # class token
    OUT_TYPES = {'raw', 'cls_token', 'featmap', 'avg_featmap'}

    def __init__(self,
                 arch='base',
                 img_size=224,
                 patch_size=16,
                 in_channels=3,
                 out_indices=-1,
                 drop_rate=0.,
                 drop_path_rate=0.,
                 qkv_bias=True,
                 norm_cfg=dict(type='LN', eps=1e-6),
                 final_norm=True,
                 out_type='cls_token',
                 with_cls_token=True,
                 frozen_stages=-1,
                 interpolate_mode='bicubic',
                 layer_scale_init_value=0.,
                 patch_cfg=dict(),
                 layer_cfgs=dict(),
                 pre_norm=False,
                 init_cfg=None):
        super(VisionTransformer, self).__init__(init_cfg)

        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in set(self.arch_zoo), \
                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]
        else:
            essential_keys = {
                'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels'
            }
            assert isinstance(arch, dict) and essential_keys <= set(arch), \
                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.num_layers = self.arch_settings['num_layers']
        self.img_size = to_2tuple(img_size)

        # Set patch embedding
        _patch_cfg = dict(
            in_channels=in_channels,
            input_size=img_size,
            embed_dims=self.embed_dims,
            conv_type='Conv2d',
            kernel_size=patch_size,
            stride=patch_size,
            bias=not pre_norm,  # disable bias if pre_norm is used(e.g., CLIP)
        )
        _patch_cfg.update(patch_cfg)
        self.patch_embed = PatchEmbed(**_patch_cfg)
        self.patch_resolution = self.patch_embed.init_out_size
        num_patches = self.patch_resolution[0] * self.patch_resolution[1]

        # Set out type
        if out_type not in self.OUT_TYPES:
            raise ValueError(f'Unsupported `out_type` {out_type}, please '
                             f'choose from {self.OUT_TYPES}')
        self.out_type = out_type

        # Set cls token
        self.with_cls_token = with_cls_token
        if with_cls_token:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
        elif out_type != 'cls_token':
            self.cls_token = None
            self.num_extra_tokens = 0
        else:
            raise ValueError(
                'with_cls_token must be True when `out_type="cls_token"`.')

        # Set position embedding
        self.interpolate_mode = interpolate_mode
        self.pos_embed = nn.Parameter(
            torch.zeros(1, num_patches + self.num_extra_tokens,
                        self.embed_dims))
        self._register_load_state_dict_pre_hook(self._prepare_pos_embed)

        self.drop_after_pos = nn.Dropout(p=drop_rate)

        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = self.num_layers + index
            assert 0 <= out_indices[i] <= self.num_layers, \
                f'Invalid out_indices {index}'
        self.out_indices = out_indices

        # stochastic depth decay rule
        dpr = np.linspace(0, drop_path_rate, self.num_layers)

        self.layers = ModuleList()
        if isinstance(layer_cfgs, dict):
            layer_cfgs = [layer_cfgs] * self.num_layers
        for i in range(self.num_layers):
            _layer_cfg = dict(
                embed_dims=self.embed_dims,
                num_heads=self.arch_settings['num_heads'],
                feedforward_channels=self.
                arch_settings['feedforward_channels'],
                layer_scale_init_value=layer_scale_init_value,
                drop_rate=drop_rate,
                drop_path_rate=dpr[i],
                qkv_bias=qkv_bias,
                norm_cfg=norm_cfg)
            _layer_cfg.update(layer_cfgs[i])
            self.layers.append(TransformerEncoderLayer(**_layer_cfg))

        self.frozen_stages = frozen_stages
        if pre_norm:
            self.pre_norm = build_norm_layer(norm_cfg, self.embed_dims)
        else:
            self.pre_norm = nn.Identity()

        self.final_norm = final_norm
        if final_norm:
            self.ln1 = build_norm_layer(norm_cfg, self.embed_dims)
        if self.out_type == 'avg_featmap':
            self.ln2 = build_norm_layer(norm_cfg, self.embed_dims)

        # freeze stages only when self.frozen_stages > 0
        if self.frozen_stages > 0:
            self._freeze_stages()

    @property
    def norm1(self):
        return self.ln1

    @property
    def norm2(self):
        return self.ln2

    def init_weights(self):
        super(VisionTransformer, self).init_weights()

        if not (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):
            if self.pos_embed is not None:
                trunc_normal_(self.pos_embed, std=0.02)

    def _prepare_pos_embed(self, state_dict, prefix, *args, **kwargs):
        name = prefix + 'pos_embed'
        if name not in state_dict.keys():
            return

        ckpt_pos_embed_shape = state_dict[name].shape
        if (not self.with_cls_token
                and ckpt_pos_embed_shape[1] == self.pos_embed.shape[1] + 1):
            # Remove cls token from state dict if it's not used.
            state_dict[name] = state_dict[name][:, 1:]
            ckpt_pos_embed_shape = state_dict[name].shape

        if self.pos_embed.shape != ckpt_pos_embed_shape:
            from mmengine.logging import MMLogger
            logger = MMLogger.get_current_instance()
            logger.info(
                f'Resize the pos_embed shape from {ckpt_pos_embed_shape} '
                f'to {self.pos_embed.shape}.')

            ckpt_pos_embed_shape = to_2tuple(
                int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens)))
            pos_embed_shape = self.patch_embed.init_out_size

            state_dict[name] = resize_pos_embed(state_dict[name],
                                                ckpt_pos_embed_shape,
                                                pos_embed_shape,
                                                self.interpolate_mode,
                                                self.num_extra_tokens)

    @staticmethod
    def resize_pos_embed(*args, **kwargs):
        """Interface for backward-compatibility."""
        return resize_pos_embed(*args, **kwargs)

    def _freeze_stages(self):
        # freeze position embedding
        if self.pos_embed is not None:
            self.pos_embed.requires_grad = False
        # set dropout to eval model
        self.drop_after_pos.eval()
        # freeze patch embedding
        self.patch_embed.eval()
        for param in self.patch_embed.parameters():
            param.requires_grad = False
        # freeze pre-norm
        for param in self.pre_norm.parameters():
            param.requires_grad = False
        # freeze cls_token
        if self.cls_token is not None:
            self.cls_token.requires_grad = False
        # freeze layers
        for i in range(1, self.frozen_stages + 1):
            m = self.layers[i - 1]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False
        # freeze the last layer norm
        if self.frozen_stages == len(self.layers):
            if self.final_norm:
                self.ln1.eval()
                for param in self.ln1.parameters():
                    param.requires_grad = False

            if self.out_type == 'avg_featmap':
                self.ln2.eval()
                for param in self.ln2.parameters():
                    param.requires_grad = False

    def forward(self, x):
        B = x.shape[0]
        x, patch_resolution = self.patch_embed(x)

        if self.cls_token is not None:
            # stole cls_tokens impl from Phil Wang, thanks
            cls_token = self.cls_token.expand(B, -1, -1)
            x = torch.cat((cls_token, x), dim=1)

        x = x + resize_pos_embed(
            self.pos_embed,
            self.patch_resolution,
            patch_resolution,
            mode=self.interpolate_mode,
            num_extra_tokens=self.num_extra_tokens)
        x = self.drop_after_pos(x)

        x = self.pre_norm(x)

        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)

            if i == len(self.layers) - 1 and self.final_norm:
                x = self.ln1(x)

            if i in self.out_indices:
                outs.append(self._format_output(x, patch_resolution))

        return tuple(outs)

    def _format_output(self, x, hw):
        if self.out_type == 'raw':
            return x
        if self.out_type == 'cls_token':
            return x[:, 0]

        patch_token = x[:, self.num_extra_tokens:]
        if self.out_type == 'featmap':
            B = x.size(0)
            # (B, N, C) -> (B, H, W, C) -> (B, C, H, W)
            return patch_token.reshape(B, *hw, -1).permute(0, 3, 1, 2)
        if self.out_type == 'avg_featmap':
            return self.ln2(patch_token.mean(dim=1))

    def get_layer_depth(self, param_name: str, prefix: str = ''):
        """Get the layer-wise depth of a parameter.

        Args:
            param_name (str): The name of the parameter.
            prefix (str): The prefix for the parameter.
                Defaults to an empty string.

        Returns:
            Tuple[int, int]: The layer-wise depth and the num of layers.

        Note:
            The first depth is the stem module (``layer_depth=0``), and the
            last depth is the subsequent module (``layer_depth=num_layers-1``)
        """
        num_layers = self.num_layers + 2

        if not param_name.startswith(prefix):
            # For subsequent module like head
            return num_layers - 1, num_layers

        param_name = param_name[len(prefix):]

        if param_name in ('cls_token', 'pos_embed'):
            layer_depth = 0
        elif param_name.startswith('patch_embed'):
            layer_depth = 0
        elif param_name.startswith('layers'):
            layer_id = int(param_name.split('.')[1])
            layer_depth = layer_id + 1
        else:
            layer_depth = num_layers - 1

        return layer_depth, num_layers